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Chapter 2: Standard statistical inference

Christophe Dutang, Université de Strasbourg

March 2013

1 Probability distributions in actuarial science

Let X be our quantity of interest. Actuarial models rely on particular assumptions on the probability
distribution of X. When X represents the claim amount or the life of an individual, one expects X to
have a distribution on R+, whereas X represents the claim number, we deal with distribution on N. But,
characterizing the support of the random variable X is a necessary but not sufficient step to characterize
our quantity of interest.

In the discrete case, probability distributions are generally characterized by the mass probability function
pX or the “elementary” probabilities: pX(x) = P(X = x) for x ∈ N. In the continuous case, we define the
probability distribution by its density fX(x), being the infinitesimal version of pX such that fX(x)dx =
P(X ∈ [x, x + dx[). A third case is when the random variable has both continuous and discrete parts, for
which there is no proper density. In such a case, we define the distribution with the cumulative distribution
function FX(x) = P(X ≤ x). We recall that for a discrete distribution on N, FX(x) =

∑⌊x⌋
n=0 pX(n), while

for a continuous distribution FX(x) =
∫ x

−∞ fX(y)dy.

The purpose of this section is to present the most common distributions used in actuarial sciences, being
continous, discrete or mixed-type. As always in this book, a special emphasis is put on how this topic is
implemented and can be extended in R.

1.1 Continuous distributions

There are a lot of ways to classify and to distinguish distributions. We present here the Pearson system
and the exponential family, the latter being e.g. used in generalized linear models (GLM). Pearson (1895)
consider the family of continuous distributions such that the density function fX verifies the following
ordinary differential equation

1

fX(x)

dfX(x)

dx
= − a+ x

c0 + c1x+ c2x2
,

where a, c0, c1, c2 are constants. Let p(x) = c0 + c1x + c2x
2. The solution is defined up to a constant K

which is derived by the constraint
∫
R fX(x)dx = 1. Type 0 is obtained when c1 = c2 = 0: we get fX(x) =

Ke−(2a+x)x/(2c0), which is the the normal distribution. Type 1 is the case where the polynom c0+c1x+c2x
2

has two distincts real roots a1 and a2 such that a1 < 0 < a2: we get fX(x) = K(x− a1)
m1(a2 − x)m2 . We

recognize the beta distribution. Type 2 corresponds to the case where m1 = m2 = m.

Type 3 is obtained when c2 = 0 leading a first-order polynom c0 + c1x. In this case, we get the
gamma distribution with fX(x) = K(c0 + c1x)

mex+c1 . Type 4 corresponds to the case where the polynom
p(x) = c0 + c1x + c2x

2 has no real roots, in which case p(x) = C0 + c2(x + C1)
2. We get fX(x) = K(C0 +

c2(x+C1)
2)ek tan−1((x+c1)/

√
c0/c2), which is closely linked to the generalized inverse Gaussian distribution of

Barndoff-Nielsen.

We get type 5 when p is a perfect square, i.e. p(x) = (x + C1)
2. The associated density is fX(x) =

K(x+C1)
−1/c2ek/(x+C1). Two special cases are obtained when k = 0, c2 > 0 for type 8 and c2 < 0 for type

9.
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Type 6 is obtained when p has two real roots a1, a2 of the same sign for which we get fX(x) = K(x −
a1)

m1(x − a2)
m2 , a generalized Beta distribution. Finally type 7 is obtained when a = c1 = 0, leading to

fX(x) = K(c0 + c2x
2)−1/(2c2).

Those distributions are implemented in the package PearsonDS. In Figure 1, we plot the densities for
the first seven types in order to compare the different possible shapes.

