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Abstract—Traditional pattern recognition systems, tasked with
categorizing inputs into known classes, often struggle when they
encounter samples they haven’t been trained to recognize. This
introduces the need for the open set recognition—enhancing
models to reject unidentified samples effectively. The Openmax
method represents a significant breakthrough in this field by
leveraging deep learning to spot and handle these new, unseen
classes, broadening the traditional Softmax layer to accommodate
an ‘“unknown” class and employing a single threshold to separate
the known from the unknown. However, the reliance of the
original Openmax method on a single threshold may result in
incorrect classifications if the parameters are not selected appro-
priately. To address this, we introduce a dual-threshold fusion
mechanism based on Dempster-Shafer evidence theory in this
paper. This approach releases the difficulty of finding a precise
threshold in the complex and dynamic real-world environments.
By integrating deep networks with a novel evidence-based system,
the refined approach can bolster the robustness of rejecting
undefined classes.

Index Terms—Open Set Recognition (OSR),
Dempster-Shafer Evidence Theory (DST)

Openmax,

I. INTRODUCTION

In traditional pattern recognition tasks, input samples are
categorized into a finite set of predefined classes, assuming that
all testing classes are known while training. However, when
these systems are implemented in real-world settings, they
usually encounter samples from classes that were not present
during the training phase, termed as “unknown unknowns [1]”.
These classes, absent in the training data, present a significant
challenge for standard classifiers during inference, as they
are not equipped to recognize these novel classes. Addressing
this issue becomes imperative, necessitating enhancements in
recognition models to effectively reject samples from these
unidentified classes. This challenge, where the goal is to
discern test samples as either belonging to known or unknown
classes while accurately classifying all familiar classes, is
defined as the Open Set Recognition (OSR [2]).

In the field of open set recognition with non-deep learning
strategies, significant attention has been directed towards the
use of Support Vector Machines (SVM), especially the one-
class SVM [3]. They have not only improved SVM decision
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boundaries to better balance empirical risks in open set sce-
narios, but also incorporated extreme value theory [4] using
Weibull distribution. A novel adaptation, the W-SVM [5],
further innovates by applying Weibull distribution to adjust
output scores of binary SVMs, enhancing their effectiveness
for open set recognition. Additionally, there are open set
recognition methods based on nearest neighbors [6] and sparse
representation [7].

The Openmax method [8], devised by Bendale and Boult in
2016, marks a significant advancement in tackling the issue of
open set recognition, notably as the first initiative to integrate
deep learning networks into this domain. Its primary goal is
to identify and manage new classes that were not encountered
during the training phase, serving as a foundational technique
that has spurred a wealth of subsequent research [9]-[11]. For
a closed-set recognition problem with N classes, Openmax
enhances the capability of deep networks by extending the tra-
ditional Softmax layer to recognize an additional “unknown”
class, thereby accommodating N + 1 classes.

Openmax method intricately models the distribution of
activation vectors for each class by analyzing the activations
just before the Softmax layer and utilizing their statistical char-
acteristics to estimate each class’s distribution. Specifically, for
each training class, this method applies Weibull distribution to
model the tail ends of the Euclidean distances that measure
how far each activation vector deviates from the class’s average
activation vector. Openmax evaluates the similarity between
an input test sample and each trained class, generating a
revised activation vector that includes IV + 1 classes. In terms
of identifying unknown class samples, Openmax employs a
single threshold: scores below this threshold are classified as
unknown, whereas those above are deemed known. However,
the area around the threshold remains somewhat unclear,
potentially introducing ambiguity regarding OSR problem.
This aspect of Openmax, where it doesn’t explicitly articulate
the uncertainty around this borderline region and relies on a
single threshold, could inadvertently lead to misclassifications
of certain samples.

