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5.1 Introduction

Privacy considerations arise as soon data is collected on individuals, on group on individuals, on
moral personas, . . . . More speci�cally, we look at the setup where one processes data � through
a mechanismM which can be anything from data publication, basic statistics computation,
decision rule learning, complex machine learning tasks, . . . , and wants the resultM(�) to
be made public. The natural question on a privacy standpoint is whether the mechanismM
can be "reverted" in order to learn sensitive information from � . For instance, ifM is the
identity function, the publication ofM(�) leaks full information about � and even though the
notion of privacy is not rigorously de�ned yet, we can intuitively qualify such mechanism as
"non-private".

This manuscript is a transcription of Prof. Rachel Cummings’ lecture titled Privacy in Machine
Learning that was given at the 2022 Spring School of Theoretical Computer Science at the CIRM,
Marseille, France. Any error in this document may be due to its transcription and cannot be
imputed to Prof. Cummings.

The lecture organizes as follows:

5.2 Defining privacy - Lecture 1

Even though the notion of privacy might seem natural at �rst, it is important to give it a good
de�nition. We will start by trying to answer the question What is privacy ?
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5 Privacy in Machine Learning

A�empt 1. Privacy is about protecting identities. This de�nition is natural. Something is
private if it doesn’t allow identifying you. As a result, it might be natural to consider that
an algorithm is private if and only if it doesn’t leak personally identi�able information (PPI).
In practice, it is the main de�nition of privacy on a legal point of view. For instance, the
French RGPD regulation instances (CNIL) consider that a mechanism is private when it makes
a su�cient e�ort in hiding the identities. However, the more we look into it, the less convincing
this de�nition becomes. First because it is extremely subjective, but mainly because it only shifts
the problem. Indeed, what could be considered PPI or not? For instance, the last names and �rst
names of people from a database seem to be natural PPI’s. But what about their sum? Their
encoding on a di�erent alphabet? The application of any function on them? What about the
correlation with other information such as the zip code, the income or the number of children?
As a result, this de�nition has shown many failures in the past. For instance, research has shown
that the search history of people can fully identify them, even with anything considered PPI’s at
the time removed (https://www.nytimes.com/2006/08/09/technology/09aol.html). On
the other hand, it has also been shown that removing the PPI’s can block inference and learning
(Dwork et al.) and can only result in noise. As a result, this de�nition is better than nothing,
but it is far from being future-proof, it both isn’t really private while still partially blocking
learning, and it requires a lot of legal e�ort in order to classify what is identi�able.

A�empt 2. Privacy is about protecting people’s freedoms from harm. This de�nition is much
stronger than the previous one. However, by the absolute aspect of this promise, it forcesM(�)
being independent of � . For instance, if researchers were to �nd correlations between smoking
and lung cancer while not being able to learn if their patient smoked or not (in order to protect
them from loosing their insurance), it would be a hard task. This de�nition of privacy thus has
the drawback of completely blocking inference and learning.

A�empt 3. Privacy is when almost no more information can be obtained with an analysis
on the same dataset without a person’s data. This de�nition of privacy is interesting. Indeed,
one can deduce the private information on an individual of � fromM(�) if this individual
has a huge impact on the result, i.e. when the result would have been signi�cantly di�erent
without its information. As a result, privacy is obtained whenM(�) is relatively invariant up
to the addition or removal of any element of � . This de�nition of privacy will be adopted and
rigorously de�ned through the concept of di�erential privacy in the rest of this lecture because
it is the most future-proof and usable (even if it is still not clear for now) de�nition of privacy
that research has come up with up to this day.

5.3 Di�erential Privacy - Lecture 1

The privacy of the mechanismM is achieved through randomization of its output. Formally,
for Y, X ≥ 0,
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5 Privacy in Machine Learning

Definition. [DMNS ’06] An algorithmM : )= → ' is (Y, X)-di�erentially private if ∀ neigh-
boring �, � ′ ∈ )= and ∀( ⊆ ',

% [M(�) ∈ (] ≤ 4Y% [M (� ′) ∈ (] + X

where the randomness is taken on the coin tosses ofM.

Note that this de�nition bounds the "max amount" that one person’s data can change the output
of a computation. Furthermore, it is a worst case over all pairs of neighboring datasets. In
particular,

• it doesn’t matter what everyone else’s data are,

• it doesn’t matter what data you have,

• it doesn’t depend on the future usage ofM(�),

• if your data has huge in�uence, it will be hard to distinguish from your neighbors.

