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Abstract—The morphological characterization of aggregates
is crucial in various industries, affecting the physicochemical
properties and functionality of materials. This study develops a
dataset of 4,000 synthetic images that closely represent real latex
aggregates, validated by Frechet Inception Distance (FID) compu-
tations using a stochastic geometrical model. It also compares five
instance-based deep learning segmentation models across three
architectures (Mask R-CNN, YOLOv8, and SAM) for analyzing
the morphology of latex aggregates. Among them, Mask R–CNN
with ResNet101 showed superior segmentation quality. When
applied to real images taken at different stages of aggregation,
the segmentation results of this model closely matched the ex-
perimental observations, demonstrating its capability for detailed
morphological analysis.

Index Terms—Aggregates, Deep learning, Instance segmenta-
tion, Image processing, Neural networks, Object detection

I. INTRODUCTION

The morphological characterization of aggregates is a crit-
ical issue in many scientific fields, from civil engineering [1]
to the food [2], chemical, petrochemical and pharmaceutical
industries [3, 4]. Indeed, the morphology of aggregates or
agglomerates, i.e. their size, shape or texture, has a direct influ-
ence on their physico-chemical properties [4] and structure [1],
and is therefore directly related to the strength of the materials
they constitute, their toxicity, their taste [2] or their impact on
health and the environment.

With the increase in computing power and new image
processing techniques made possible by the advent of machine
learning, the direct measurement of these morphological fea-
tures through image analysis has seen a surge in popularity in
recent years [5]. The use of CNNs [4, 6, 7] or GANs coupled to
U-Net type networks [8] for segmentation and characterization
of aggregates from electron microscopy images has also gained
popularity. In other areas, however, imaging can only be done
with optical devices, with a high density of objects, making the
image more difficult to process. This may be due to the need
to obtain in-situ images at different stages of the aggregation
process using non-destructive techniques, or simply because
of the size of the objects.

In this case, other approaches to characterize the morphol-
ogy of the aggregates are possible, such as stochastic methods
that rely on models to estimate multiple morphological proper-
ties [9]. These approaches are particularly suitable for compact
aggregates for which knowledge of 2D morphological features
is not sufficient to fully characterize their 3D morphology.
However, they also require at least partial knowledge of the
2D morphological properties of the aggregates in order to fine-
tune the model parameters. Therefore, this paper proposes
to compare different state-of-the-art deep learning instance-
based models for compact aggregate segmentation of latex
nanoparticle images at different stages of the aggregation
process for 2D characterization prior to 3D inference. This is
made possible by the generation of realistic and representative
images by a stochastic geometrical model, which facilitates the
training and comparison of the models.

In the following section, the method of measuring the 2D
characteristics of a population of compact aggregates from
a series of in-situ images using deep learning instance base
segmentation methods is developed. The construction of a
training database representative of real data is then detailed.
Several deep learning model architectures for instance-based
segmentation, such as YOLOv8 [10], Mask R-CNN [11], and
SAM [12], are then tested and compared. The results obtained
by the best model on real data are presented, and in the
final section, improvement possibilities and perspectives are
discussed.

II. METHODOLOGY

The aim of this study is to develop an automatic segmen-
tation method for images of aggregates in dense media. For
this purpose, several series of 2, 000 images (with a resolution
of 2048 × 2048 pixels) were acquired at different stages of
the aggregation process of latex nanoparticles in a twelve-
liter stirred tank using an optical camera (Fig. 1) [13]. The
primary objective is to derive from these image series joint
distributions of 2D morphological features, including area,
perimeter, circularity, and others, as shown in Table I.



(a) 3 h (b) 7 h (c) 10 h

Fig. 1: Example of images of the tank taken by the optical
device during the aggregation process after 3 hours (a), after
7 hours (b) and after 10 hours (c).

TABLE I: List of morphological characteristics

Characteristic Symbol Definition and equation

Projected Area A Area of the object
Convex Area Ac Area of the convex hull
Perimeter P Length of the object outline
Equivalent Circle Diameter ECD 2×

√
A/π

Convexity Co A/Ac

Circularity C 4π ×A/P 2

Several methods were considered.
• Direct segmentation methods such as local or adap-

tive thresholding [14], combined with texture descrip-
tors [15].

• Deep learning semantic segmentation [8, 16].
• Deep learning instance segmentation [4, 7].

The decision to focus on deep learning instance segmentation
models was made for several reasons.

