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ABSTRACT

The main goal of this paper is to propose a method for the 3D morphological characterization of compact
aggregates using 2D image analysis. The problem at hand is, for example, the 3D morphometric
characterization of latex nanoparticle aggregates. The only available information is 2D opaque projection
images of these aggregates, one projection per aggregate. In this context, a method to estimate the 3D
morphological characteristics of an aggregate such as the Volume, Surface Area or Solidity from a single
opaque projection is proposed. This method is based on a stochastic geometric model called GRAPE
(Geometrical Random Aggregation of Particles Emulation) and requires some strong assumptions, and in
particular prior estimation of the volume. The model is based on an iterative packing of spheres of identical
radii. For each iteration, a fitting function allows to reach objectives corresponding to the desired 2D properties
(Area, Perimeter, Aspect Ratio, ...). In order to implement the method, an optimization process must be
performed on two parameters of the model: the radius of the primary particles r and an overlapping distance di.
As a validation, this process will be applied to synthetic aggregates, themselves generated from the GRAPE
model, then to a population of 104 synthetic aggregates, and finally to 3D printed aggregates whose 3D
morphological properties are known thanks to an STL file, and whose projected images have been produced
using a morphogranulometer. The results obtained show an excellent approximation of 2D properties by the
GRAPE model, and very good results for 3D properties, with less than 5% error on average and less than 2%
error in most cases.

Keywords: 3D stochastic model, aggregate, agglomerate, stochastic geometry, morphological characterization.

INTRODUCTION

The characterization of particle aggregates is a
problem being faced in many fields of research.
From pharmaceutical industry (Alander et al., 2003;
Huo et al., 2016; Mehle et al., 2017) to chemical
industry (Wentzel et al., 2003; Maggi et al., 2011;
2015; Lapuerta et al., 2017; Guérin et al., 2019), and
from food processing (Faria et al., 2003; Turchiuli
and Castillo-Castaneda, 2009; Atalar and Yazici,
2019) to civil engineering (Jin et al., 2019; Wang
et al., 2021; Li et al., 2021; Gong et al., 2021),
the modeling of aggregation phenomena and the
characterization of aggregates requires the ongoing
development of new innovative techniques. Depending
on the issue and the context, the characterization
of aggregates can take different forms. It may
involve measuring the geometrical and morphological
properties of aggregates, particularly at the millimeter
or centimeter scale (Gong et al., 2021), and it may
also focus on the size and fractal dimension of
aggregates (Guérin et al., 2019). Population balance
models (Ramkrishna, 2000; Burd, 2013; Song et al.,
2015; Jeldres et al., 2015) are also widely used to

determine mass, shape, or size distributions of a
population of aggregates, for example by calculating
the Particle Size Distribution (PSD).

Thus, the characterization of aggregates does not
correspond to the measurement of a well-defined set
of properties, but depends above all on the context in
which it is performed. For this reason, it is possible
to distinguish two main categories of aggregate
characterization techniques: direct methods, where
the aim is to directly measure certain characteristics
and properties of aggregates using image analysis
techniques for instance, and methods based on the
modeling of the aggregation phenomenon.

In the case of direct analysis, traditional methods
are mainly based on 2D projection image analysis
techniques of the aggregates (Ros et al., 1993; Alander
et al., 2003; Faria et al., 2003; Pons et al., 2005;
Huo et al., 2016; Omar, 2020; Wang et al., 2021)
– although techniques based on 3D reconstruction
of the aggregates exist at the macroscale (Garboczi,
2002; Turchiuli and Castillo-Castaneda, 2009; Komba
et al., 2013) – on which measurements are performed,
such as the calculation of the fractal dimension,
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Nomenclature
Ap Projected area P Perimeter
ck A given configuration PAL Principal axis length
D f ,2 2D fractal dimension r Radius of the primary particles
D f ,3 3D fractal dimension rg Radius of gyration
di Minimum distance between the S Surface area

centers of two primary particles SLD Solidity
ESD Equivalent spherical diameter v1, v2 Random variables
F Cost function V Volume
ffit Fitting function Ṽ Volume estimate
Fmax Maximum Feret diameter Vc Volume of the convex hull
Fmin Minimum Feret diameter X , Y Random variables
Ma Major axis Z Coordination number
ma Minor axis ω Subset of parameters
mi Center of mass of a particle ΨAR Aspect ratio
Nc Number of configuration τ Geometric tortuosity
Np Number of primary particles

or the counting of primary particles with circle
detection algorithms (Einar Kruis et al., 1994) in order
to obtain the PSD. More recently, image analysis
techniques based on Artificial Neural Networks
(ANNs) (Frei and Kruis, 2018), Convolution Neural
Networks (CNNs) (Mehle et al., 2017; Frei and
Kruis, 2018; Monchot et al., 2021) and Generative
Adversarial Networks (GANs) (Rühle et al., 2021)
have been developed, which allows a real-time
processing, segmentation, and calculation of the PSD.
Nevertheless, these techniques remain limited in terms
of number of characteristics that can be measured,
in addition to being sometimes computationally
expensive, with the exception of neural network-based
techniques. Indeed, complex shapes are difficult to
process by classical segmentation methods. Moreover,
the measured properties are essentially made in 2D.