> library(PearsonDS)
> x <- seq(-1, 6, by=1e-3)
> y0 <- dpearson0(x, 2, 1/2)
> y1 <- dpearsonI(x, 1.5, 2, 0, 2)
> y2 <- dpearsonII(x, 2, 0, 1)
> y3 <- dpearsonIII(x, 3, 0, 1/2)
> y4 <- dpearsonIV(x, 2.5, 1/3, 1, 2/3)
> y5 <- dpearsonV(x, 2.5, -1, 1)
> y6 <- dpearsonVI(x, 1/2, 2/3, 2, 1)
> y7 <- dpearsonVII(x, 3, 4, 1/2)
> plot(x, y0, type="l", ylim=range(y0, y1, y2, y3, y4, y5, y7),
+ ylab="f(x)", main="The Pearson distribution system")
> lines(x[y1 != 0], y1[y1 != 0], lty=2)
> lines(x[y2 != 0], y2[y2 != 0], lty=3)
> lines(x[y3 != 0], y3[y3 != 0], lty=4)
> lines(x, y4, col="grey")
> lines(x, y5, col="grey", lty=2)
> lines(x[y6 != 0], y6[y6 != 0], col="grey", lty=3)
> lines(x[y7 != 0], y7[y7 != 0], col="grey", lty=4)
> legend("topright", leg=paste("Pearson", 0:7), lty=1:4,
+ col=c(rep("black", 4), rep("grey", 4)))
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Figure 1: Pearson’s distribution system

Another important class of distribution is the exponential family, that traces back to three independent
works of Pitman, Darmois and Koopman in the mid 30’s. This family contains distributions where the
density function can be written as

fX(x) = exp

 d∑
j=1

aj(x)αj(θ) + b(x) + β(θ)

 ,

where θ ∈ Rd is the d-dimensional parameter vector, aj , αj , b and βj are known functions (see Bickel &
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Doksum (2001) for a recent survey). The exponential family include many familiar distributions. We recover
the exponential distribution, i.e. fX(x) = λe−λx with d = 1, a(x) = x, α(x) = λ, b(x) = 0 and β(λ) = log(λ),
the normal distribution, i.e. fX(x) = e−(x−µ)2/(2σ2)/

√
2πσ2, with d = 2, a1(x) = x2, α1(m,σ

2) = −1/(2σ2),
a2(x) = x, α2(m,σ

2) = m/σ2, b(x) = and β(m,σ2) = −m/(2σ2)− log
√
2πσ2. In the exponential family, the

gamma and the inverse Gaussian distributions are also examples of particular interest in actuarial science.

In R, each probability distribution is implemented by a set of four functions and a particular root name
foo: dfoo computes the density function fX(x) or the mass probability function pX(x), pfoo the cumulative
distribution function FX(x), qfoo the quantile function F−1

X (x) and rfoo the random number generator.
For instance, the gamma distribution with density fX(x) = λαxα−1e−λx/Γ(α) is implemented in dgamma,
pgamma, qgamma and rgamma, see example below.

> dgamma(1:2, shape=2, rate=3/2) #f_X(1), f_X(2)

[1] 0.5020429 0.2240418

> pgamma(1:2, shape=2, rate=3/2) #F_X(1), F_X(2)

[1] 0.4421746 0.8008517

> qgamma(1/2, shape=2, rate=3/2) #median

[1] 1.118898

> rgamma(5, shape=2, rate=3/2) #five random numbers

[1] 1.0377253 1.0755764 0.2381343 1.7131438 0.5217060

In Table 1.1, the continuous distributions implemented in Rare listed. This set of distributions is rather
limited, and in practice, other distributions such as Pareto are particularly relevant in actuarial science. Most
of distributions are generally implemented in a dedicated package. The full list of non R-base distributions
are listed on the corresponding task view: http://cran.r-project.org/web/views/Distributions.html.
Among the numerous packages, two packages focus on distributions relevant to actuarial science : actuar and
ActuDistns. Note that actuar provides the raw moment E(Xk), the limited expected values E(min(X, l)k)
and the moment generating functions E(etX) for many distributions in three dedicated functions mfoo,
levfoo and mgffoo.

