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Abstract—In multimodal learning, multimodal coordinated 

representation is an important yet challenging issue, which 

establishes the interaction between different modalities to 

describe multimodal data more effectively. Existing coordinated 

representation methods are implemented in the deep feature 

space (or encoding space) of each modality. In this paper, based 

on the framework of evidence theory, we propose a novel 

coordinated representation method, where multimodal data is 

described as the basic belief assignment (BBA), and coordinated 

learning is implemented in the evidential space (i.e., the BBA-

based space). That is, the information interaction between 

different modalities is implemented at the level of evidence 

modeling (or uncertainty modeling). To use the intra-class and 

inter-class difference information of multimodal data, we design 

an evidential coordinated constraint. Furthermore, to represent 

each modality clearly, we introduce an ambiguity constraint. 

Experimental results of multimodal classification show that our 

proposed method is rational and effective.  

Index Terms—multimodal coordinated representation, evi-

dence theory, uncertainty measure, multimodal classification 

I. INTRODUCTION 

In recent years, there has been a surge of interest in the field 
of multimodal learning [1-3]. Multimodal learning can 
effectively process and integrate information from different 
modalities (such as text, image, and audio) to comprehend-
sively represent multimodal data. Multimodal learning has 
been widely applied in several fields, such as medical 
diagnosis [4-5], fault diagnosis [6-7], and autonomous driving 
[8-9]. 

In multimodal learning, coordinated representation plays an 
important role [1], which establishes the interaction between 
different modalities during the learning process to describe 
multimodal data more effectively. Researchers have proposed 
various multimodal coordinated representation methods from 
two different perspectives. The first type is the similarity-
based method, which calculates the similarity between 
different modalities, such as the Euclidean distance similarity 
[10], the cosine distance similarity [11-12], and the dot-
product similarity [13]. These similarities are calculated in 
each modality’s deep feature space and minimized for the 
same class samples. The second type is the structure-based 
method. In this method, the specific constraint is designed to 
establish structural relationships between the representations 
of different modalities. For example, in the cross-modal 
hashing methods [14-15], high-dimensional data from 
different modalities are compressed into a common binary 
space by the hash function. In this binary encoding space (also 

called the hash space), the samples of the same class possess 
similar binary structures. 

Existing coordinated representation methods are 
implemented in the deep feature space [10-13] or encoding 
space [14-15] of each modality. Evidence theory [16-17] is an 
effective mathematical tool for uncertainty modeling and 
reasoning, where the basic belief assignment (BBA) can 
represent the uncertainty information of data to support 
decision-making. In this paper, based on the framework of 
evidence theory, we propose a novel coordinated 
representation method, where multimodal data is described as 
the basic belief assignment (BBA), and coordinated learning 
is implemented in the evidential space (i.e., the BBA-based 
space). That is, the information interaction between different 
modalities is implemented at the level of evidence modeling 
(or uncertainty modeling). To use the intra-class and inter-
class difference information of multimodal data, we design an 
evidential coordinated constraint by calculating the distance 
of evidence between different modalities’ BBAs. Furthermore, 
to represent each modality clearly, we introduce an ambiguity 
constraint, defined as the uncertainty measure of each 
modality’s BBA. Experimental results of multimodal 
classification show the effectiveness and rationality of our 
proposed method. 

II. PRELIMINARY 

A. Basics of Evidence Theory 

In DST, the frame of discernment (FOD) is defined as a set 
consisting of n  mutually exclusive and exhaustive elements, 
denoted by 1 2{ , , , }

n
θ θ θΘ = K . Let 2Θ  be the power set of the 

FOD. If a set function : 2 [0,1]m Θ →  satisfies 

 ( ) 1,    ( ) 0
A

m A m
⊆Θ

= ∅ =  (1) 

then m  is called a basic belief assignment (BBA, also called 
a mass function). Given that ( ) 0m A > , A  is called a focal 
element.  