Furthermore, di�erential privacy does not block learning “DP addresses the paradox of learning
nothing about an individual while learning useful information about a population. It is a
de�nition, not an algorithm.”- The Algorithmic Foundations of Di�erential Privacy, Dwork and
Roth.

5.3.1 The role of the privacy parameters

This de�nition of privacy relies on two privacy parameters, Y and X . They both impact how
private the resulting mechanism is, but they do not play a symmetric role.

The role of Y. If a mechanism is (Y, X)-DP, it is also (Y ′, X)-DP if Y ′ > Y. As a result, the smaller
Y, the stronger the constraint on privacy. The two following limit behaviors arise:

• Y = 0: Perfect privacy, where the result cannot depend at all on the data. As a result, no
learning is possible.

• Y = +∞: No privacy since the constraint vanishes. Privacy is no longer implied by the
de�nition.

We want to be somewhere in the middle and the “correct ”choice of Y is an open question
depending on the sensitivity of the data.

The role of X . Similarly, we can observe that the smaller X , the stronger the privacy guarantees.
X di�ers from Y because:

• It gives a small additive slack in the privacy guarantee.
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5 Privacy in Machine Learning

• It allows for a family of output distributions that are not all absolutely continuous with
respect to each other. Imagine �, � ′ are neighboring databases and say % [" (�) ∈ (] > 0
and % [" (� ′) ∈ (] = 0. Without X :

0 < % [" (�) ∈ (] ≤ 4Y% [" (� ′) ∈ (] ≤ 4Y · 0 = 0

• Even with uniform support, it allows for an easier mechanism design.

In order to tune X , we can fall back on the following observations and interpretations of this
parameter:

• X may be viewed as the probability under which the output mechanism does not respect
the Y-DP guarantee.

• Hence, X may be viewed as a relaxation term.

• If X = 1 then we’re back to no privacy, even for Y = 0 :

% [" (�) ∈ (] ≤ 40% [" (� ′) ∈ (] + 1

• We have to take X � 1
=

. Indeed, when Y = 0 (which should give full privacy when X = 0),
one can easily check that the mechanism that picks a random person from the database
and output their data is (0, 1/=)-DP.

Remark: One might think that the de�nition of di�erential privacy is arbitrary, and it is. However,
it is becoming increasingly adopted because this is the best that has been proposed to this
date. Indeed, it ensures strong privacy guarantees while allowing for a nice algebra of private
mechanisms (as we will see later). As a consequence, it is both conceptually powerful and handy,
in a way that wasn’t matched by previous de�nitions (such as k-anonymity).

Remark: The randomization of the output of the mechanism is at the core of this de�nition.
Besides, one can easily check that trying to obtain privacy with a mechanism that is pointwise
almost surely constant under (Y, 0)-DP results in a mechanism that is constant on all databases.
Hence, one must be willing to pay a pointwise variance in order to obtain privacy.

5.3.2 Algebra of private mechanisms:

Private mechanisms come with three handy properties of post-processing, composition and
group privacy that make them usable in practice.

Post-processing DP is immune to post-processing: If " (�) is (Y, X)-di�erentially private
and 5 is any function (possibly stochastic), then 5 (" (�)) is (Y, X)-di�erentially private. To put
it simply, it is impossible to compute a function of the output of the private algorithm and make
it "less" private. “No adversary (function f) can break the privacy guarantee ”
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5 Privacy in Machine Learning

Composition DP is robust under composition: If "1, . . . , ": are (Y, X)-di�erentially private,
then: " (�) ≡ ("1(�), . . . , ": (�)) is (:Y, :X)-di�erentially private.

If multiple analyses are performed on the same data, as long as each one satis�es DP, all
the information released taken together will still satisfy DP (albeit with a degradation in the
parameters) This result quanti�es the common heuristic: Privacy degrades gracefully as more
computations are performed on the same dataset. The linear scaling in both Y and X can be
further improved via advanced composition: If "1, . . . , ": are (Y, X)-di�erentially private and
adaptively chosen, then: " (�) ≡ ("1(�), . . . , ": (�)) is (Y ′, :X + X ′)-di�erentially private for

Y ′ = Y

√
2: log 1

X ′
+ :Y (4Y − 1) = \ (

√
:Y)

Composition allows composing simple private procedures in order to obtain complex private
algorithms.