1) The images captured by the optical device have signifi-
cant variations in brightness, contrast, and gray balance,
making direct thresholding methods inadequate due to
their difficulty in generalization.

2) Due to the high density of objects, there is a significant
amount of overlap, making direct and semantic seg-
mentation methods unsuitable. While these methods are
adept at recognizing patterns and textures, the varying
distances of objects from the focal plane introduce vary-
ing degrees of lens blur, complicating their application.

3) Finally, deep learning models, known for their efficiency
in real-time image processing, may prove useful in
future developments, although not a prerequisite for this
study.

Given these considerations, deep learning instance-based
segmentation models were selected. Given its prominence in
the field of aggregate image segmentation [5], the Mask R-

(a) (b) (c)

Fig. 2: Examples of synthetic images generated by the
SPHERE model.

CNN architecture was evaluated alongside two other state-
of-the-art 2023 models: YOLOv8, known for its speed and
accuracy, and SAM, a versatile multimodal model.

III. TRAINING DATABASE CONSTRUCTION

A. Database Construction

An extended version of the 3D stochastic geometry model
known as SPHERE [9] has been used to develop data sets that
mimic the real images. The original method, as described by
the authors, involves generating granular objects by deforming
a mesh with two random Gaussian fields (RGFs). For this
research, the method was refined to include four random
Gaussian fields to achieve a more realistic rendering. Fig. 3
illustrates the process of creating an aggregate.

Images similar to those shown in Fig. 1 are then generated
as follows:

1) For each image, a number n of aggregates are generated
using the SPHERE model, where n varies according to
a Poisson distribution parameterized by λ.

2) The n aggregates are uniformly distributed throughout
the final image, with successive applications of Gaussian
blur to simulate a depth-of-field effect.

3) Post-processing techniques such as Gaussian noise and
blur are applied to achieve a more realistic rendering.

Examples of synthetic images with different lighting condi-
tions and aggregate concentrations are shown in Fig. 2.

To construct a training dataset that accurately mimics real
images, it is crucial to generate synthetic images that closely
resemble reality. This involves adjusting the model parameters
and 3D rendering settings. The metric used to assess the
fidelity of these synthetic images to real images is detailed
in the following section.

(a) Base shape (b) 1 RGF (c) 2 RGFs (d) 3 RGFs (e) 4 RGFs (f) Lighting (g) Noise & Blur

Fig. 3: Sequential generation of an aggregate using an extended version of the SPHERE [9] model: From the base shape (a) to
the final rendering (g) with progressive deformations of 1 to 4 random Gaussian fields (b-e), enhanced with lights and shadows
(f), and finished with noise and blur effects (g).



B. Database Validation
To construct the training set, two datasets (Fig. 4) of

2, 000 synthetic images each are generated and compared
with datasets of 2, 000 real images taken 7 hours and 10
hours after the begining of the aggregation process. The
Frechet Inception Distance (FID), a metric commonly used
in GAN-type models [17], is used to evaluate how closely the
synthetic images resemble the real ones. The FID calculates
the Fréchet distance [18] between high-level features of real
and generated images, extracted by a specific layer of the pre-
trained Inception-v3 model [19]. A lower FID score indicates
a closer similarity between the feature distributions of the
generated images and those of the real images, suggesting a
higher quality of the synthetic images.

The FID is calculated as follows
1) All real and generated images are processed through the

Inception-v3 model to extract their features.
2) The means µ and covariance matrix Σ of the features

are calculated for both sets of images.
3) The Frechet distance between the two feature sets is

calculated using their means µk and covariance matri-
ces Σk.

The FID formula is given by

FID = ||µr − µg||2 + Tr
(
Σr +Σg − 2

√
ΣrΣg

)
(1)

where µr and µg are the mean feature vectors of the real
and generated images, respectively, and Σr and Σg are the
covariance matrices of the features of the real and generated
images, respectively.

Table II shows the FIDs between datasets A and B, respec-
tively, and the actual images taken at 7 hours (Fig. 1b) and
10 hours (Fig. 1c). The FID scores obtained are both below
100, which is generally considered to be quite good. To assess
the quality of the FID scores, the real image datasets at 7
hours and 10 hours were randomly split into subsets of 1000
images. The average FID calculated between these subsets of
1,000 real images at 7 hours and 10 hours was 66.5 and 25.8,
respectively, providing a benchmark for good FID performance
when comparing real images to synthetic ones.