Given a BBA on the FOD Θ , the belief function Bel  and 
plausibility function Pl  are defined as 

 ( ) ( ),
B A

Bel A m B A
⊆

= ∀ ⊆ Θ     (2) 

 ( ) ( ),
B A

Pl A m B A
≠∅

= ∀ ⊆ Θ   

I

 (3) 

The ( )Bel A  and ( )Pl A  constitute the belief interval 
[ ( ), ( )]Bel A Pl A , which represents the degree of imprecision 
for the proposition A. 
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Suppose 1m  and 2m  are two independent BBAs on the 
same FOD, which can be combined via the Dempster’s rule of 
combination [1] as follows 

 1 2

0,                             

( ) ( )( )
,

1
B C A

A

m B m Cm A

A
K

=

= ∅


= 
 ≠ ∅
 −


I
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where 1 2=
= ( ) ( )

B C
K m B m C

∅


I
 is the conflict coefficient 

between the two BBAs.  

The pignistic probability [18] corresponding to a BBA m  is 
defined as 

 
( )

( ) ,    i

Bi

m B
BetP B

Bθ

θ
∈

= ∀ ⊆ Θ  (5) 

where B  is the cardinality of the focal element B . Based on 
this, we can perform probabilistic decisions, as shown below. 

 arg max ( )
i

i
i BetP θ∗ =  (6) 

Given two BBAs on the FOD Θ , the distance of evidence 
is used to measure the dissimilarity between the different 
BBAs. E.g., Jousselme’s distance [19] is defined as 

 1 2 1 2 1 2

1
( , ) ( ) ( )

2
T

Jd m m m m m m= − −D  (7) 

where D  represents a 2 2n n×  matrix. Elements in D  are 
defined as ( , ) /A B A B A B=D I U . There are also other 
types of evidence distance measure, such as Tessem’s distance 
[20], fuzzy membership-based distance [21], and belief 
interval-based distance [22]. 

B. Concept of Multimodal Coordinated Representation 

During the learning phase, the multimodal coordinated 
representation establishes the relationships between different 
modalities to describe and process multimodal data more 
effectively, as shown in Fig. 1. 
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Fig. 1. Multimodal coordinated representation in deep feature space. 

In multimodal coordinated representation learning, separate 
representations are learned for each modality and coordinated 
with a constraint. For example, in the cosine similarity-based 
method [11], given two samples 1x  and 2x  from two 
modalities, their corresponding deep features 1( )f x  and 

2( )g x  are obtained by deep neural networks (also called the 
backbone). Then, the coordinated constraint is calculated as  

 1 2
1 1

1 2

,
_ ( )

x x
similarity cosine x ,x =

x x

< >

⋅
 (8) 

where 1 2,x x< >  is the dot-product of 1x  and 2x . 1x  is the 
magnitude of the vector 1x .  

In Euclidean distance-based method [10], the coordinated 
constraint is also calculated in the deep features of 1x  and 2x . 
After obtaining each modality’s representations (deep 
features), they can be used for downstream tasks, such as 
multimodal classification.  

III. MULTIMODAL COORDINATED REPRESENTATION 

BASED ON EVIDENTIAL THEORY 

As previously mentioned, existing multimodal coordinated 
representation methods are implemented on the deep feature 
spaces or encoding space. In this paper, based on the frame-
work of evidence theory, we propose a novel coordinated 
representation method, as shown in Fig.2. In our proposed 
method, multimodal data is described as the corresponding 
basic belief assignments (BBAs), and coordinated learning is 
implemented in the evidential space (i.e., the BBA-based 
space). That is, the information interaction between different 
modalities is implemented using evidence modeling (or 
uncertainty modeling). As we can see in Fig. 2, the backbone 
network is used for evidence modeling for each modality, with 
each modality’s data as input and the corresponding BBA as 
output. After the training phase, each backbone can generate 
the BBA of the corresponding modality in an end-to-end 
manner. 

In this paper, to implement coordinated learning in the 
evidential space, we design three types of constraint terms: 
classification constraint, evidential constraint, and ambiguity 
constraint. 