Therefore, our proposed method in this paper incorporates
a dual-threshold fusion mechanism for enhancement based
on Dempster-Shafer evidence Theory (DST [12]). Building
upon the Openmax framework, our work introduces DST,



which serves as an effective tool for modeling and reasoning
under uncertainty, to articulate the uncertainties surrounding
the decision threshold. It adopts a dual-threshold mechanism to
generate Basic Belief Assignments (BBAs), which allows for
the creation of distinct mass for the known classes, unknown
classes, and the ambiguous area. Our approach employs vari-
ous Deep Neural Networks (DNNs) as the backbone to gen-
erate distinct BBAs. Subsequently, we combine these BBAs
to reduce the uncertainties to expect a better decision on the
unknown classes. Three experimental series, each grounded in
three different metrics, showcase the proposed method’s over-
all enhancement over the unfused original Openmax technique.

II. RELATED WORK
A. Openmax Algorithm

In the realm of closed-set recognition with N classes,
Openmax unfolds in two distinct phases: During the initial
training phase, a deep neural network featuring a Softmax
layer undergoes training through the minimization of the
cross-entropy loss function. The subsequent section will intro-
duce several quintessential pattern recognition DNNs. For the
adeptly trained feature extraction network, activation vectors
(AV (z;;) € RN Xl,abb’rAV;-), representing the outputs
from the last fully connected layer for the sample z; ;, the
i-th sample from the j-th class of the training dataset, serve
as the input for the Openmax algorithm. Openmax adopts the
nearest class mean concept to depict each class by a Mean
Activation Vector (MAYV, B € RN>1) as illustrated below:

N.
1 J ;
b= E;Avj (D

Here, N; and p; signify the number of samples and the mean
AV of images in the j-th class, respectively. For each class’s
training samples, the mean of the activation vectors (AV) from
accurately classified known samples is computed to represent
that class’s MAV. This is followed by calculating the Euclidean
distance between the train sample’s activation vector and each
class’s MAV to establish a set of distances:

d(i) = Distance (AV; e RVx1 p; € Rle)
i=1,2,...,Nj.

These distance sets for each class are then modeled using the
Weibull distribution through the libMR FitHigh function [13],
deriving the Cumulative Distribution Function (CDF) for each
class.

In the testing phase, Openmax essentially recalculates a new
activation vector (AV (x) € RN+*XL = goy (2)...avn11(x))
for a new sample z, incorporating an additional element to
denote the open-set class. Its activation vector (AV(xz) €
RNX1 = quy(x)...avy(x)) is selected and N, (a hyperpa-
rameter smaller than V) of its largest elements are adjusted
using two positive factors, wgeore and . Openmax computes
the Euclidean distance between AV (x) and p,, the MAV
corresponding to z’s training class:

D(z) = Distance(AV (z) € RV*1 pu, ¢ RV (3)

2

Applying the Weibull CDF to this D(z) yields wscore:
Wscore = C-DFk(D(x)) (4)
The Alpha rank, «, determined by N,, is outlined as:

N,—1 N, —2 1

Na ; Na ,...7E

ae|l, e RNaxl  (5)

Openmax modifies AV (z) to AV (z) by applying:
avi(z) = av;(z) X (1 — wseore X ;)
i=1,2,...,N,.

The deducted values are collectively added and appended
at the end of AV (x) as a new score for the open set:

(6)

N

@y () = 1= (av;(x) — av;(x)) (7)

j=1
In the end, the Softmax function together with a specified
rejection e threshold is applied to AV (x):

~ eﬁj (z)

Ply=jlz) = 7=
Z;V:'ql ea'uj(:zz) (8)

y* = argmaz; Py = jlx)
Openmax rejects input with two criteria:
y*=N+1 )

or

Ply=y*l) <e (10)

In criteria Eq.(10), the Openmax approach rejects input
when the maximum posterior probability P(y = y*|x) falls
below e, irrespective of the associated class y*. Such reliance
on a single threshold may result in misclassifications due to
rigid demarcation. A threshold that is either too high or too
low can lead to varying outcomes for the same sample in OSR,
highlighting an area of the ambiguity around the threshold.