The modeling of aggregation phenomena provides
more complete data regarding the geometrical and
morphological characteristics of the aggregates, since
the 3D geometry of the latter is known, with
the exception of the population balance models,
which does not allow for 3D visualization of the
aggregates, thus preventing 2D projection images
from being generated and measured. Numerous
techniques exist outside of population balance models,
such as molecular dynamics (Dong et al., 2017;
Zheleznyakova, 2021), stochastic processes such as
Monte-Carlo (Schmid et al., 2004; Kadota et al., 2011;
Hussain et al., 2014; Ono et al., 2015; Morán et al.,
2020; Shen et al., 2021), Langevin equations (Henry
et al., 2013; Lazzari et al., 2016), and, in a more
general way, all techniques based on the framework

of Discrete Elements Methods (DEM) (Shyshko and
Mechtcherine, 2013; Spettl et al., 2015; Deng and
Davé, 2017; Zhang et al., 2018; Shi et al., 2020).
Morán et al. (2020) provide in their introduction a
fairly complete picture of the models available for
simulating nano-particles agglomerates, each of them
allowing to model different characteristics of the
aggregates, whether it is their shape or size. When it
comes to the macroscopic scale, techniques based on
parametric shapes are also available (Li et al., 2019).

In this paper, a geometric stochastic model called
GRAPE1 and based on an iterative sphere packing
process is proposed for aggregates with a small number
of particles (Np < 1000). The idea is to be able
to control many 2D morphological and geometrical
properties of the aggregate, although the model is
flexible enough to control virtually any measurable
2D or 3D properties. The model differs from others
by its stochastic nature, and the fact that, usually,
only the fractal dimension is taken into account when
generating an aggregate (Thouy and Jullien, 1994;
Morán et al., 2019; Guesnet et al., 2019; Tomchuk
et al., 2020; Ferri et al., 2021), in addition to its size.

The proposed model aims at developing a method
to approximate the 3D geometrical properties of an
aggregate, from a single image of a 2D opaque
projection. The problem is part of the broader
context of the morphometric characterization of latex
nanoparticle aggregates in a Taylor-Couette reactor,
which Guérin et al. (2017) have shown to take various
sizes and shapes, while remaining highly compact and
spherical in most cases. Thus, this paper focuses on the
particular case of the 3D characterization of compact

1Geometrical Random Aggregation of Particles Emulation.
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aggregates through the calculation of several size 
and shape metrics (volume, surface area, equivalent 
diameter, ...) which will be detailed in the following 
section Geometrical properties.

It is important to note that in work, only a single 
2D opaque projection is known for each aggregate 
to be characterized. Indeed, tools of projective 
stereology and specifically of stereoscopy exist when 
it comes to characterizing objects (and particularly 
aggregates) of which several calibrated projections 
are available (Turchiuli and Castillo-Castaneda, 2009; 
Liu et al., 2020). Probabilistic tools allowing to 
characterize a population of objects from a set of 
projected images also exist, but the characterized 
objects need to be particularly simple, such as 
spheroids or ellipsoids (de Langlard et al., 2021), 
which is not the case for the aggregates of particles 
considered. For all these reasons, the most relevant 
approach to characterize the 3D morphology of an 
aggregate from a single projected image is based on 
the development of a stochastic geometric model of a 
3D aggregate whose 2D morphology can be controlled. 
Naturally, the fact that the information provided by a 
single opaque projection is incomplete requires strong 
assumptions to be made. For this reason, only the case 
of compact aggregates will be addressed, and a first 
estimation of the volume will be performed prior to 
the modeling process, as detailed in the following.

The originality of the paper not only lies in the 
model itself but also in the method. Indeed, after 
having performed 2D measurements on the projected 
image of an aggregate, an optimal set of parameters 
for the GRAPE model will be obtained using 
an optimization process. The synthetic aggregates 
generated by the model will then have 3D properties 
equivalent to those of the aggregate for which only the 
2D geometrical properties are known.

In the following, the usual 2D and 3D geometrical 
properties that will be used throughout this paper are 
defined. The GRAPE model is then presented, as well 
as the main steps of the algorithm for generating a 
synthetic aggregate. The optimization process is then 
described in the context of the characterization of 
compact aggregates. The latter is validated on two 
synthetic aggregates whose morphology is supervised 
and then on a population of 104 synthetic aggregates 
generated by the GRAPE model. Finally, the whole 
method is validated by being applied to the 2D opaque 
projection image of a 3D-printed aggregate of almost 
spherical particles whose 3D structure is known and 
stored in an STL file. The errors between the 3D 
geometrical properties of the synthetic aggregates and 
those of the one stored in the STL file are computed 
and the results are discussed in the last part. Finally,

several perspectives and outlook are proposed in
conclusion and the flexibility of the model is illustrated
through examples of realizations with different set of
parameters.