A. Classification Constraint 

For the multimodal classification task, we design the 
classification constraint (called _Loss classify ) to support 
the decision-making. _Loss classify  is defined as the cross-
entropy between the pignistic probability of each modality’s 
BBA and the actual class label, as shown in Eq. (9).  

 
[ ]

1

_ ( , )

log ( )
N

i i

i

Loss classify H y BetP

y BetP θ
=

=

= −
 (9) 

where BetP  is the pignistic probability of each modality’s 
BBA, calculated using Eq. (5). [ , ]H y BetP  is the cross-
entropy between the BetP  and the class label y . N  is the 
total number of classes. iy  indicates whether the sample 
belongs to class i , with 1

i
y =  if it does and 0

i
y =  if it 

doesn’t. 
i

θ  represents the singleton element corresponding to 
class i .  
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Fig. 2. Multimodal coordinated representation in evidential space. 

B. Evidential Coordinated Constraint 

To use the intra-class and inter-class difference information 
of multimodal data, we design an evidential coordinated 
constraint, denoted by _L coord . The object of _L coord  is 
to reduce the intra-class difference and to increase the inter-
class difference between different modalities.  

Given samples 1x  and 2x  from two different modalities, 
the corresponding BBAs are generated by the backbone 
networks, denoted by 1m  and 2m . Subsequently, _L coord  
is calculated as follows. 

{ }
22

1 2 1 2_ ( , ) (1 ) ( , ),0J JL coord yd m m y max d m mε= + − −  

(10) 

where y  represents whether these two samples belong to the 
same class, with 1 for the same class and 0 for different ones. 

1 2( , )
J

d m m  is the evidence distance between the two BBAs 

1m  and 2m , calculated by Eq. (7). ε  denotes the predefined 
threshold for the evidence distance (we propose to set ε  to 1 
for the simplicity; other values can also be used). 

C. Ambiguity Constraint 

To represent each modality’s data clearly, we also introduce 
an ambiguity constraint for coordinated learning, represented 
as _Loss am . Given an input sample 1x  of modality 1, the 
ambiguity constraint is defined as the uncertainty measure of 
the corresponding BBA 1m . In this paper, we use multiple 
uncertainty measures, including the ambiguity measure (AM) 
[23], the aggregated uncertainty (AU) [24], and the total 
uncertainty (TU) [25].  

1) Ambiguity Measure (AM): In AM, the uncertainty is 
represented by the entropy of the pignistic probability of the 
given BBA m , as shown below. 

 2( ) ( ) log ( ( ))
m m

AM m BetP BetP
θ

θ θ
∈Θ

= −  (11) 

where ( )
m

BetP θ  is the pignistic probability of the BBA, 

calculated by Eq. (5).  
2) Aggregated Uncertainty (AU): In AU, the probability 

with the maximum entropy under constraints is first selected 
and the uncertainty is represented by its corresponding 
entropy, as shown below.  
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where ( )Bel A  and ( )Pl A  are the belief function and the 
plausibility function of the focal element A  respectively, 
calculated by Eq (2) and Eq. (3). 

3) Total Uncertainty (TU): TU is an uncertainty measure 
directly based on the framework of DST. In TU, the belief 
interval of the single focal element is considered as an 
interval number, and the distance of interval numbers is used 
to define uncertainty, as calculated follows. 

 ( )
1

3
( ) 1 [ ({ }), ({ })],[0,1]

n
I I

i i

i

TU m d Bel Pl
n

θ θ
=

= − ⋅   

(13) 

where I
d  is the distance of interval numbers, which is 

defined as follows. 
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+ + − + −

= − +  
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In summary, the total loss function of modality 1 is defined 
as follows. 

1 1 1 2 1_ _L_total L classify L coord L_amλ λ= + ⋅ + ⋅  

(15) 

where 1λ  and 2λ  are the regularization coefficients. In this 
paper, 1λ  and 

2
λ  is set to 0.1. In practice, other values can be 

chosen. The total loss function of modality 2 is similar.  
After the learning phase, given the test multimodal samples, 

uncertainty representations (i.e., the corresponding BBAs) of 
each modality are obtained by the trained backbones. Based 
on these BBAs, the decision fusion can be implemented by the 
evidence combination rule and the pignistic probability 
transformation. This will be detailed below. 