B. Deep Neural Networks for Activation Vector Extraction

Openmax leverage iconic DNN architectures from the do-
main of machine vision for the extraction of activation vec-
tors. The DNN models adopted in our study include VGG,
GoogleNet, ResNet, DenseNet, and ResNext. Here’s a concise
overview:

VGG (Visual Geometry Group [14]) innovates with “incep-
tion modules” for multi-scale convolution within a single mod-
ule, achieving efficiency through reduced parameters without
compromising effectiveness.

GoogLeNet [15] features the innovative “Inception mod-
ule” that optimizes computational resources by structuring a
network within a network. This design allows for efficient
data processing across different scales, maintaining high per-
formance while minimizing computational overhead.

ResNet (Residual Networks [16]) introduces skip connec-
tions in its residual blocks to train deeper networks effectively
by overcoming the vanishing gradient issue, thereby maintain-
ing performance despite the increased depth.



DenseNet (Densely Connected Convolutional Networks
[17]) enhances the feature reuse across all layers in a feed-
forward manner, significantly boosting efficiency and reducing
overfitting by promoting feature propagation and reuse.

ResNeXt [18] adds “cardinality” to ResNet, offering mul-
tiple parallel paths to increase capacity more effectively than
simply deepening or widening the network, optimizing com-
plexity.

Each of these networks has made significant contributions
to the field of deep learning, offering various architectural
innovations that enhance performance on a wide range of
tasks, including open set recognition when used as part of
an Openmax framework. By employing these networks as its
backbone, Openmax has the capability to capture activation
vectors from samples through diverse approaches.

III. ENHANCING OPENMAX WITH A DUAL-THRESHOLD
APPROACH BASED ON EVIDENCE THEORY

As discussed in Section II, Openmax does not directly
address the uncertainties associated with threshold decisions,
yet different DNNs are capable of capturing diverse activation,
holding the potential to enhance OSR performance through
fusion. To tackle these issues, we incorporate the DST, a robust
framework designed for uncertainty modeling and the fusion of
multiple sources, thereby augmenting Openmax. Our approach
introduces a dual-threshold mechanism for the generation of
BBAs within the Openmax framework, aiming to advance
OSR capabilities across various deep neural networks. Here,
we provide a succinct overview of evidence theory:

A. Basis of Evidence Theory

DST provides a robust theoretical framework for mod-
eling and reasoning under uncertainty. In DST, the Frame
Of Discernment (FOD) © contains [ mutually exclusive and
exhaustive elements © = {61, 6,,...,60,}. The power set of ©
(the set of all subsets of ©) is denoted by 2©. The BBA, also
known as a mass function, m, maps from 29 to the interval
[0, 1], adhering to the conditions:

daco™A) =1, m(0) =0 11

here, m(A) quantifies the degree of belief supporting the
proposition A. A subset A is designated as a focal element
if m(A) > 0.

Dempster’s rule of combination, a mechanism for com-
bining two distinct sources within the DST framework, is
articulated as
0,A=0

my(B)ma(C),A#£0 (12)

my ®&ma(A) :{ 1 >
BNC=A
where K = Y 5 ~_ymi(B)ma(C) signifies the aggregate
conflict or contradiction between mass assignments.
For probabilistic decision-making based on BBA, Smets
et al. introduced the pignistic probability transformation to
convert a BBA into a probability measure BetP [19]:

BetP(6;) £ mA) g o

0:€A | A (13)

where |A| represents the cardinality of A. Decisions are
typically rendered by selecting the hypothesis in FOD with
the highest BetP value.