TABLE II: FID score comparison: synthetic datasets versus
real images taken at different times

Dataset A (7 hours) Dataset B (10 hours)

FID 83.1 45.3

(a) Dataset A, λA = 80 (b) Dataset B, λB = 130

Fig. 4: Two datasets of 2,000 synthetic images that resemble
the real ones are generated.

(a) Input image (b) Object detection (c) Mask prediction

Fig. 5: CNN instance segmentation workflow, from input to
object detection to mask prediction.

IV. SEGMENTATION MODEL COMPARISON

Unlike semantic segmentation, which groups pixels by class
without distinguishing between objects, instance segmentation
distinguishes individual objects of the same class in an image.
Instance segmentation models combine object detection and
semantic segmentation through the following simplified steps

• Region Proposal: Identifying potential object locations.
• Bounding Boxes: Outlining detected objects (Fig. 5b).
• Masks: Providing pixel-level object outlines for accurate

classification (Fig. 5c).
This approach, exemplified by models such as Mask R-CNN,
enables detailed image analysis by identifying and categoriz-
ing each object individually.

A. Model Selection
Several instance segmentation models were evaluated to

determine their suitability for the dataset in question. The
selection was based on the architecture, performance, and
adaptability of each model to the specific task at hand. Mask
R-CNN models, proven in the field of instance segmentation of
aggregates [6], were selected for comparison with two state-of-
the-art architectures introduced in 2023, YOLOv8 and SAM.

Table III summarizes the five architectures evaluated. For
mask R-CNN, the ResNet50 and ResNet101 backbones were
chosen because the performance improvements of ResNet152
over ResNet101 are relatively small when weighed against
the added complexity and computation time [20]. In the case
of YOLOv8, the m and x versions were chosen: m offers a
balance between performance and accuracy, while x is the most
sophisticated version (more parameters). SAM was evaluated
using only its most advanced version.

TABLE III: Comparative overview of tested instance segmen-
tation models

Model Backbone Key Features

Mask R-CNN ResNet50 High accuracy, medium complexity
Mask R-CNN ResNet101 High accuracy, increased complexity
YOLOv8-m – Balance between speed and accuracy
YOLOv8-x – High performance, computationally intensive
SAM grand – Versatile, capable of segmenting various objects

Note: ”Accuracy” refers to the model’s ability to correctly segment and
identify objects. ”Performance” encompasses both accuracy and the model’s
processing speed. ”Complexity” involves computational resources required
and the model’s architectural intricacy.



B. Training Methodology

The training dataset consists of all images from datasets
A and B, with their resolution reduced from 2048 × 2048
pixels to 1024 × 1024 pixels. This reduction aims to reduce
training times while maintaining a high level of detail. The
dataset of 4000 images is divided into three parts: 3000 images
(75%) for training and 500 images (12.5%) each for testing
and validation (same proportion from both datasets A and B).
To augment the data, the images are rotated in 90◦ increments,
flipped, and scaled by ±20% of their original size during the
training process.

The training process was standardized across models, in-
cluding both versions of the Mask R-CNN (ResNet50 and
ResNet101) and YOLOv8 (m and x) architectures, to ensure
comparability. The key parameters are summarized in Ta-
ble IV, highlighting that the same settings were uniformly
applied to maintain consistency in the training conditions.

TABLE IV: Summary of training parameters

Parameter Mask R-CNN YOLOv8 SAM

Dataset Split 75%/12.5% 75%/12.5% 75%/12.5%
Epochs 50 80 50
Batch Size 32 16 32
Learning Rate 0.001 0.001 0.001

In the case of SAM, a multimodal model, the specification
of regions of interest is required. For this purpose, fine grids
were generated, with post-processing employed to remove
the largest detected objects, such as background elements.
Considering a ResNet or YOLO-based model to identify
regions of interest for SAM presents an interesting avenue
for future research.

Each model, except SAM, was initialized with pre-training
weights obtained from training on the COCO dataset [21] to
take advantage of its extensive image diversity for improved
feature extraction and to ensure equitable training conditions
for objective comparison.

C. Results

To evaluate the performance of the 5 different models,
the test set is divided based on the source of the images,
distinguishing between Dataset A and Dataset B. The models

are evaluated separately on images from datasets A and B due
to significant differences in their generation parameters. The
Dataset A has an average of 80 objects per image, a wider
histogram range, while the Dataset B has an average of 130
objects, with significantly higher overall brightness and blur
(Fig. 6). In addition, the size distribution of the aggregates
in the Dataset A follows a beta distribution, while the size
distribution of the Dataset B is bimodal, derived from a sum of
beta distributions. This distinction makes it possible to assess
the ability of the models to accurately identify objects of
different sizes within the same image. The usual performance
metrics, defined below, are then computed, with the results
detailed in Table V.