GEOMETRICAL PROPERTIES

In this section, the 2D and 3D properties that
will be measured on the aggregates being studied are
defined. When it comes to characterizing a 2D or 3D
shape, the context matters significantly. Indeed, in this
paper, only compact aggregates will be considered,
although the GRAPE model can generate many other
types of aggregates, as shown in section The GRAPE
model. Therefore, some common properties like the
convexity, the circularity, or, admittedly less frequent,
the porosity, are not mentioned.

2D PROPERTIES

The projection of a 3D aggregate of particles along
an arbitrary axis allows to measure 2D properties on
the projected shape (Fig. 1a). The definitions of the
properties used by the GRAPE model are listed below.

Projected area and perimeter
The projected area Ap and the perimeter P can be
measured on the projection of the agglomerate along a
certain axis (Fig 1a). Depending on the chosen axis, the
measurements can vary significantly, hence a strong
need for consistency.

Feret diameters
Ferets diameters are calculated by projecting a 2D
shape in all possible directions. The maximum (resp.
minimum) Feret diameter Fmax (resp. Fmin) is given
by the maximum (resp. minimum) projected length
obtained (Fig. 1b).

Perimeter

Area

(a)

Fmax

Fmin

(b)

Fig. 1: (a) Illustration of the projected area (blue)
and perimeter (red) of a 3D aggregate of spherical
particles. (b) Maximum and minimum Feret diameters
computed on the 2D projection of the agglomerate.
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Aspect ratio
The aspect ratio, usually written ΨAR, is derived from
the Feret diameters as follow.

ΨAR = Fmin/Fmax (1)

which means that ΨAR ∈ [0;1].

Fractal dimension
There are many different definitions of the fractal
dimension D f ,2 (or D f ,3) of a 2D (or 3D)
shape (Samson et al., 1987; Suzuki et al., 1990;
Kaye, 1994; Kindratenko et al., 1996; Gmachowski,
2002; Bushell et al., 2002; Berg and Sorensen,
2013; Florio et al., 2019). The Minkowski-Bouligand
dimension (Falconer, 1990), also called Kolmogorov
capacity (Tikhomirov, 1993), will be computed with
the box-counting method described by Li et al. (2009).

3D PROPERTIES

Volume
The volume V of an aggregate is usually computed by
summing a number of voxels in a discrete space.

Convex volume
The convex volume Vc is defined as the volume of the
convex hull of an object.

Solidity
The solidity SLD ∈ [0;1] is defined as the ratio of the
volume V over the convex volume Vc, ie

SLD =
V
Vc

. (2)

A low solidity might indicated a highly porous,
crumbly or brittle material.

Surface area
The surface area S is defined as the area covering the
outside of the 3D shape.

Equivalent diameter
The equivalent diameter or equivalent spherical
diameter (ESD) is defined as the diameter of a
spherical particle of same volume and is computed as
follow.

ESD =
3

√
6×V

π
(3)

Principal axis length
The principal axis length (PAL) corresponds to the
length of the major axis of an ellipsoid that would
have the same co-variant matrix (or normalized second
central moment) as the 3D shape.

THE GRAPE MODEL

MODEL’S DESCRIPTION

The Geometrical Random Aggregation of Particles
Emulation (GRAPE) model is designed to generate
aggregates of spherical particles whose number varies
from a few dozens to a few hundreds, in order to
keep good performances. The model is based on an
iterative process. At each step, a particle is added
to the aggregate, while aiming to minimize a fitting
function (see equation (4)). As the real aggregates
to be simulated in the scope of this study are only
known through 2D opaque projections, the fitting
function features properties that can be computed on
these projections, such as the projected area Ap, the
perimeter P and the aspect ratio ΨAR. Nevertheless,
in a broader framework, any measurable property can
be added to the fitting function as discussed in the
conclusion of this paper.

Table 1 lists the input parameters of the GRAPE
model. It includes the radius r of the primary particles,
as well as the minimum distance di separating the
centers of these particles. The projected area Ap,
perimeter P and aspect ratio ΨAR targets are also listed,
as well as the volume V . As a matter of fact, in this
work, the stopping criterion used to end the iterative
process will be based on an estimate of the volume
of the aggregate, rather than by a fixed number of
particles to reach.

Parameters Definition
r Radius of the particles
di Minimum distance between

the centers of two particles

Ap Projected area
P Perimeter
ΨAR Aspect ratio
V Volume

Table 1: Listing of the GRAPE model parameters.

DESCRIPTION OF THE ALGORITHM

The main steps of the algorithm are described
below and illustrated by a flow diagram in Fig. 2.