B. Generation of BBA Based on Dual Thresholds

Algorithm 1 Generation of BBA for the Openmax networks
Input: j-th Openmax network output highest posterior prob-
ability Pj (y = y*|z) and its corresponding class y; for
sample x
7 = 1,2,..., Ny, Ny refers to the number of different
DNNSs used;
Output: BBAs from the Openmax networks m;(61),m;(02)
and m; (91, 92)
J = 1,2,..., N4, corresponding to the j-th Openmax
network;
1: for y=1,2,--- , Ny do
2. ify; = N +1 then
3: Following the Openmax’s criteria in Eq.(9),
treat the sample as the unknowns:

m;(01) = 0,m;(02) = 1; (14)
else
5: Assign values to m; (61),m; (62) based on the dual-
threshold €1, €5:
1
m; (61) = >
—Bx(Pj(y=y*|z)—€
l1+e ( . 1) (15)
i(02) = ~
m; (62) 1+ ¢ Bx(Pily=y"I2)—e2)
where, § acts as a slope hyperparameter;
end if
Assign values to m; (61,02):
m; (91,92) =1- m; (01) —m; (92) (16)

8: end for
9: return mj(ﬁl),mj(ﬂg) and mj(el, 92),j =1,2,---,Ng.

Our methodological refinement aims to use the evidence
theory for an appropriate representation of the uncertain-
ties near decision thresholds. By leveraging compound focal
elements from evidence theory, we delineate the indistinct
boundary separating known and unknown classes. In our
FOD, 6, represents samples classified within the known class,
while 65 is designated for samples considered as belonging
to the unknown class. The compound focal element {61,602}
represents the degree of indistinguishability between internal
known classes and external unknowns.

In the training phase, consistent with the original Openmax
framework, we train multiple deep neural networks with a
Softmax layer. For each DNN, we calculate MAVs and employ
the Weibull distribution, thus equipping the network with
Openmax layer for open set recognition. The aforementioned
process is illustrated in Part A of Fig. 1. Different DNNs with
Openmax layers, also called as Openmax networks, are capa-
ble of capturing activation features from diverse approaches.
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Fig. 1. Block Diagram of the Dual-Threshold Openmax with Evidence.

Subsequently, we will fuse them to boost the performance of
OSR.

In the testing phase, Each Openmax network individually
processes a new test sample z, deriving the corresponding
activation vector and network output probabilities. Based on
Openmax network outputs, our overall BBAs generation algo-
rithm is summarized in Algorithm 1. Here are some details
from our algorithm:

For Eq.(14), when y* = N + 1, our approach remains
consistent with the original Openmax methodology, treating
the sample as the unknowns with rejection from Eq.(9). Our
efforts within the Openmax framework focus on the threshold-
based rejection criteria, detailed in Eq.(10).

In Eq.(15) and (16), our method employs a dual-
threshold approach, incorporating both high and low thresh-
olds (€1, €2; €1 > €3). The choice of dual thresholds allows for
increased flexibility. In this case, a straightforward and intu-
itive approach is employed to determine the upper and lower
thresholds by adjusting the original threshold; this adjustment
involves adding or subtracting 0.1 (e1,€2 = € &= 0.1). Here,
the slope hyperparameter 3 is usually set to 10, ensuring that
values of m;(6;) and m;(62) remain within a reasonable range
in (0,1) when P(y = y*|x), abbreviated as P, varies between
[0,1]. To generate a legal BBA, by differentiating function
m;(61)+m;(f2) with respect to P, its maximum value is less
than 1. While, m; (61, 62) consistently stays above 0. In part
C of Fig. 1, the membership curve for the generation of BBA
draws inspiration from the reference [20]. This framework
introduces flexibility beyond the original Openmax’s single
threshold, which rigidly separates classes.

When P matches ¢, the value for m;(61) is 0.5. As
the value of P surpasses this threshold, m;(6;) increases
above 0.5, progressively nearing 1, considering the sample
increasingly likely to be known. When P equals ez, m;(6s)

Algorithm 2 OSR Based on Evidence Combination

Input: Alg.1 output BBAs m;(61),m;(02) and m;(61,62);
j-th DNN output activation vectors AVj(x);
j = 1,2,...,Ng, Ny refers to the number of different
DNNSs used;
Output: Reject input or the input sample class y*/;
1: Combine BBAs via Dempster’s rule in Eq.(12):

2: Convert m(A) into a probability measure BetP(6;) using
Smets’ method in Eq.(13)

3: if BetP(02) > BetP(6) then

4:  return Reject input

5: else

6:  Average the activation vectors from different DNNs:

Ng
1
MAV(z) = — AV (x (18)
(©) = 5, L A%
7:  Classify the sample x into a specific known class y*

) emavj(:r)
P(y - j|1’) = Z;\le emav;(z)

y* = argmaz;P(y = j|z)

19)

8:  return y*'.
9: end if

is also 0.5. Below the threshold, m;(62) climbs above 0.5
and steadily approaches 1, suggesting the sample increasingly
likely to be unknown. The dual-threshold model naturally
creates a decision buffer zone between its two thresholds. This
zone provides additional leeway and allows for a “waiting”



period for more information from various Openmax networks
to arrive.

Moving forward, we conduct OSR using a decision fusion
method, which is summarized in Algorithm 2. Regarding
Eq.(17) and subsequent details, Dempster’s combination rule
and Smets’ probabilistic transformation are established and
reliable techniques in decision fusion. Employing these meth-
ods, we decide whether to reject sample x or recognize it as
belonging to a known class. For Eq.(18) and (19), when the
sample is not rejected, the aggregate activation vectors inform
the final classification decision in the Softmax function.

Part B of Fig. 1 illustrates the aforementioned process in
Alg. 1 and 2. In the complex and ever-changing real-world
scenarios, this fusion approach prevents the frequent decision
flips that might occur with the original Openmax in the face of
slight information variances. By integrating a decision buffer
zone and leveraging evidence theory for multi-model fusion,
the method in the paper substantially improves the robustness
and reliability of open set recognition, which is demonstrated
in the experimental section.

IV. EXPERIMENTS FOR OPEN SET RECOGNITION
A. Evaluation Metrics

Before discussing evaluation metrics, we reference the
concept of Openness (O, [2]) in open set recognition to
quantify the degree of challenge posed by the openness of
the recognition scenario:

2 N, rain
Oo=1- _ =X Nwmain
N, test T N, target

here, Nyin represents the number of training classes seen
during training, N denotes the number of unknown test
classes that will be observed during testing, and Niyge; refers
to the number of target classes that need to be correctly
recognized during testing. In the CIFAR+10 protocol discussed
in this paper, four classes were used as the closed set for
training, while ten classes were treated as unknown classes.
Here, Niger = 14, Nyain = 4, and Ny = 4, resulting in an
Openness of 33.33%.

In our methodology, we introduce ACCuracy (ACC) as a
fundamental evaluation metric, delineating the peak classifi-
cation probability achievable across the spectrum of potential
thresholds e. This metric is particularly tailored for scenarios
involving open set recognition with /N predefined classes in
the closed set, and can be mathematically represented as:

(20)

ace - ZPL(G = ko € DY) + TP 1(: = N + Dlw € Do)

[D5]+ Do
(21

here, D’7“— and Dy respectively signify the sets of samples be-
longing to the k-th closed set class and those from the open set.
Accuracy thus provides an intuitive gauge of an algorithm’s
efficacy, though its reliability hinges on the selection of an
appropriate threshold.

Considering the inherent unpredictability of unknown sam-
ple prevalence in real-world applications, the utilization of
arbitrary thresholds for OSR evaluations becomes untenable.
Consequently, we incorporate the Area Under the Receiver
Operating Characteristic (AUROC) curve as a critical evalua-
tion metric. The AUROC, independent of any threshold setting,
contrasts the true positive rate against the false positive rate
by varying the threshold. This metric is interpreted as the
probability of a positive instance receiving a higher score than
a negative instance, offering a robust measure of an algorithm’s
ability to distinguish between known and unknown classes.