Table 1: Continuous distributions in R.
Probability distribution Root Probability distribution Root
beta beta logistic logis
Cauchy cauchy lognormal lnorm
chi-2 chisq normal norm
exponential exp Student t t
Fisher F f uniform unif
gamma gamma Weibull weibull

When on a particular problem all classical distributions have been exhausted, it is sometimes appropriate
to create new probability distributions. Typical transformations of a random variable X are listed : (i)
translation X+c (e.g. the shifted lognormal distribution), (ii) scaling λX, (iii) power Xα (e.g. the generalized
beta type 1 distribution), (iv) inverse 1/X (e.g. the inverse gamma distribution), (v) the logarithm log(X)
(e.g. the loglogistic distribution), (vi) exponential exp(X) and (vii) the odds ratio X/(1 − X) (e.g. the
beta type 2 distribution). With the small code below, we test all transformations (except the last one) on
gamma-distributed variables.
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> set.seed(123)
> x <- rgamma(100, 2)
> x1 <- x+1
> x2 <- 2*x
> x3 <- sqrt(x)
> x4 <- 1/x
> x5 <- log(x)
> x6 <- exp(x)
> plot(density(x), ylim=c(0, 1), xlim=c(0, 10), main="Empirical densities",
+ lwd=2, xlab="x", ylab="f_X(x)")
> lines(density(x1), lty=2, lwd=2)
> lines(density(x2), lty=3, lwd=2)
> lines(density(x3), lty=4, lwd=2)
> lines(density(x4), lty=1, col="grey", lwd=2)
> lines(density(x5), lty=2, col="grey", lwd=2)
> lines(density(x6), lty=3, col="grey", lwd=2)
> legend("topright", lty=1:4, col=c(rep("black", 4), rep("grey", 3)),
+ leg=c("X","X+1","2X", "sqrt(X)", "1/X", "log(X)", "exp(X)"))
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Figure 2: Distribution transformations

In Figure 2, we plot the empirical densities (as estimated by the density function). Note that the
exponential transformation has a heavy-tailed distribution and only the right-tail is shown on the graphic.
With these transformations in mind, we can now list the set of distributions generally used in actuarial
science.

The most valuable (yet the simplest) distribution with finite-support is the uniform distribution with a
density fX(x) = 11[0,1](x). The uniform distribution is always used for non-uniform random generation as the
random variable FY (U)−1 with U a uniform variable has the same distribution as FY . Another particular
used distribution is the beta distribution defined as

fX(x) =
xa−1(1− x)b−1

β(a, b)
11[0,1](x) and FX(x) =

β(a, b, x)

β(a, b)
.

where β(., .) is the beta function and β(., ., .) is the incomplete lower beta function, see Olver et al. (2010).
When a = b = 1, we get back to the uniform distribution, i.e. fX is constant. When a, b < 1, the density fX
is U-shaped, whereas for a, b > 1 the density is unimodal. A monotone density is obtained when a and b have
opposite signs. Both of these distributions are implemented in R, see ?dunif and ?dbeta. By appropriate
scaling and shifting, i.e. c+ (d− c)X, a distribution on any interval [c, d] can be obtained. Finally, another
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important distribution T r(a, b, c) is the triangular distribution given by

fX(x) =
2(x− a)

(b− a)(c− a)
11[a,c](x) +

2(x− a)

(b− a)(c− a)
11]c,b](x),

which as his name suggest has a triangular-shaped density. When b = (a + c)/2, the triangular is the sum
of two uniform variates on interval [a, b]. The triangular distribution is available the triangle package.

As presented in Klugman et al. (2009), the two main families of positive continuous distributions are
the gamma-transformed family and the beta-transformed family. Let X follow a gamma distribution
Gamma(α, 1). The gamma-transformed family is the distribution of Y = X1/τ/λ for τ > 0, which has
the following density and distribution functions

fY (y) =
λτα

Γ(α)
τyατ−1e−(λy)τ and FY (y) = Γ(α, (λy)τ )/Γ(α),

where Γ(., .) denotes the incomplete lower gamma function, see e.g. Olver et al. (2010). When τ < 0, we
get the inverse gamma-transformed family. Let τ⋆ = −τ . The density and the distribution function of
Y = 1/(λX1/τ⋆

) are given by

fY (y) =
τ⋆e−(λy)−τ⋆

λτ⋆αyατ⋆+1Γ(α)
and FY (y) = 1− Γ(α, (λy)−τ⋆

)/Γ(α).