Group Privacy Privacy guarantee depends on the group size: If two datasets �, � ′ di�er in
: entries and " is (Y, X)-di�erentially private, then for all outputs ( :

P[" (�) ∈ (] ≤ 4:YP [" (� ′) ∈ (] + :4Y (:−1)X .

In other words, DP guarantees for individuals generalizes to DP guarantees for communities.

5.3.3 Neighboring databases

Note that for now, we did not properly de�ne the notion of neighboring databases. Usually, we
say that two databases are neighbors i� their content di�ers on at most one person’s data. This
informal de�nition can take multiple forms depending on the structure of the database.

• If the databases x and y are order-sensitive and of �xed size =, we usually say that G and
~ are neighbors when ‖x − y‖0 ≤ 1. Databases are then compared according to their
order sensitive Hamming distance.

• If the databases x and y are order-insensitive and of �xed size =, we usually say that G and
~ are neighbors when inff ‖x − f (y)‖0 ≤ 1 where f is any permutation that permutes
the entries of y. Not that if those databases are built on a countable set, this de�nition
is equivalent to ‖ℎ(x) − ℎ(y)‖1 ≤ 2 where the function ℎ transforms a database into its
histogram (i.e. the vector counting the occurrences of the elements). Databases are then
compared according to their order insensitive Hamming distance.

• If the databases x and y are order-insensitive and of possibly arbitrary sizes =x and =y , we
usually say that G and ~ are neighbors when ‖ℎx,y (x) − ℎx,y (y)‖1 ≤ 1 where ℎx,y refers
to the histogram function that builds on the supports of x and y (which is countable).
Databases are then compared according to their size insensitive Hamming distance.

Independently of the de�nition, we write x ∼ y when x and y are neighbors. All those
de�nitions are not equivalent, but it is often clear which one to use depending on the setup.
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5 Privacy in Machine Learning

Most of the results do not depend on the de�nition of neighboring databases, but when they do,
it will be speci�ed.

5.4 Private Mechanism Design - Lecture 1

This section presents simple building blocks for designing private mechanisms.

5.4.1 Laplace Mechanism

Given a unction 5 de�ned on a set of databases and valued in a real vector space, how can one
mimic the behavior of 5 with a private mechanism? The Laplace mechanism gives a simple
answer to this question by adding Laplace noise to the expected result scaled to the sensitivity
of 5 .

Definition. The sensitivity of a function 5 is de�ned as

Δ5 = max
x∼y
‖ 5 (x) − 5 (y)‖1 .

Examples.

• If 5 counts the number of people with blue eyes, Δ5 = 1.

• If 5 is a histogram function built on a �nite quantization of the data space, Δ5 = 1 with
size-insensitive neighboring de�nition and Δ5 = 2 otherwise.

• If 5 is an averaging function, Δ5 = ∞ generally. however, if the data points live in set
of ;1 diameter � , Δ5 = �/= with the size-sensitive neighboring de�nitions and Δ5 = �

with the size-insensitive neighboring de�nition.

Laplace Mechanism - Definition The Laplace mechanism for 5 with privacy parameter Y
is de�ned as

M! (x, 5 , Y) = 5 (x) + [Lap(0,Δ5 /Y)]

where [Lap(0,Δ5 /Y)] refers to a vector (of size the output dimension) of i.i.d. random variables
with centered Laplace distributions of standard derivation Δ5 /Y.

The structure of the noise allows for pure di�erential privacy (i.e. X = 0).

Theorem 5.1: Laplace Mechanism - Privacy

M! (·, 5 , Y) is (Y, 0)-di�erentially private.
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Proof. Let x and y be two neighboring databases.M! (x, 5 , Y) andM! (y, 5 , Y) have distribu-
tions that are absolutely continuous with respect to Lebesgue measure that are strictly positive
almost everywhere. We may compare the ratio of these densities.