1. Initialize the model parameters r and di and define
a set of goals to be reached (a projected area Ap,
a perimeter P and an aspect ratio ΨAR) as well as
a volume V . A number of configuration Nc to be
tested for each iteration is also defined.
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2. The fitting function is then defined as

ffit(ck) = ∆(Ap)+∆(P)+∆(ΨAR) (4)

where ∆ represents the relative error between the
measured property for the configuration ck and the
corresponding goal set beforehand. The properties
of each configuration are 2D morphological
properties and are thus computed on 2D projection
images, always made in the same direction.

3. Set a first particle and then, for each iteration j, a
number Nc of random configurations ck are tested
for the placement of a new particle. Each new
particle must be adjacent to an existing particle,
and must be at a distance greater than di from
any other particle. A candidate position for a new
particle is chosen randomly and uniformly around
the particle to which it is attached.

4. The score ffit(ck) of each eligible configuration ck,
with k∈{1;Nc}, is computed and the configuration
of minimum score is chosen.

5. The algorithm stops when the stopping criterion is
reached, which is a maximum volume V .

Start

Initialise the parameters and ffit

Place a first particle

Compute the
volume Vj

Vj < V No Stop

Yes

For k < Nc

Try a particle in configuration ck

Compute ffit(ck)

End For

Compute the
projected image

Compute Ap,
P and ΨAR

Keep the configuration
that minimizes ffit

Fig. 2: Flow diagram of the algorithm used by the
GRAPE model.

Two observations should be made regarding the
proposed algorithm. First, a limited number Nc of
configurations are tested for each iteration. While
it seems obvious that testing too few configurations

can be problematic, the total number of particles
constituting the aggregates generated in this work
being of the order of a few hundred, it appeared that a
number of configurations to be tested of the order of a
few hundred was sufficient, in the sense that increasing
Nc beyond a certain threshold did not change the
results obtained but only slowed down the process of
generating an aggregate. Also, in practice, the number
of configurations is set at Nc = 103. This choice is
being discussed in the last section of this paper.

Second, although no 3D information is known
about the aggregate we seek to characterize, an
assumption must be made about its volume V so
as not to generate aggregates like those shown in
Fig. 3. Indeed, the reason why the volume is taken
into account is to avoid generating flat (Fig. 3a)
or highly elongated (Fig. 3b) degenerate aggregates.
Nevertheless, as it is impossible to know the real
volume V of the aggregate of which only a single
2D opaque projection is available, an estimator Ṽ is
defined as the volume of an ellipsoid with a major axis
equal to Ma and the other two axis equal to ma, where
Ma and ma are respectively the major and minor axis of
the equivalent ellipse, which is an ellipse that has the
same area and perimeter as the ones measured on the
opaque projection image.

(a) (b)

Fig. 3: Examples of degenerate cases of aggregates
generated by the GRAPE model with the same goals of
projected areas, perimeters and aspect ratio measured
along a given direction. Only the particle radius r and
the stopping criterion (volume V ) differ.

OPTIMIZATION & VALIDATION

The reason why the GRAPE model was developed
is to be able to retrieve the 3D properties of an
aggregate from a 2D opaque projection image. Thus,
the idea is to apply an optimization process to ensure
that the characteristics of the 2D projections of the
synthetic aggregates generated by the model match
those of the observed aggregate. Once an optimal
model parameterization has been determined, it can be
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(a) (b) (c) (d)

Fig. 4: (a) and (c): Synthetic 3D aggregates generated by the GRAPE model with the sets of parameters ω0 and
ω1 respectively, and their respective 2D projections (b) and (d) as binary images. (Pictures are not to scale.)

assumed that the synthetic aggregates have the same
3D characteristics as the desired aggregate. Although
matching the projected 2D characteristics of the
aggregates does not necessarily lead to matching the
3D characteristics, since a single opaque projection is
considered during the process, the strong assumptions
that are made, in particular the volume estimation
and the compactness of the modeled aggregates, will
allow the validation of the proposed method. First,
a framework for the optimization process must be
established and, more specifically, a cost function to
be minimized must be defined.

DEFINITION OF THE COST FUNCTION
Given a subset of parameters ω = {r,di} for the

GRAPE model, the cost function is defined as followed

F(ω) = ∆(V )+8×∆(Ap)+8×∆(P)+3×∆(ΨAR)
(5)

with V an estimate the 3D volume of the aggregate,
Ap the projected area, P the perimeter, and ΨAR the
aspect ratio. The weights assigned to the respective
costs were determined empirically.

Note that the cost function is not only based on 2D
properties, but also takes into account the 3D volume
of the synthetic aggregate generated with the subset of
parameters ω .

VALIDATION PROCESS

Validation on a single aggregate
In this section, the method will be applied to two

synthetic aggregates generated by the GRAPE model
from two distinct sets of parameters (Fig. 4). The
idea is to retrieve these two sets of parameters from
a single opaque projection for each of these aggregates
by applying the method and the optimization process
described above. The method applied can be described
as follows for each of the two synthetic aggregates.

1. A set of parameters p = {r,di,Ap,P,ΨAR,V} is
used to generate a synthetic aggregate with the
GRAPE model.

2. A projected image of the aggregate is produced.
The projection direction is the same as the one used
by the GRAPE model.