On Figure 3, we list the different special cases of the transformed gamma distribution and their relationships.
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Figure 3: Transformed gamma family

The beta-transformed family is based on the beta distribution of the second kind (or type II), i.e. the
distribution of X/(1−X) when X follows a beta distribution of type I, see the previous subsection. The beta
distribution of type II has a density fX(x) = xa−1

β(a,b)(1+x)a+b . Renaming a = α and b = τ , the transformed
beta is the distribution of Y = θX1/γ and has the following density and distribution function

fY (y) =
1

β(α, τ)

γ(y/θ)γτ

y (1 + (y/θ)γ)
α+τ and FY (y) =

β(α, τ, x
1+x )

β(α, τ)
,

where x = (y/θ)γ and β(., ., .) denotes the incomplete lower beta function. These two families are available
in the actuar package.

1.2 Discrete distributions

The Sundt (a, b, 0) family of distributions is the set of distributions verifying

P(X = k + 1)

P(X = k)
= a+

b

k
,

for k ∈ N and a, b ≥ 0 positive parameters. This recurrence equation can be seen a simplified discrete
equation of the Pearson system (see Johnson et al. (2005)). We get back to the binomial distribution B(n, p)
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Figure 4: Transformed beta family

with a = −p/(1 − p) and b = p(n + 1)/(1 − p), the Poisson distribution P(λ) with a = 0 and b = λ, the
negative binomial distribution BN(m, p) with a = 1 − p and b = (1 − p)(m − 1). A generalization of the
(a, b, 0) family is obtained by truncating the values smaller than n. Thus, the (a, b, n) family verifies

pX(k) = pX(k − 1)

(
a+

b

k

)
11(k≥n).

Furthermore, the exponential family also models discrete distributions by considering the mass probability
function pX verifies

pX(k) = exp

 d∑
j=1

aj(k)αj(θ) + b(k) + β(θ)

 .

It includes many familiar distributions: the Bernoulli distribution with d = 1, a(x) = x, α(p) = log(p/(1−p)),
b(x) = 0 and β(p) = log(1 − p), the Poisson distribution with d = 1, a(x) = x, α(λ) = λ, b(x) = − log(x!),
β(λ) = −λ. Notably, the negative binomial distribution does not belong to the exponential family.

As for continuous distributions, discrete distributions are implemented in four functions: dfoo computes
the mass probability function pX , pfoo the cumulative distribution function FX , qfoo the quantile function
F−1
X and rfoo the random number generator. For instance, the poisson distribution is implemented in dpois,

etc... Here is a standard call.

> dpois(0:2, lambda=3) #P(X=0, 1, 2)

[1] 0.04978707 0.14936121 0.22404181

> ppois(1:2, lambda=3) #F_X(1), F_X(2)

[1] 0.1991483 0.4231901

> qpois(1/2, lambda=3) #median

[1] 3

> rpois(5, lambda=3) #five random numbers
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[1] 4 2 2 3 2

Common transformations of a integer-valued random variable X are listed : (i) translation X +m for
a non-null interger m (e.g. the shifted Poisson distribution), (ii) scaling mX, (iii) zero-inflation (1 − B)X
where B follows a Bernoulli distribution B(q) and (iv) zero-modification (1 − B)(X + 1) where B follows
a Bernoulli distribution. The resulting mass probability function for the transformed variable Y (i.e. one
transformation at a time) is (i) P(Y = k) = P(X = k −m) for k ≥ m, (ii) P(Y = k) = P(X = k/m) for
k = 0,m, 2m, 3m, . . . , (iii) P(Y = 0) = q + (1− q)P(X = 0) and P(Y = k) = (1− q)P(Y = k) for k ≥ 1, (iv)
P(Y = 0) = q and P(Y = k) = (1− q)P(Y = k − 1) for k ≥ 1. The zero-modification and the zero-inflation
are useful to add a parameter to standard discrete distributions, e.g. the Poisson distribution. A particular
case of the zero-modification is the zero-truncation when the variable B equals 0 almost surely.

Such transformations are implemented in special packages, see the task view, but can be easily imple-
mented. The zero-modification is presented below.