P[M! (x, 5 , Y) = I]
P[M! (y, 5 , Y) = I]

=
P[[Lap(0,Δ5 /Y)] = I − 5 (x)]
P[[Lap(0,Δ5 /Y)] = I − 5 (y)]

=
Π8P[Lap(0,Δ5 /Y) = I8 − 5 (x)8]
Π8P[Lap(0,Δ5 /Y) = I8 − 5 (y)8]

=
Π8

Y
2Δ5 4

− Y |5 (x)8−I8 |Δ5

Π8
Y

2Δ5 4
− Y |5 (y)8−I8 |Δ5

= Π84
− Y ( |5 (x)8−I8 |−|5 (y)8−I8 |)Δ5

≤ Π84
− Y |5 (x)8−5 (y)8 |Δ5 = 4

− Y
∑
8 |5 (x)8−5 (y)8 |

Δ5

= 4
− Y ‖5 (x)−5 (y) ‖1Δ5 ≤ 4Y .

So for any Borel set ( ,

P[M! (x, 5 , Y) ∈ (] =
∫
P[M! (x, 5 , Y) = I]3I

≤ 4Y
∫
P[M! (y, 5 , Y) = I]3I = 4YP[M! (y, 5 , Y) ∈ (] ,

which concludes the proof. �

Furthermore, the tail bounds of the Laplace distribution give the following utility guarantee:

Theorem 5.2: Laplace Mechanism - Accuracy

P

[
‖ 5 (G) − ~‖1 ≤ log

(
3

V

)
·
(
Δ5

Y

)]
≥ 1 − V

where 3 is the output dimension.

This is our �rst example of a privacy-utility tradeo�. With the Laplace mechanism, the higher
the privacy guarantees are, the more degraded the utility is. Also, we can notice that the higher
the sensitivity, the lower the utility.

5.4.2 Exponential Mechanism

The Laplace mechanism works great when the output space is a real vector space and when
the utility of the output can be measured with the ;1 norm. But what if the output space has a
di�erent structure (ex texts) or what if the utility does not depend directly on the ;1 norm? The
exponential mechanism solves this problem by allowing mechanism design with an arbitrary
utility function.
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The exponential mechanism has to assign a numeric score to each possible output

Assign a speci�c numeric score to each possible output.

Quality of outcome measured by score function: @ : N |- |GR → R where q(x,r) is a measure of
how good outcome r would be on database x

Choice of q should depend on application

Reasonable quality score?

Smooth degradation of outputs.

Score function sensitivity

De�nition:

The sensitivity of a score function @ : N |- |GR → R
Δ@ = max A ∈ RmaxG,~ neighbors

Exponential Mechanism [MT07]

De�nition: Given a quality score q:

Essentially we do a “biased sampling” with an exponential bias.

Example:

Most common eye color? - = brown, blue, green G ∈ N |- | database of eye colors R = - @(G, A )
= # people in database x with eye color A Δ@ = 1 as each person can have at most one eye color

Theorem 5.3: MT’07

The exponential Mechanism M is Y di�erentially private

P[M� (G, @, Y) = A ]
P[M� (~, @, Y) = A ]

≤ 4Y

Proof.

P[M� (G, @, Y) = A ]
P[M� (~, @, Y) = A ]

= (34 5 8=8C8>=> 5 4G?>=4=C80;<42ℎ) = (;0F> 5 4G?>=4=CB, B0<40B?A>> 5 8=!0?;024<42ℎ) = ...5 8ABCC4A<8B ≤ 4G? ( Y2) ≤ 4
Y

The �rst term is similar to what we saw in the Laplace Mechanism, so suing the same techniques
we can show that:

This means we can swap x and y at the above cost. So, for the second term,

�
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Accuracy:
P[@(G, A ) −max A ′ ∈ R@(G, A ′ ≤ 2Δ@ · ;=( |R|/V)

Y
] ≤ V

High probability to pick an outcome that is close to the best possible outcome.

Best possible means highest quality score

Close depedns on high probabiity guarantee.

Exponential Privacy Accuracy trade-o�

5.5 DP and online/adaptive statistics

A Y-DP algorithm is more noisy, but does this hurt generalization? Training score is worse, but
this can also prevent over�tting.

5.5.1 DP and generalization

Theorem 5.1. An Y-DP algorithm cannot over�t by more than Y

We want the learning with DP samples to be (almost) as good as with the underlying distribution
(not compared to the ground truth).