3. Area, perimeter and aspect ratio measurements are
made from the projected image and an estimation
of the volume V is also made from the principal
axis lengths. This constitutes a first set of estimated
parameters {Âp, P̂,Ψ̂AR,V̂}.

4. The GRAPE model being able to generate
an aggregate from a set of parameters
p = {r,di, Âp, P̂,Ψ̂AR,V̂}, an optimization process
is then applied to the subset of parameters
ω = {r,di} using the cost function F defined
previously.

In practice, the cost function F is minimized
using a simulated annealing algorithm. For each
set of parameters ω , a total of 96 realizations are
generated using the GRAPE model and the cost
function compares the averages of the characteristics
of the 96 aggregates to the expected characteristics.

Parameters r di

Original values (ω0) 6 10.2
Fitted values (ω̂0) 6.01 9.7
Error 0.3% 5%

(a) Fitting of Fig. 4a
Parameters r di

Original values (ω1) 8 12
Fitted values (ω̂1) 8.04 11.3
Error 0.5% 6%

(b) Fitting of Fig. 4c

Table 2: Comparison of the sets of parameters used to
generate the synthetic 3D aggregates of Fig.4 with the
estimators returned by the optimization process.
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Table 2 shows the results obtained by the 
optimization process. The fact that the relative errors 
are extremely close is a first validation of the 
optimization process. In the following section, the 
method is generalized to a population of aggregates 
rather than a single aggregate. Joint distributions of 2D 
morphological characteristics are also used instead of 
fixed values.

Validation on a population of aggregates
In this section, we repeat the optimization process

but this time using a population of aggregates instead
of a single aggregate. The population of aggregates
counts 104 synthetic aggregates and is generated as
follows.

Consider two random variables v1 and v2 such as

v1 ∼ Beta(2,5) and v2 ∼ Beta(5,5) (6)

where Beta is the beta distribution of the first kind.

Two other random variables X and Y are then
defined by

X = 40+20v1 and Y = 20+10v2+30
√
(v1). (7)

Four random variables corresponding to the aspect
ratio, the area, the perimeter and an estimate of the
volume are then defined as follows

Ap =
π

4
×X ×Y

P = 2π

√
X2 +Y 2

8

ΨAR =
min(X ,Y )
max(X ,Y )

V =
4
3

π
X2 ×Y

8

Thus, these four characteristics depend on joint
probability densities. For example, Fig. 5 shows the
joint distribution of aspect ratio and area, which tends
to give some physical meaning to the population of
aggregates. Indeed, the smaller the projected area, the
more elongated the particle.

Fig. 5: Joint distribution of area and aspect ratio.

Therefore, when generating the population of 104

synthetic aggregates, the joint distributions are used.
The result is shown in Fig. 6. The optimization process
is then carried out as follows.

1. A set of 104 projected images is created from the
population of aggregates.

2. On each of the images, measurements of area,
perimeter and aspect ratio are performed. A
volume estimation is also computed, as described
above.

Fig. 6: Examples of aggregates generated by the GRAPE model to create a representative population of size 104.
According to the joint probability densities used, the larger the aggregates, the more spherical they are.
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Fig. 7: Theoretical marginal laws of the joint probability densities used to generate a population of 104

synthetic aggregates with the set of parameters ωi versus histograms of measurements performed on the synthetic
aggregates proposed by the GRAPE model at the end of the optimization process, with the set of parameters ω̂i.

3. The measurements performed on the set of
projected images allow to approximate the
corresponding joint probability densities. These
approximations of the probability densities
compose four of the input parameters of the
GRAPE model.

4. The optimization process described in the previous
section is once again applied to the remaining
parameters to be determined: r and di.

5. For each pair of parameters ω = {r,di} tested
by the optimization process, 1000 realizations of
the GRAPE model are performed. The average
properties are computed and compared to the
averages of the area, perimeter, aspect ratio and
estimated volume distributions.

As it can be seen in Table 3, the relative errors
between the initial set of parameters ωi = {r,di} and

its estimator ω̂i resulting from the optimization process
are rather small, which implies that the later is indeed
robust and efficient.

Parameters r di

Original values (ωi) 6 9
Fitted values (ω̂i) 6.1 8.9
Relative Error 1.6% 1.1%

Table 3: Comparison of the sets of parameters ωi
used to generate the population of 104 synthetic 3D
aggregates with the estimator ω̂i returned by the
optimization process.

Moreover, because the relative errors are so small,
the aggregates generated by the GRAPE model from
the estimator ω̂i have 3D geometrical properties that
are necessarily very close to those of the population
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of 104 aggregates, as can be seen for the volume on 
Fig. 7d. It is also possible to observe (Fig. 7) that 
the marginal laws of the theoretical joint probability 
densities are very well approximated by the histograms 
produced by the GRAPE model after the optimization 
process.