Macro Metrics: For single-class instance segmentation,
as it is the case in the context of this study, macro metrics
(Accuracy, Precision, Recall, F1 Score) computed from a
confusion matrix [22] assess performance by considering each
object instance detection as separate, providing a balanced
overview of model performance across all instances.

IoU (Intersection over Union): A measure of the overlap
between predicted and actual object areas, with higher IoUs
indicating better segmentation accuracy.

AP (Average Precision): As defined in [23], a popular
measure for evaluating the balance between precision and
recall across various IoU thresholds is calculated in increments
of 0.05, ranging from an IoU of 0.5 to 0.95.

ARE (Absolute Relative Error): A measure of the accu-
racy of object counting by comparing the detected object count
to the actual object count, with lower ARE indicating higher
counting accuracy.

The results presented in Table V show that all models
perform better on Dataset A compared to Dataset B. This
discrepancy can be attributed to the lower contrast and higher
level of blur in Dataset B. In addition, the Absolute Relative
Error (ARE) shows a reduced detection rate for Dataset B due
to the prevalence of densely packed aggregates and significant
blur in the background. The ARE and Fig. 6 also highlights
the superior object detection capabilities of the YOLOv8-x and
SAM architecture.

TABLE V: Comparison of performance metrics across segmentation models for both datasets

Dataset A
Model AP Mean IoU Accuracy Precision Recall F1 Score ARE

Mask R-CNN (ResNet50) 0.66 0.801 0.999 0.864 0.888 0.887 12%
Mask R-CNN (ResNet101) 0.67 0.807 0.999 0.900 0.917 0.890 12%
YOLOv8-m 0.65 0.796 0.999 0.901 0.873 0.882 10%
YOLOv8-x 0.66 0.802 0.999 0.903 0.881 0.886 6%
SAM grand 0.58 0.756 0.998 0.872 0.861 0.850 10%

Dataset B
Model AP Mean IoU Accuracy Precision Recall F1 Score ARE

Mask R-CNN (ResNet50) 0.74 0.843 0.999 0.879 0.943 0.912 37%
Mask R-CNN (ResNet101) 0.76 0.853 0.999 0.900 0.953 0.918 33%
YOLOv8-m 0.59 0.765 0.999 0.832 0.880 0.860 51%
YOLOv8-x 0.66 0.803 0.999 0.904 0.908 0.886 23%
SAM grand 0.65 0.795 0.999 0.882 0.898 0.876 22%



(a) Original image (b) ResNet50 (c) ResNet101 (d) YOLOv8-m (e) YOLOv8-x (f) SAM grand

Fig. 6: Example of segmentation by the models for an image from dataset B, with recognition rates similar to those shown in
Table V (column ARE).

0 20 40 60 80 100 120

RCNN50
RCNN101
YOLOv8-m
YOLOv8-x
SAM
Ground Truth

(a) ECD (px) – Dataset A
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

(b) Circularity – Dataset A
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

(c) Convexity – Dataset A

0 20 40 60 80 100 120

(d) ECD (px) – Dataset B
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

(e) Circularity – Dataset B
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

(f) Convexity – Dataset B

Fig. 7: Distributions of size (Equivalent Diameter Circles, EDC) and shape (circularity and convexity) as determined by
different models for the test sets of Datasets A and B.

Given the imbalance between object density and back-
ground, accuracy proves to be an inappropriate metric for
this analysis. The Mask R-CNN model using a ResNet101
backbone proves to be the most effective, especially when
considering recall scores. These scores are crucial as they
directly reflect the precision of the predicted segmentation
masks.

However, in the context of morphological characterization
of aggregates, the standard measures, while essential in deep
learning [24], may not be fully sufficient to assess the quality
of different models. Therefore, the size and shape distributions
of the objects detected by the models are computed and
compared to the ground truth (Fig. 7).