Reminder (Group Privacy) If ( , ( ′ di�er in : elements, then :Y-privacy

DP private learners generalize well Notions of generalization:

• DP generalization: “similar samples should have similar output.” DP-guarantee are strong
worst case guarantee

• Weaker notion: Robust Generalization “no adversary can use the output to �nd a hypoth-
esis that over�ts”

• Stronger notion: Perfect Generalization “output reveals nothing about the sample”. (Does
not compare against a sample changed by one, but against the true underlying distribution.
Means you are perfectly generalizing from the sample)

Why don’t we change DP def to include distribution? eg for some rare databases, provide
weaker privacy. However rare events are precisely the ones we are trying to protect. This is not
an issue here
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5.5.2 DP and adaptive analysis

How to do data analysis in a robust way?

What can go wrong? To learn global truth, the agent sends multiple queries sequentially,
adapting new queries depending on the previous answer. [DFHPRR15] This can cause over�tting.

Particularly a risk in �elds where scientists share one dataset (eg astronomy, historical datasets
in economy)

AboveNoisyThreshold for multiple threshold queries [DNPR ’10]

This is a DP algorithm for detecting which queries in a stream have answer above a given
threshold.

input: database X, query stream {51, . . . } with sensitivity Δ, privacy parameter Y and
threshold ) .

)̂ B ) + Lap(2Δ/Y);
for each query 58 do

/8 ∼ Lap(4Δ/Y) (we add noise twice!);
if 58 (G) + /8 > )̂ then

output Above and halt
else

output Below
end

end

Remarks This Algorithm compares noisy answer against a noisy threshold (�xed in advance).
It can be proven (Y, 0) DP and satis�es a composition privacy for : queries with only Y = log: ,
can answer exponentially many queries (by composition theorem)! (vs composition of queries
gives : or

√
:). Finally, ANT halts once it �nds a single above threshold query, we need another

algorithm if we would like to �nd multiple above threshold queries.

SparseVector to do threshold queries and do something with the results above
threshold

Combine ANT and Laplace mechanism to release the answers.

Applicable to many problems

Reusable Holdout

Randomly partition � in training �C and holdout �ℎ
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When training a model, we only test generalization when testing on holdout, but this is true
if holdout is used only once! (it needs to be considered as a fresh sample). The idea here is to
access holdout only through DP algorithm, then no over�tting on holdout.

Input: training set (C , holdout set (ℎ , threshold ) , tolerance g , budget �.
)̂ B ) + Lap(4g)
For each query i : - → [0, 1]:
if � < 1 then

output Below and halt
else

if |�(ℎ (i) − �(C (i) | > )̂ + Lap(8g) then
output �(ℎ (i) + Lap(2g)
� = � − 1
) = ) + Lap(4g)

else
output �(C (i)

end
end

Same algo as SV with

• check if answer on holdout is close to answer on training set (i.e. above noisy threshold)

if no release noisy answer on holdout

otherwise just release answer on training

• As in SV, we have a privacy budget, counting if we can still access holdout

DP and accuracy are quanti�ed (see slides).

Theorem 5.2. Thresholdout is �/(g=)-DP. For all adaptively chosen queries {i1, . . . , i<}, for all
8 such that 08 isn’t "bellow" the threshold, for all C > 0:

Pr[|08 − Pr(i8) | > ) + (C + 1)g] ≤ 6 exp(−g2/2) + exp(−C/8) .

5.5.3 DP and sequential hypothesis testing

Try to address the replication crisis, how to get meaningful ?-values?

As usual, observe G1, ·, G= and have null hypothesis �0 and interesting alternative hypothesis
�1. ?-value is likelihood of seeing the sample assuming the null (reject �0 if ? is small)

Usual threshold is ? < 0.05, small but still means that there is 5% chance of this sample
occurring under the null. In particular, when testing 20 hypotheses, we can expect around one
false discovery.
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Controlled by False Discovery Rate (FDR). FDR is a measure capturing rate of false rejection
of �0. We want a post processing to control in an o�ine (sequence of ?-values is known in
advance), or online manner.

O�line FDR control Just select the : smallest ?-values.

Online FDR control framed as an investment problem (because lots of tools and framework
for budget, reward) “online alpha-investing rule” then “generalized alpha-investing rule”

Level based on recent discovery (LORD) and SAFFRON add statefulness to estimate current
proportion of true nulls.