After demonstrating that the GRAPE model 
is efficient when it comes to retrieving the 3D 
geometrical properties of synthetic aggregates that it 
has itself generated, the next step is to use aggregates 
whose 3D geometrical properties are known, but which 
have not been generated by the GRAPE model. It is the 
validation step.

RESULTS

In this section, an STL file that contains data for a
3D printer is used. This data contains the structure of
a compact aggregate of nearly spherical particles. The
idea is to work on a set of 2D opaque projection images
of the particle aggregate, and then to use the GRAPE
model in order to try to retrieve the 3D data contained
in the STL file (Fig. 8).

In practice, a dozen aggregates were 3D
printed from the reference STL file. A little
more than a thousand images of 2D opaque

projections of these aggregates were produced using
a morphogranulometer (Morphologi G3 – Malvern
Panalytical). The optimization process described
earlier will be applied to this set of images, in order to
try to retrieve 3D characteristics of the aggregates,
such as the volume or the surface area, which are
known thanks to the information contained in the STL
file.

The average values of projected area, perimeter
and aspect ratio are computed on the images from
the morphogranulometer (Fig. 8b). The axes of the
equivalent ellipse are also computed in order to
propose an estimate of the volume V̂ as described
previously and used in equation (5). These average
values and the volume estimate are used to compute
the relative errors in the cost function. To define the
goals for the GRAPE model, the whole data set is used,
by considering the histograms as probability densities
functions.

The cost function is then minimized and the
results obtained for the optimal set of parameters ω̂

is presented in Table 4. Since the reference STL file
is known, it was possible to make an estimate of
the average particle size used during the 3D printing
process of the aggregates. It is then possible to
compare this estimate to the one proposed by the

(a) (b) (c)

Fig. 8: 3D visualization of the reference STL file (a). Image of a 2D opaque projection from a
morphogranulometer of a 3D printed aggregate based on the STL file (b). The aggregates are isolated and the
images cleaned before segmentation (c). It is then possible to perform 2D characteristics measurements.

Fig. 9: Examples of realizations from the GRAPE model, with the parameters of Table 4 resulting from the
optimization process: ω̂ = {191,309.5}.
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GRAPE model at the end of the optimization process,
the relative error being about 0.2%. This result tends
to confirm the validity and robustness of the method.

Parameters r (µm) di (µm)
Fitted values (ω̂) 191 309.5
Estimated values 191.3 -

Table 4: Set of optimal parameters ω̂ for the GRAPE
model resulting from the optimization process for the
fitting of the 2D projections. Comparison with an
estimation of the radius of the particles performed by
image analysis.

Examples of realizations generated by the GRAPE
model from the optimal set of parameters ω̂ are shown
in Fig. 9. Table 5 shows the discrepancies between the
2D and 3D measurements made from the 3D aggregate
model from the STL file. The properties of the 2D
opaque projections are very close, with less than 2%
error in each case. The 3D properties are also quite
similar, with the exception of the convex volume Vc
and, therefore, the solidity SLD. The fact that the
volume V is underestimated is partly due to the fact
that the 3D volume generated by the GRAPE model
may contain holes, which is not the case for the STL
file. This hypothesis is all the more plausible as the
surface area S is overestimated. As for the equivalent
diameter and fractal dimension, they are very well
approximated, with also a discrepancy of less than 2%.
Regarding the principal axis length measurements,
the errors remain relatively small, especially for
the main axis. The higher errors for the other two
axes is certainly mainly due to the fact that the
method of generating the aggregate assumes a certain
symmetry in their directions, whereas a more detailed
analysis of the data shows that a certain asymmetry
exists. Nevertheless, in order to obtain better results,
especially in terms of volume and surface area, a post-
processing step can be performed.

Post–processing
In order to take into account the fact that the

aggregates generated by the GRAPE model contain
holes, contrary to the one stored in the STL file, a
morphological operation of hole filling is performed
on the synthetic aggregates (see Soille (2003)). The
3D geometrical properties of the aggregates after
this post–processing are also shown in Table 5. The
properties are almost identical, with the noticeable
exception of the volume which is now much closer to
the correct value as well as the surface area which has
slightly decreased, as expected, with an error of less
than 2% in both cases.

DISCUSSION

The results presented in section Optimization &
Validation show that it is indeed possible, to a certain
extent, and in the case of a compact aggregate of
spherical particles, to obtain good approximations of
the 3D geometrical properties of the aggregate from
measurements performed on a 2D opaque projection,
with the help of the GRAPE model. The case studied
is somewhat limited, since assumptions are made
about the structure of the aggregate, its volume, its
compactness in the broad sense, and more generally,
its shape: the aggregate is assumed to be compact, and
an estimation of its volume is needed as a stopping
criterion.

Furthermore, the fact that the convex volume
and principal axis lengths cannot be perfectly
approximated also illustrates a limitation of the model.
Regarding the convex volume, two main assumptions
can be made. First, it seems clear that the particles
used in the 3D printing of the calibrated aggregates are
neither perfectly spherical nor all the same size. This
can lead to variations on the surface of the aggregates
which will, in fact, alter their structure and convexity.