The morphological feature distributions show a clear advan-
tage for the Mask R-CNN model with a ResNet101 backbone
for both datasets. This difference can be assessed quantitatively
by calculating the statistical distance [25] – or Total Variation
distance (TV ) – which is defined as follows

TV (p, q) =
1

2

∫ ∞

−∞
|p(x)− q(x)|dx (2)

where p and q represent the probability density functions of
the compared continuous distributions. The Total Variation

TABLE VI: Comparison of the Total Variation distance
between model-predicted morphological feature distributions
and ground truth across datasets A and B

Dataset A
TV ResNet50 ResNet101 YOLOv8-m YOLOv8-x SAM

ECD 0.038 0.017 0.048 0.045 0.045
Circularity 0.230 0.140 0.144 0.101 0.226
Convexity 0.091 0.049 0.390 0.278 0.324

Dataset A
TV ResNet50 ResNet101 YOLOv8-m YOLOv8-x SAM

ECD 0.040 0.016 0.079 0.038 0.101
Circularity 0.045 0.029 0.123 0.126 0.097
Convexity 0.149 0.113 0.295 0.186 0.180

distance ranges from 0 (indicating identical distributions) to 1
(denoting completely distinct distributions).

Table VI confirms that the Mask R-CNN with ResNet101
offers better overall performance than the others. Other mea-
sures, such as the Kolmogorov-Smirnov test [26], which deter-
mines whether two samples come from the same distribution,
also support this result.
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Fig. 8: Size (ECD) and shape (circularity and convexity) distributions determined by Mask R-CNN with ResNet101, as well
as the number of objects detected per image (d) on real image sets acquired at 3 hours, 7 hours, and 10 hours.

D. Discussion

When it comes to object detection and size determination
(ECD), all models perform quite well, although SAM shows
a slight underperformance. Nevertheless, it’s important to
remember that SAM shows excellent capabilities in terms
of object detection ratio, which suggests that its fine tuning
could be further optimized. In addition, integration with a
YOLOv8 or ResNet-type model for the detection phase could
be beneficial and worth evaluating for potential performance
gains.

In terms of pure object detection, YOLOv8 models are
both faster and more efficient. However, when focusing on
the morphological characterization of the objects, and thus
the quality of the segmentation, Mask R-CNN outperforms
the others in this dataset.

Regarding computational time, both Mask R-CNN and
YOLOv8 architectures are well suited for real-time appli-
cations. In contrast, the SAM model is significantly more
computationally intensive, taking 4 to 5 times longer to process
than YOLOv8-x.

V. APPLICATION

In this section, the best performing model, Mask R-CNN
with ResNet101, is used to segment three sets of images, each
consisting of 2, 000 images taken at different stages of the
aggregation process (3h, 7h, and 10h), as shown in Fig. 1. The
results, detailed in Fig. 8, include size and shape distributions
and the average number of objects detected per image. Qualita-
tively, the results are in line with expectations: the number of
detectable objects and the proportion of larger objects both
increase with time. However, the aggregates stop growing
when they reach a critical size, and their shape changes only
minimally.

These data are in agreement with experimental observations
obtained through direct image analysis and morphogranulom-
etry: the largest objects, which are visible to the camera, tend
to adopt spherical and convex shapes [27]. In contrast, the
smallest objects, measuring a few hundred microns in size,
are generally less circular and convex. However, these smaller
objects exceed the detection capabilities of the optical camera,
which in this context produced images with a resolution of
1 pixel per 19.58 µm, limiting the ability to see finer details.

VI. CONCLUSION

To evaluate the morphological characterization of latex
aggregates, the performance of five instance-based segmen-
tation models derived from three different architectures (Mask
R-CNN, YOLOv8, and SAM) was compared. A stochastic
geometric model generated a database of 4, 000 synthetic im-
ages for model training. The performance comparison showed
that the YOLOv8 and SAM architectures excelled in object
detection, while the Mask R-CNN architecture, especially with
the ResNet101 backbone, demonstrated superior segmentation
quality. This architecture was then used to segment three
sets of 2, 000 real images acquired at different stages of the
aggregation process. The segmentation results were found to
be in good agreement with experimental observations.

In terms of future directions, several promising avenues are
worth exploring and will be the focus of future work:

• Enriching the database with a more diverse range of
object shapes. In addition, incorporating the synthetic
image generation process into a more comprehensive
workflow, possibly using GANs, could increase the
realism and variety of the training data.

• Further refinement of the SAM model for increased
accuracy and use of architectures such as YOLOv8 or
ResNet to help define regions of interest more efficiently.

• Regarding the morphological characterization of ag-
gregates, the direct prediction of 3D features such as
volume by deep learning is a particularly interesting
challenge.

This latter aspect will be a priority for future work.
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