> dpoisZM <- function(x, prob, lambda)
+ prob*(x == 0) + (1-prob)*(x > 0)*dpois(x-1, lambda)
> ppoisZM <- function(q, prob, lambda)
+ prob*(q >= 0) + (1-prob)*(q > 0)*ppois(q-1, lambda)
> qpoisZM <- function(p, prob, lambda)
+ ifelse(p <= prob, 0, 1+qpois((p-prob)/(1-prob), lambda))
> rpoisZM <- function(n, prob, lambda)
+ (1-rbinom(n, 1, prob))*(rpois(n, lambda)+1)
> x <- rpoisZM(100, 1/2, 3)
> plot(ecdf(x), main="Zero-modified Poisson(prob=1/2, lam=3)")
> lines(z <- sort(c(0:12, 0:12-1e-6)),
+ ppoisZM(z, 1/2, 3), col="grey", lty=4, lwd=2)
> legend("bottomright", lty=c(1,4), lwd=1:2,
+ col=c("black","grey"), leg=c("empir.","theo."))

On Figure 5, we plot the empirical cumulative distribution function (sample size of 100) of a zero-modified
Poisson distribution and compare it with the true distribution function.
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Figure 5: Distribution transformations

The main discrete distributions are the binomial B(n, p), the Poisson P(λ) and the negative binomial
Bn(m, p) distributions, for which we recall the mass probability function pX(x)

P(X = k) =

(
n

k

)
pk(1− p)n−k,

7



for p ∈ [0, 1] (the Bernoulli distribution is obtained with n = 1).

P(X = k) =
λk

k!
e−λ,

for λ > 0, and

P(X = k) =

(
m+ k − 1

k

)
pm(1− p)k,

for p ∈ [0, 1]. The discrete analog of the Pareto distribution is the Zipf distribution whose mass probability
function is given by

P(X = k) =
kη

ζ(η)
,

where ζ(.) is the zeta’s Rieman function, see Olver et al. (2010).

1.3 Mixed-type distributions

Mixed-type distributions are distributions of random variables that are neither continuous nor discrete, i.e.
0 <

∑
x∈DX

(FX(x) − FX(x−)) < 1 for DX the set of discontinuities where the lower bound corresponds
to continuous distributions and the upper bound discrete distributions. Thus, the distribution function has
discontinuities and continuous parts. A first example of mixed-type distribution is the zero-modified gamma
distribution which has the distribution function

FX(x) = p11x≥0 + (1− p)
Γ(α, λx)

Γ(α)
,

where Γ(., .) denotes the incomplete gamma function. X has an improper density function fX(x) = (1 −
p)λαxα−1e−λx/Γ(α). In a similar way, zero-modified Pareto or zero-modified lognormal distributions can be
defined.

An application of mixed-type distributions to destruction rate models is now presented. Destruction rate
models focus on the distribution X = L/d where L is the loss amount and d the maximum possible loss (as
defined in the insurance terms). By definition, X is bounded to the interval [0, 1], and may have a mass at
1 when the object insured is entirely destroyed, as well as at 0 when there is no claim. In the application
that will follow, we will consider the one-modified beta and the MBBEFD distributions. The one-modified
beta is the distribution of X = BY where Y follows a beta distribution B(a, b) and B follows a Bernoulli
distribution B(q). The distribution function is given by

FX(x) =
β(a, b, x)

β
(1− q) + q11x≥1,

for which the improper density is fX(x) = (1− q)xa−1(1− x)b−1/β(a, b). In R, we define it as

> dbetaOM <- function(x, prob, a, b)
+ dbeta(x, a, b)*(1-prob)*(x != 1) + prob*(x == 1)
> pbetaOM <- function(q, prob, a, b)
+ pbeta(q, a, b)*(1-prob) + prob*(q >= 1)

The Maxwell-Boltzmann Bore-Einstein Fermi-Dirac (MBBEFD) distribution was introduced and popularized
by Bernegger (1997) in the context of reinsurance treaties for which the pricing may be done on exposition
curve (rather than on frequency/severity models). The distribution function is given by