2D 3D (mm)
Properties Ap (mm2) P (mm) ΨAR D f ,2 V (mm3) Vc (mm3) S (mm2) SLD ESD PAL1 PAL2 PAL3 D f ,3

Ground truth 2.73 6.75 0.71 1.53 2.34 2.76 11.25 0.84 1.65 1.98 1.54 1.52 2.1
GRAPE model 2.79 6.78 0.72 1.52 2.24 2.85 11.57 0.78 1.62 1.95 1.65 1.43 2.0
Error (%) 1.7% 0.5% 1.2% 0.3% 4.3% 4.9% 2.9% 7.1% 1.4% 1.4% 7.1% 6.1% 1.5%

GRAPE + Post–processing 2.307 2.85 11.05 0.81 1.65 1.98 1.66 1.45 2.2
Error (%) 1.3% 4.9% 1.7% 3.5% 0.4% 0.1% 7.7% 4.8% 1.4%

Table 5: Comparison of the average 2D (projected) and 3D geometrical properties of the reference aggregate
and the aggregates generated by the GRAPE model at the end of the optimization process, with the optimal set
of parameters ω̂ = {191,309.5}. The values given for the synthetic aggregates generated by the GRAPE model
correspond to averages over a set of 4000 realizations.
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Secondly, it is possible that at the end of the process 
of generating a synthetic aggregate using the GRAPE 
model, one or more spheres are placed at locations 
that will significantly alter the convex envelope of the 
aggregate, without having any significant influence on 
the other characteristics. One way to deal with this 
issue is to ignore the extreme values when computing 
the average convex volume. However, although 
this method gives better results, the threshold at 
which a value becomes an outlier is not obvious.

That being said, the GRAPE model offers very 
satisfactory performances, both on the self simulated 
data and on the data from the STL file recovered 
from the morphogranulometer images. In each of 
those cases, the 3D properties of the aggregates were 
known, and could be compared to the simulated 
data. Bearing this in mind, it is also important to 
emphasize the fact that the 3D printed aggregates all 
present slight variations, and therefore their 2D and 
3D characteristics differ slightly from the ground truth 
provided by the reference STL file. This last point may 
also explain some of the discrepancies between the 
synthetic aggregates and the theoretical values.

In the future, it will be important to apply this 
method to 2D opaque projections of real aggregates, 
whose 3D geometric properties are unknown. It will 
also be possible to extend the model to aggregates 
of spherical particles of variable radius as well as to 
non-compact aggregates. Following this last point, the 
flexibility of the GRAPE model is illustrated in the 
next section.

ON THE GRAPE MODEL

The versatility of the GRAPE model allows it to
generate many different configurations of aggregates.
Indeed, in this paper, the fitting function f f it only

took into account the relative errors of morphological
characteristics computed on a 2D opaque projection.
The stopping criterion could also be defined according
to a maximum number of particles Np and no longer
be based on a volume V .

Nevertheless, it is possible to build very different
aggregates by modifying the fitting function and by
taking into account other properties. It is for example
possible to consider the coordination number Z which
is the average number of contacts per particle, or the
radius of gyration rg which is the square root of the
average of the square distance r2

i of every mass mi to
the center of mass, weighted by their respective mass
mi, ie

rg =

√
∑i mir2

i

∑i mi
(8)

according to the IUPAP2 definition (McNaught and
Wilkinson, 1997).

Finally, if fiber-like aggregates can be generated
by choosing a rather small coordination number
(Z ∈ {2;3}), it is possible to indirectly act on their
tortuosity τ3 by taking the angle αe between the ends
of the fiber and its center of mass into account in the
fitting function.

Fig. 10 illustrates some of these possibilities, by
adjusting the number of coordination Z or the radius
of gyration rg. As expected, the aggregate is more and
more compact as Z increases. The model parameters
have a highly noticeable impact on the structure of
the aggregates as well as a direct influence on their
geometrical properties.

Regarding the performances of the algorithm, it
is worth mentioning that the choice of the goals to
be reached are decisive in terms of computing time.
Indeed, the computation of characteristics performed

2The International Union of Pure and Applied Physics.
3The goemetric tortuosity of a fiber-like aggregate is the ratio between its full length and the length of shortest path between its two

ends.

(a) Z > 4, Np = 70 (b) Z > 4, high rg (c) Z = 3, αe = 2π/3 (d) Z = 1, small rg

Fig. 10: Example of aggregates generated by the GRAPE model, with various sets of parameters.
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on 2D opaque projections, such as the projected
area, perimeter, or tortuosity, is much more time
consuming and costly than the computation of the
coordination number or the radius of gyration. Thus,
for an aggregate of a hundred particles, the generation
time is on the order of a millisecond when the goals
set are easy to compute, and on the order of a second
when they involve lots of characteristics measured on
2D projections.