D. Illustrative Example for Multimodal classification 

In this section, we use an illustrative example to 
demonstrate the procedure of our multimodal coordinated 
representation method based on evidence theory and its 
application in multimodal classification. The flowchart is 
shown in Fig. 3. 
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Fig. 3. The application of our method for multimodal classification. 

1) Training Phase: In the training phase, we first 
construct the sample pairs from different modalities to serve 
as the training set. In this paper, we set the number of positive 
(belonging to the same class) and negative (belonging to 
different classes) sample pairs to be the same.  

For these sample pairs, we use the backbone network (i.e., 
the deep neural network designed for each modality) to 
generate the BBAs corresponding to each modality. For 
example, we use the Resnet50 [29] as the backbone for the 
image modality. For the text modality, we use the BERT [30] 
as the backbone. For the audio modality, we use the Mel 
spectrogram [31] combined with the Resnet50 model to 
generate the corresponding BBAs. 

Subsequently, the loss function of each modality is 
calculated: the classification constraint, the evidential 
coordinated constraint, and the ambiguity constraint. These 
constraints are summed by Eq. (15) to obtain the total loss of 
each modality. Based on the total loss, we optimize the 
corresponding backbone network. This process is iterated 
until all the backbones converge. 

2) Test Phase: After the training phase, given the test 
samples of each modality, we use the trained backbone 
network to generate the corresponding BBAs, denoted as 
BBA1 and BBA2 in Fig.3. Next, we use Dempster’s rule of 
combination to obtain the combined BBA, as shown in Eq. 
(4). Finally, the decision-making is implemented by the 
pignistic probability transformation, as shown in Eq. (5) and 
Eq. (6). 

IV. EXPERIMENTS 

In this section, we implement experiments on multiple 
multimodal emotion classification datasets to evaluate the 
effectiveness of our proposed method. In the experiments, two 
of the three modalities (image, text, audio) from the CMU-
MOSI [26] and CMU-MOSEI [27] are selected, resulting in 
eight datasets. The characteristics of these datasets are detailed 
in TABLE I.  

TABLE I 
CHARACTERISTICS OF DATASETS 

Dataset Modalities 

CMU-MOSI (I+T)  Image + Text 

CMU-MOSI (I+A) Image + Audio 

CMU-MOSI (T+A) Text + Audio 

CMU-MOSI (I+T+A) Image + Text + Audio 

CMU-MOSEI (I+T)  Image + Text 

CMU-MOSEI (I+A) Image + Audio 

CMU-MOSEI (T+A) Text + Audio 

CMU-MOSEI (I+T+A) Image + Text + Audio 

In the experiments, for the image modality, the Resnet50 
[28] is used as the feature extraction network (i.e., the 
backbone). For the text modality, the BERT [29] is used as the 
backbone. For the audio modality, the Mel spectrogram [30] 
combined with the Resnet50 model is used to extract deep 
features. We compare the classification performance 
(accuracy and F1-score) of our proposed method with two 
existing multimodal representation methods: the Euclidean-
distance-based method [10] and the cosine-similarity-based 
method [11]. These traditional methods are all implemented 
in the deep feature space extracted by ResNet50 and BERT 
(same backbone as our method). In these traditional methods, 



the loss function of each modality comprises two parts: the 
coordinated loss (see in Section II.B) and the classification 
loss (i.e., the cross-entropy function [10-11]). Additionally, 
we compare the performance of various uncertainty measures: 
the ambiguity measure (AM), the aggregated uncertainty 
(AU), and the total uncertainty (TU). These measures are 
respectively used as the ambiguity constraints. In our experi-

ments, each dataset is randomly divided into two parts, with 
50% assigned to the training set and the remaining 50% to the 
test set. Experiment on each dataset is randomly performed ten 
times. The results are shown in TABLE II, where the EMCR-
AU represents our evidence theory-based multimodal 
coordinated representation using the AU-based ambiguity 
constraint. EMCR-AM and EMCR-TU are similar.