FX(x) = a

(
a+ 1

a+ bx
− 1

)
11[0,1[(x) + 11[1,+∞[(x),

where (a, b) ∈] − 1, 0[×]1,+∞[ or (a, b) ∈ (R \ [−1, 0])×]0, 1[. Note that there is a probability mass at 1,
since P(X = 1) = (a + 1)b/(a + b) = q. The improper density function is fX(x) = −a(a+1)bx ln(b)

(a+bx)2 11]0,1[(x).
At the time this book is written, there is no package implementing the MBBEFD distribution, but this can
be remedied by the following lines
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> dMBBEFD <- function(x, a, b)
+ -a*(a+1)*b^x*log(b)/(a + b^x)^2 + (a+1)*b/(a+b)*(x == 1)
> pMBBEFD <- function(x, a, b)
+ a * ( (a+1) / (a + b^x) - 1) * (x < 1) + 1 * (x >= 1)

Those two distributions will be used in the subsequent section on destruction rate data.

1.4 Mixture of distributions

Mixing distributions consists in randomly drawing a distribution among a finite set of distributions. Consider
a set of distribution functions F1, . . . , Fp and a set of weights ω1, . . . , ωp ∈ [0, 1]. The choice C of a distribution
is such that P(C = i) = ωi for i = 1, . . . , p. The random generation process given by (i) draw C according
to ωi’s and (ii) draw according to Fc knowing that C = c is the mixture distribution among (F1, . . . , Fp)
according to ω1, . . . , ωp. This is characterized by the following distribution function

FX(x) =

p∑
i=1

ωiFi(x)

for all x ∈ R. Fi are differentiable, then the density function of the mixture variable X is simply fX(x) =∑p
i=1 ωifi(x).

A first simple example is the mixture of two normal distributions N (m1, s
2
1), N (m2, s

2
2) with the following

density

fX(x) = pe−(x−m1)
2/(2s21)/

√
2πs21 + (1− p)e−(x−m2)

2/(2s22)/
√
2πs22

with a proportion p ∈ [0, 1] and x ∈ R. This distribution is implemented in the package mixtools and
norm1mix. A second example of more interest in actuarial science is the mixture of a light-tailed and
heavy-tailed claim distribution. Say for example the mixture of a gamma distribution G(ν, λ) and a Pareto
distribution P(α, θ). The density is given by

fX(x) = p
λνxν−1e−λx

Γ(ν)
+ (1− p)α/θ

(
θ

θ + x

)α+1

,

with a proportion p ∈ [0, 1] and x ∈ R+. In R, we implement it as

> library(actuar)
> dmixgampar <- function(x, prob, nu, lambda, alpha, theta)
+ prob*dgamma(x, nu, lambda) + (1-prob)*dpareto(x, alpha, theta)
> pmixgampar <- function(q, prob, nu, lambda, alpha, theta)
+ prob*pgamma(q, nu, lambda) + (1-prob)*ppareto(q, alpha, theta)

where dpareto is implemented in the actuar package.

2 Parametric inference

Parametric inference deals with the estimation of an unknown parameter of a chosen distribution. Ex-
perimenter assumes that (x1, . . . , xn) are realizations of a random sample (X1, . . . , Xn) such that Xi are
independent and identically distributed randoms variables according to a generic random variable X (this
is the blanket assumption). The random variable X has a distribution function F (.; θ) for θ ∈ Θ ⊂ Rd. For
example, F (x; θ) = (1− e−θx)11R+

(x) when considering an exponential distribution θ ∈ R+. In the following
subsequent sections, classical estimation methods are presented and provide criterions to establish an esti-
mator (i.e. a random variable) θ̂ of θ. Once a model is fitted, the experimenter can derive its quantities of
interest (mean, variance, quantiles, survival probabilities,. . . ) from the fitted distribution F (x; θ̂). In most
applications, X has either a continuous or a discrete distribution. Therefore, we work with either the density
function fX(.; θ) or the mass probability function pX(.; θ). For a general introduction to statistical inference,
we refer to Casella & Berger (2002) and the references therein.