However, while the AUROC adeptly distinguishes between
known and unknown classes, it overlooks the accuracy of
classifying known classes in OSR scenarios— a critical aspect
often obscured by this widely accepted metric. To address this,
we introduce the Open Set Classification Rate (OSCR [21])
as an innovative evaluation metric. OSCR, too, measures the
area under a curve drawn with the Correct Classification Rate
(CCR) on the y-axis against the False Positive Rate (FPR) on
the x-axis. CCR is defined as:

z € D5 A argmaxP(k|z) = kA P(k|z) > 6
k

CCR(%) =
v 5]
(22)
where ¢ is the score threshold. The FPR is similarly defined
as:
FPR(5) = |z|x € Dy /\I‘I;)axlk P(k|z) > d
U

A higher OSCR value signifies superior performance in
open set recognition, capturing the appropriate balance be-
tween correctly classifying known classes and effectively
identifying unknowns.

(23)

B. Dataset

Our experimental evaluation leverages the CIFAR-10 and
CIFAR-100 datasets [22], renowned benchmarks in image
classification that are instrumental in assessing the perfor-
mance of various algorithms and pose significant challenges.
Adhering to the methodologies outlined in prior research [23],
we implement two distinct protocols for our assessments:

CIFAR-10: Using four classes from the CIFAR-10 dataset
as a closed set for training purposes, we conduct open set
recognition across all ten classes, culminating in an openness
of 33.33%.

CIFAR+10, CIFAR+50: In the CIFAR+M setup, we select
four classes from CIFAR-10 for training and designate M
non-overlapping classes from CIFAR-100 as unknowns to
simulate open set conditions. The calculated openness for
the CIFAR+10 and CIFAR+50 configurations are 33.33% and
62.86%, respectively, showcasing varying degrees of challenge
and complexity in open set recognition scenarios.

C. Experimental Results

We trained the five deep neural networks mentioned in
Section II-B, employing stochastic gradient descent [24] as
the optimizer across all networks. Our experiments were



TABLE I
THE ACC, AUROC AND OSCR CURVE RESULTS OF OPEN SET RECOGNITION

Method CIFARI10 CIFAR+10 CIFAR+50
ACC(%) AUROC  OSCR ACC(%) AUROC  OSCR ACC(%) AUROC  OSCR
Original Openmax 66.62+ 3.56 68.79 84.02 7221+ 3.07 80.72 89.78  70.65+ 3.15 79.94 88.73
Weighted Fusion Openmax 70.71+ 3.08 75.27 85.24 75.99+ 2.62 86.16 91.12 74.28+ 2.68 84.48 90.26
DST-enhanced Openmax 72.23 £ 2.97 78.80 85.68  77.35+ 2.64 87.28 92.35  75.63+ 2.61 85.12 91.67
repeated randomly five times, with the variance of the accuracy REFERENCES

metric systematically calculated. Our experimental findings are
presented in Table 1. In this table, the “Original Openmax”
method refers to the conventional Openmax approach that
utilizes ResNet for feature extraction. The “DST-enhanced
Openmax” represents the improved methodology proposed in
this study. Beyond our DST-enhanced Openmax method, we
also explored a simple weighted fusion approach to combine
outputs from different Openmax networks. This method aver-
ages the outputs of various Openmax networks for fusion, as
expressed mathematically by:

Na
o g Jy
MP(y = jlz) = EZPM = jlz)

Ci=1

(24)

here, N, also refers to the number of different DNNs used. In
this experiment, N; = 5. This approach, labeled as “Weighted
Fusion Openmax” in Table 1, leverages information from
diverse deep networks to enhance decision-making.

As illustrated in Table 1, our method, which enhances the
Openmax approach with a dual-threshold mechanism based on
evidence theory, outperforms the original and simple fusion
methods across all three metrics in three experiments. Our
approach not only achieves higher intuitive accuracy but also
excels in threshold-independent metrics such as AUROC and
OSCR. This demonstrates the robustness of our method and its
capability to effectively balance the classification of closed-set
classes with the rejection of open-set classes, underscoring its
superiority in managing the challenges of open set recognition.