TABLE II 
RESULTS ON MULTIMODAL EMOTION CLASSIFICATION DATASETS 

Dataset Average ± Std/% Euclidean Cosine EMCR-AU EMCR-AM EMCR-TU 

CMU-MOSI (I+T) 
Accuracy 74.34±0.65 75.20±1.03 77.10±0.36 78.68±0.21 79.62±1.19 

F1-Score 75.49±0.40 74.73±1.36 77.67±1.42 77.04±0.56 79.32±0.76 

CMU-MOSI (I+A) 
Accuracy 73.04±0.37 73.97±0.62 74.10±1.16 75.48±0.98 77.99±0.73 

F1-Score 74.50±1.17 74.02±1.44 76.27±0.69 76.03±0.77 78.44±0.58 

CMU-MOSI (T+A) 
Accuracy 71.93±0.26 72.75±1.08 74.92±1.42 73.86±0.84 76.47±1.08 

F1-Score 72.59±0.44 72.60±0.23 73.25±1.01 73.72±1.02 74.86±0.34 

CMU-MOSI (I+T+A) 
Accuracy 75.40±1.10 75.78±1.36 78.71±0.76 80.50±1.45 81.17±1.00 

F1-Score 75.55±1.22 76.59±1.12 78.70±1.34 79.58±0.94 81.38±0.27 

CMU-MOSEI (I+T)  
Accuracy 69.42±0.63 70.41±1.36 74.77±1.35 75.43±0.37 77.89±0.72 

F1-Score 69.30±0.34 71.55±0.95 75.91±0.56 75.96±1.03 76.78±1.07 

CMU-MOSEI (I+A) 
Accuracy 67.07±0.99 69.84±1.17 72.66±0.92 73.12±0.34 75.66±1.34 

F1-Score 66.39±0.62 69.10±0.50 73.87±0.61 74.65±1.18 75.84±0.23 

CMU-MOSEI (T+A) 
Accuracy 64.43±0.41 66.84±0.37 72.69±0.79 72.38±1.19 73.77±0.43 

F1-Score 64.03±1.26 66.98±0.38 72.79±0.52 73.53±1.50 73.36±0.20 

CMU-MOSEI (I+T+A) 
Accuracy 70.19±0.67 71.54±0.62 77.02±0.56 78.77±0.58 79.22±0.56 

F1-Score 69.71±0.48 71.03±0.43 77.39±0.44 77.98±1.09 79.89±0.46 

As we can see, our proposed method outperforms the 
traditional Euclidean distance-based and cosine similarity-
based methods on all datasets, demonstrating our method’s 
rationality and effectiveness. Furthermore, among several 
measures of uncertainty, TU achieved better performance. 
This indicates that the TU, which is directly based on the DST 
framework, is more suited for describing the ambiguity of 
BBA, thereby enhancing the performance of our method. 

V. CONCLUSIONS 

In this paper, based on the framework of evidence theory, 
we propose a novel coordinated representation method, where 
multimodal data is described as the corresponding BBAs, and 
coordinated learning is implemented in the evidential space. 
To use the intra-class and inter-class difference information of 
multimodal data, we design an evidential coordinated 
constraint using the distance of evidence. Additionally, to 
represent each modality clearly, we introduce an ambiguity 
constraint. Experimental results of multimodal classification 
illustrate the effectiveness and rationality of our proposed 
method. 

Note that in our method, the distance of evidence is defined 
as the Jousselme’s distance. In our future work, we will try to 
use more types of distance [20-22], and try to use more 

uncertainty measures reported in [31-32]. Furthermore, we 
will apply our method to other multimodal tasks, such as 
multimodal retrieval and multimodal alignment. Moreover, 
we will try to use the triplet loss [33] to solve the problem with 
three or more modalities. 
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