9



2.1 Maximum likelihood estimation

As its name suggests, maximum likelihood estimation consists in maximizing the likelihood with respect to
θ, which is defined as

L(θ, x1, . . . , xn) =
n∏

i=1

fX(xi; θ) or
n∏

i=1

pX(xi; θ),

depending on the type of the random variable X. When the support of the distribution is independent of the
parameter, it is more convenient to maximize the log-likelihood logL with respect to θ. A school example
is to consider the exponential distribution E(θ), i.e. logL(θ) = n log(θ)−

∑n
i=1 θxi. The maximizer is 1/x̄n

leading to the estimator θ̂ = 1/X̄n. In practice, closed-form formulas of the maximizers may not exist,
thus we use a numeric optimization. The fitdistrplus package provides routines to compute the maximum
likelihood estimator.

We consider a claim dataset itamtplcost, which contains large losses (in excess of 500 Keuro) of an
Italian Motor-TPL company since 1997. For pedagogical purposes (despite the distribution is not really
appropriate), we choose to fit a gamma distribution G(α, λ) defined as fX(x) = λαxα−1e−λx/Γ(α), i.e.
θ = (α, λ) ∈ R2

+.

> library(CASdatasets)
> data(itamtplcost)
> library(fitdistrplus)
> x <- itamtplcost$UltimateCost / 10^6
> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.002161 0.627719 0.844011 1.015352 1.224316 6.639500

> fgamMLE <- fitdist(x, "gamma", method="mle")
> fgamMLE

Fitting of the distribution ' gamma ' by maximum likelihood
Parameters:

estimate Std. Error
shape 2.398306 0.1489467
rate 2.362096 0.1631285

> summary(fgamMLE)

Fitting of the distribution ' gamma ' by maximum likelihood
Parameters :

estimate Std. Error
shape 2.398306 0.1489467
rate 2.362096 0.1631285
Loglikelihood: -385.1474 AIC: 774.2947 BIC: 782.5441
Correlation matrix:

shape rate
shape 1.0000000 0.8992776
rate 0.8992776 1.0000000

Without a scaling of cost from euros to million of euros, the call to fitdist raises an error, thus we divide
the ultimate cost by 106. The previous optimization can be checked manually.
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> loglik <- function(theta) -sum(log(dgamma(x, shape=theta[1], rate=theta[2])))
> op <- optim(par=c(2,2), fn=loglik, hessian=TRUE)
> op$par

[1] 2.398417 2.362019

> sqrt(diag(solve(op$hessian)))

[1] 0.1489539 0.1631228

In this example, θ̂ is estimated as (2.398655, 2.362486). Note that the fitdist function returns an S3-object
of class "fitdist", for which a print, summary and plot methods have been defined. In addition to the
estimation of standard errors of θ̂, the summary method gives an estimation of the asymptotic correlation
matrix (i.e. the inverse of the Hessian matrix ∇2

θ logL(x, θ̂)) as well as the (optimal) log-likelihood. This
is based on the asymptotic normality of the maximum likelihood estimators (under the hypotheses of the
Cramer-Rao model, see Casella & Berger (2002)). For the method, see the next section.

2.2 Moment matching estimation

The moment matching estimation is also commonly used to fit parametric distributions. This consists
in finding the value of the parameter θ that match the first theoretical raw moments of the parametric
distribution to the corresponding empirical raw moments as

E(Xk|θ) = 1

n

n∑
i=1

xki ,

for k = 1, . . . , d, with d the number of parameters to estimate and xi the n observations of variable X. For
moments of order greater than or equal to 2, it may be relevant to match centered moments defined as

E(X|θ) = x̄n , E
(
(X − E(X))k|θ

)
= mk, for k = 2, . . . , d,

where mk = 1
n

∑n
i=1(xi − x̄n)

k denotes the empirical centered moments. For instance, consider the gamma
distribution G(α, λ). The moment matching estimation solves{

α/λ = x̄n
α/λ2 = m2

⇔
{
α = (x̄n)

2/m2

λ = x̄n/m2

In general, there is no closed-form formulas for this estimator and use a numerical method. Still considering
the gamma distribution fit on the MTPL dataset, we use the fitdistrplus package.