SAFFRON

Keep a candidate set, estimate fraction of true null from the size of this set. When new value
arrives, estimate value of investing in the hypothesis, and current wealth. Gives alpha-investing
value UC .

PAPRIKA

input :p-values {?1, . . . }, multiplicative sensitivity parameter [, target FDR level, initial
wealth, privacy parameters (Y, X), expected number of rejection 2

/̂ ∼ Lap(2[2/Y);
count← 0;
for each p-value ?C do

/̂C ∼ Lap(4[2/Y);
or candidacy �C ← 1(log(?C ) < ThresholdC );
Compute alpha investing rule UC ;
if �C = 1, count < 2 , log(?C ) + /C < log(0C ) + /̂ then

output 'C = 1;
count + +;
resample /̂ ∼ Lap(2[2/Y)

else
output 'C = 0 (fail to reject)

end
end

Remarks. combine SAFFRON investment estimation with SV

instead of comparing ? and U , compare noisy versions of them

looks a lot like ANT but
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Multiplicative sensitivity: [ (5 ) B min
{
max 5 (G)

5 (~) ,max{5 (G), 5 (~)}
}

(either small ratio, or both
are very small anyway)

• keep a candidacy set. In ANT noisy in a symmetric way (fails both way as often), here
we want false rejection to be rarer.

• here sensitivity is multiplicative and looking at log? , because sensitivity of ?-value can
be very high.

Theorem 5.4: PAPRIKA is DP and accurate

PAPRIKA is (Y, X)-DP and controls FDR to below an explicit threshold

Note that for this algorithm X > 0 (but tiny).

No theoretical guarantee with respect to the power of the method. In experiments, good power
requires rather large Y values.

5.5.4 DP and Changepoint Detection

Goal: detect distribution of timeseries changes at C★

Assume we have o�ine DP method (reasonable)

How to do it online? DP detect that test statistic is above threshold in the sliding window, and
run o�ine algo on this window

5.6 Online Optimization

summary:

• Private algo for maintaining partial sum

• Private Follow The Approximate Leader

Incoming stream, and we want to adapt the decision based on what was seen before

5.6.1 First idea

Given stream of bits 11, . . . , 1g . At each time C output
∑C
g=1 1g

Bad idea 1 At each time C , output
∑C
g=1 1g + Lap(1/Y)

Then by composition, Y =
√
)Y ′ log 1/X

Accuracy loss $ (1/Y ′)
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Good accuracy or good privacy. Fix Y and choose Y ′ = Y/
√
) , then we have accuracy loss

$ (
√
) /Y). However this can easily become large

Bad idea 2 Add noise to each 18 : 1̂8 = 18 + Lap(1/Y)

output
∑g
8=1 1̂8 =

∑g
8=1 18 + gLap(1/Y)

1. Big noise infrequently 2. Small noise too often

We need a data structure to �x this

Be�er idea (but really a lie)

Break down into blocks (like a balanced binary tree). Then per sample, add Laplace noise for
each block.

g+ !0? (1/Y ′)

g/2+ !0? (1/Y ′) | g/2+
!0? (1/Y ′)

g/4 + !0? (1/Y ′) | g4 + !0? (1/Y ′) | g/4 + !0? (1/Y ′) |
g/4 + !0? (1/Y ′)

. . .

1|2| 3| . . . |
g

Goals

• Any sum uses only $ (log() )) noise terms

• Any noise term is used only $ (log() )) times

NB: instead of bits 18 , we can think of vectors I8 with ‖I8 ‖ ≤ Δ . Then use noise Lap(Δ/Y ′). And
replace with

∑C I8 .

Tree Based Aggregation Protocol (TBAP) [Chanet et al. 2010, Dwork et al. 2010]
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input :I1, . . . , Ig ∈ R3 , Δ ;2-bound on all IC , Y
output :Sequence of noisy partial sums E1, . . . , Eg ∈ R3
Initialize binary tree � of size 2 blog2) c − 1 with leaves I1, . . . , Ig ;
for C = 1, . . . ,) do

Accept IC from data stream;
Let % = {IC → · · · → root} be a path from IC to the root. ;
Tree update.;
Let Λ be the �rst node in P that is a left-child in A. We only add noise up to a point (the
�rst left-child) then stop ;