V. CONCLUSION

In this paper, our approach refines the Openmax framework
with a dual-threshold mechanism based on DST, adept at
managing uncertainty. This novel strategy surpasses the orig-
inal model’s single-threshold reliance, accurately demarcating
the fuzzy boundary between known and unknown classes. By
combining BBAs from multiple deep neural networks, we have
effectively improved our open set recognition capabilities. In
future, we intend to refine and compare our enhanced Open-
max approach by examining a wider range of combination
rules, including PCR6 [25], to further improve OSR perfor-
mance. Additionally, we will enhance Openmax by integrating
generalized evidence theory, which permits the allocation of
generalized BBAs to the empty subset, quantifying support for
unknown class.

[

—

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified
and out-of-distribution examples in neural networks,” arXiv preprint
arXiv:1610.02136, 2016.

W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 7, pp. 1757-1772, 2012.

L. M. Manevitz and M. Yousef, “One-class svms for document classifi-
cation,” Journal of machine Learning research, vol. 2, no. Dec, pp. 139-
154, 2001.

S. Kotz and S. Nadarajah, Extreme value distributions: theory and
applications. world scientific, 2000.

W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open
set recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 36, no. 11, pp. 2317-2324, 2014.

F. Li and H. Wechsler, “Open set face recognition using transduction,”
IEEE transactions on pattern analysis and machine intelligence, vol. 27,
no. 11, pp. 1686-1697, 2005.

H. Zhang and V. M. Patel, “Sparse representation-based open set recog-
nition,” IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 8, pp. 1690-1696, 2016.

A. Bendale and T. E. Boult, “Towards open set deep networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1563-1572, 2016.

Z. Ge, S. Demyanov, Z. Chen, and R. Garnavi, “Generative openmax
for multi-class open set classification,” arXiv preprint arXiv:1707.07418,
2017.

A. H. Oveis, E. Giusti, S. Ghio, and M. Martorella, “Extended openmax
approach for the classification of radar images with a rejection option,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 1,
pp. 196-208, 2022.

J. Shao, Z. Song, J. Wu, and W. Shen, “Openfe: feature-extended
openmax for open set facial expression recognition,” Signal, Image and
Video Processing, pp. 1-10, 2023.

G. Shafer, A mathematical theory of evidence, vol. 42.
university press, 1976.

W. J. Scheirer, A. Rocha, R. J. Micheals, and T. E. Boult, “Meta-
recognition: The theory and practice of recognition score analysis,” IEEE
transactions on pattern analysis and machine intelligence, vol. 33, no. 8,
pp. 1689-1695, 2011.

A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: Vgg and residual architectures,” Frontiers in
neuroscience, vol. 13, p. 95, 2019.

P. Ballester and R. Araujo, “On the performance of googlenet and alexnet
applied to sketches,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 30, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770-778, 2016.

G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Q. Weinberger,
“Convolutional networks with dense connectivity,” IEEE transactions
on pattern analysis and machine intelligence, vol. 44, no. 12, pp. 8704—
8716, 2019.

S. Xie, R. Girshick, P. Dolldr, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1492-1500,
2017.

P. Smets and R. Kennes, “The transferable belief model,” Classic Works
of the Dempster-Shafer Theory of Belief Functions, pp. 693-736, 2008.

Princeton



[20]

[21]

[22]

(23]

[24]

[25]

J. Dezert, Z.-g. Liu, and G. Mercier, “Edge detection in color images
based on dsmt,” in /4th International Conference on Information Fusion,
pp. 1-8, IEEE, 2011.

A. R. Dhamija, M. Giinther, and T. Boult, “Reducing network agnosto-
phobia,” Advances in Neural Information Processing Systems, vol. 31,
2018.

A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

P. Oza and V. M. Patel, “C2ae: Class conditioned auto-encoder for
open-set recognition,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2307-2316, 2019.

L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010: 19th International Con-
ference on Computational StatisticsParis France, August 22-27, 2010
Keynote, Invited and Contributed Papers, pp. 177-186, Springer, 2010.
F. Smarandache and J. Dezert, “On the consistency of pcr6 with the
averaging rule and its application to probability estimation,” in Pro-
ceedings of the 16th International Conference on Information Fusion,
pp. 1119-1126, IEEE, 2013.