In practical terms, the GRAPE model being coded
with MATLAB® the generation of 4000 aggregates
to produce the data in Table 5 took slightly less
than an hour on a machine equipped with an Intel(R)
Core(TM) i9-12900KF processor at 3.19Ghz and
64GB of RAM.

ON THE NUMBER OF CONFIGURATIONS
When defining the GRAPE model, it is mentioned

that the number of configurations Nc tested at
each iteration is set at Nc = 103. This number of
configurations has indeed an influence on the accuracy
of the results with respect to the number of particles
Np forming the final aggregate.

Fig. 11 shows the evolution of the relative errors
on projected area Ap, perimeter P and aspect ratio ΨAR
as a function of the number of configurations tested for
aggregates of different sizes. The curves are displayed
as − log10 [∆(C)] where ∆(C) is the relative error
on the morphological characteristic C ∈ {Ap;P;ΨAR}
with respect to the goals set prior to the aggregate
generation. Thus, a value greater than 1.7 ensures a
relative error of less than 2%4 when a value greater
than 2 gives a relative error smaller than 1%.

As the aggregates studied in this article count less
than 150 primary particles and in order to reach a good

compromise between performance and accuracy, the
choice was made to set the number of configurations
tested per iteration Nc to 103.

ON THE VOLUME ESTIMATE
The estimate Ṽ of the volume V of the real

aggregate given by the equivalent ellipse of the shape
obtained by its 2D opaque projection image allows to
define a stopping criterion of the generation process
of a synthetic aggregate and is also used in the cost
function F of Equation (5). Some ideas have been
explored to get around this volume estimate.

First, the stopping criterion can be defined as the
number of primary particles Np. The latter becomes
a parameter of the model to be optimized by the
cost function F . In this case, in order to maintain
a certain cylindrical symmetry of the aggregate, the
projections done at each iteration are performed in
random directions uniformly over the unit circle. Since
the volume estimate cannot be used to define the cost
function F , only the 2D morphological characteristics
are taken into account. Unfortunately, this method
does not allow to correctly approximate either the
2D (Fig. 12) or 3D morphological characteristics of
the aggregate. Fig. 12 clearly illustrates the fact that
regardless of the number of primary particles Np, for
a fixed set of 2D morphological characteristics, the
relative errors are nearly 10 times larger than with the
volume estimation method.

Another idea is the multiplication of the number of
projections performed at each iteration. Increasing the
number of projections in random directions provides
better results compared to using a single random
projection. However, several dozens of projections
per iteration are required before obtaining results

4− log10(0.02)≈ 1.7.
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Fig. 11: Evolution of relative errors as a function of the number of configurations tested Nc for aggregates with
various numbers of particles Np. Relative errors are calculated from average values obtained on sets of 200
synthetic aggregates.
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roughly comparable to the volume estimation method. 
This means a significant loss of performance as the 
generation of a projected image and the calculation of 
morphological characteristics is very time consuming. 
Therefore, for accuracy, efficiency and performance 
reasons, the method based on the volume estimate was 
favored.

50 100 150 200 250 300 350 400
0

1

2

3

Number of primary particles Np

−
lo
g
1
0
[∆

(C
)]

Ap

P
ΨAR

Fig. 12: Relative errors as a function of the number
of primary particles Np made on a fixed set of
2D morphological characteristics C ∈ {Ap;P;ΨAR}
with the first method described to avoid the volume
estimation. Number of configurations Nc = 103 and
average over a set of 200 realizations.

EXTENSION
Finally, the GRAPE model can also be extended

to the case of spherical particles of variable radius.
Although this case is beyond the scope of this paper,
it is possible to generate aggregates of particles whose
size follows a predefined probability law, as can be
seen in Fig. 13 where aggregates are generated from
particles whose radii follow a log-normal law.

(a) (b)

Fig. 13: Example of realizations of the GRAPE
model with spherical particles which radius follows
a log-normal distribution with a number of particles
Np = 150. Compact aggregate with Z = 5 (a) and
unconstrained aggregate except for Z ≤ 2 (b).

CONCLUSION

A stochastic geometrical model for compact
aggregates has been proposed. Throughout this paper,
it has been shown that it is possible, using an
optimization process, to retrieve some of the 3D
geometric characteristics of a compact aggregate from
geometrical measurements made on a single 2D
opaque projection image with, in most cases, less than
5% error. The GRAPE model is original in that it
allows to adjust some 2D properties of the aggregates
to be simulated. While the ability of the GRAPE model
has been demonstrated in the context of estimating 3D
properties of a compact aggregate, it has also been
shown to be capable of generating many other types of
aggregates, always with adjustable properties, such as
string aggregates with specific lengths or tortuosities.

The areas of improvement are the application of
these results to images of aggregates with unknown 3D
properties, but also the extension of the method to non-
convex aggregates, or even fiber-aggregates. It could
also be interesting to try to aggregate sets of particles
rather than assembling the particles one by one, with a
cluster-cluster approach.
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