Let %Λ = {IC → · · · → Λ} ;
for all nodes U in path ? do

U ← U + IC ;
if U ∈ %Λ then U ← U + W where W ∈ R sampled ∝ exp −‖W ‖2Y

Δ blog2) c
;

end
end
Output partial sums;
Initialize EC ∈ R3 to be 0 ;
Let 1 be a ( blog2) c + 1)-bit binary representation of C . ;
for 8 = 1, . . . , blog2) c + 1 do

if b8 = 1 then
always add something;
if 8-th node in % (denoted % (8)) is a left child then

EC ← EC + % (8)
else

EC ← EC + left-sibling(% (8))
end

end
end
return EC

NB: Laplace Mechanism PG ∝ exp −‖G ‖YΔ , here PW ∝ exp −‖W ‖Y
Δ5 ;>>A log2)

Private follow the Approximate Leader

input : sequence of cost functions 51, . . . , 5g , � , !, � , Y
Initialize F̂8 ∈ � arbitrarily, output F̂8 for C = 1, . . . ,) do

Pass ∇5C (F̂8), !, Y into TBAP and recieve current partial sum ÊC
F̂C+1 = 0A6minF∈� < ÊC ,F > +�2

∑C
g=1 ‖F − F̂g ‖22

Output F̂C+1
end
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5.7 Private Deep Learning

The only thing to to is to adapt a DP gradient descent.

DP-SGD [Abadi et al 2016] (Deep learning with di�erential privacy, In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security).

input :Dataset - = (G1, . . . , G=), loss function L\ , learning rate [C , batch size !, noise
multiplier f , gradient norm bound 2

Initialize \0 randomly;
(Sample a batch) e.g. Poisson random subsample !C with pre-example prob !/= ;
for each G8 ∈ !C do

compute 6C (G8) = ∇\ CL\ C (G8) ;
6̄C (G8) = 6C (G8 )

max{1, ‖6C (G8 ) ‖2/2 } ;
6C =

1
|!C |

∑
G8 ∈!C 6C (G8) +# (0, f2�2� ) ;

\C+1 = \C + [C6C
end
output :\) and compute overall (Y, X)-DP bound via privacy accounting.

The question is the correct size of the noise to add. Di�cult a priori because we don’t know the
variations of the gradient (possibly unbounded). We can clip the gradient to always lie in some
range.

Note that there are no Y or X in the algorithm. Could use composition, but here training for
thousands of rounds so even a square-root bound is too large. We have special composition
rules for learning with gaussian noise.

De�nition 8 (Renyi DP [Mir 17]). A mechanism" is (U, Y)-RDP if for all neighbours G, G ′

'�% (U) B �U (" (G)‖" (G ′)) ≤ Y

where �U (% ‖&) = 1
U−1 log

(
EG∼G

[(
% (G)
& (G)

)U ] )
Privacy accounting of DP-SGD via RDP

1. compute subsample RDP parameters for one step '�%C=1(U)

2. RDP composition:

Proposition 3. If"1, "2 respectively are (U, Y1), (U, Y2)-RDP for U ≥ 1, then the composi-
tion is (U, Y1 + Y2)-RDP.

3. convert to (Y, X)-DP

Proposition 4. If" is (U, Y)-RDP ∀U ≥ 1, then" is
(
Y (U) + log(1/X)

U−1 , X

)
-DP ∀X > 0.

(Y depends on 0;?ℎ0).
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5.8 Misc.

Who adds noise? Two models:

• Trusted Curator model: requires trusted party collects and sees data, add less noise (more
accurate)

• Local Model: add noise locally (doesn’t require trust), more error because can’t coordinate
noise

Example of local model To give people deniability on a yes/no question, the agent �ips two coins
and answers truthfully, but if they get two tails they �ip their answer. Then still possible to
have population level statistics.

DP Synthetic data generation Given a database � , �nd another database � ′ that has the
same statistical properties as � .

• Challenges: datasets are often high dimensional and are required to be correct on many
queries:

– how to measure “accuracy” of a synthetic dataset? (there exist good measures of
distance but superpolynomial in the size of the dataset)

– Computational e�ciency of data generation.

• (Partial) solutions:

Explaining DP How to communicate to public/policymakers/engineers?

(Partial) solutions: measuring users’ privacy expectations from di�erent DP description; �nding
methods for explaining privacy parameters −→ Ongoing work.
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