> fgamMME <- fitdist(x, "gamma", method="mme")
> cbind(MLE=fgamMLE$estimate, MME=fgamMME$estimate)

MLE MME
shape 2.398306 2.229563
rate 2.362096 2.195851

2.3 Quantile matching estimation

Fitting of a parametric distribution may also be done by matching theoretical quantiles of the parametric
distribution (for some specified probabilities) against the empirical quantiles (Tse (2009)). The equation
below is very similar to the previous equations for matching moments

F−1(pk; θ) = Qn,pk
,

11



for k = 1, . . . , d and Qn,pk
the empirical quantiles for specified probabilities pk. Empirical quantiles Qn,pk

are computed on observations x1, . . . , xn using the quantile function of the stats package. When pk × n
is an integer, the empirical quantile is uniquely defined as Qn,pk

= x⋆pkn
where (x⋆1, . . . , x

⋆
n) is the sorted

sample. Otherwise, the empirical quantile is the convex combination of x⋆⌊pkn⌋ and x⋆⌈pkn⌉, see ?quantile
and Hyndman & Fan (1996). The theoretical quantile F−1(.; θ) generally has a closed-form formula. For
example, when considering the exponential distribution E(λ), the quantile function is F−1(p; θ) = − log(1−p)

λ .
Solving the d equations F−1(pk; θ) = Qn,pk

is achieved by a numeric optimization in the fitdist function.

Continuing the MTPL example, we fit a gamma distribution against the probabilities p1 = 1/3 and
p2 = 2/3.

> fgamQME <- fitdist(x, "gamma", method="qme", probs=c(1/3, 2/3))
> cbind(MLE=fgamMLE$estimate, MME=fgamMME$estimate,
+ QME=fgamQME$estimate)

MLE MME QME
shape 2.398306 2.229563 4.642362
rate 2.362096 2.195851 4.951094

Note that compared to the method of moments and the maximum likelihood estimation, the estimate
paramter θ̂ differs significantly when using the quantile matching estimation, despite considering proba-
bilities in the heart of the distribution.

2.4 Maximum goodness-of-fit estimation

A last method of estimation called maximum goodness-of-fit estimation or (minimum distance estimation)
is presented, see e.g. D’Agostino & Stephens (1986), Dutang et al. (2008). In this section, we focus on
the Cramer - von Mises distance and refer to Delignette-Muller & Dutang (2013) for other distances (i.e.
Kolmogorov-Smirnov and Anderson-Darling, the latter being of particular interest for skewed distributions).
The Cramer - von Mises looks at the squared difference between the candidate distribution F (x; θ) and
the empirical distribution function Fn, the latter being defined as the percentage of observations below x:
Fn(x) =

∑n
i=1 11xi≤x. The Cramer - von Mises distance is defined as

D(θ) =

∫ ∞

−∞
(Fn(x)− F (x; θ))2dx,

and is estimated by in practice

D̂(θ) =
1

12n
+

n∑
i=1

(
F (xi; θ)−

2i− 1

2n

)2

.

The maximum goodness-of-fit estimation consists in finding the value of θ minimizing D̂(θ). The names
comes from the fact that the Cramer - von Mises distance measures the goodness-of-fit of F (.; θ) against
Fn. There is no closed-form formula for argminθ D̂(θ) and a numerical optimization is used in the fitdist
function.

Finally, we fit a gamma distribution by maximum goodness-of-fit estimation

> fgamMGE <- fitdist(x, "gamma", method="mge", gof="CvM")
> cbind(MLE=fgamMLE$estimate, MME=fgamMME$estimate,
+ QME=fgamQME$estimate, MGE=fgamMGE$estimate)

MLE MME QME MGE
shape 2.398306 2.229563 4.642362 3.720486
rate 2.362096 2.195851 4.951094 3.875886
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As for quantile matching estimation, the value of θ̂ differs widely. A practitioner approach could be take
the average by component irrespectively of the methods tested. This leads to the question how to choose
between fitted parameters and between fitted distribution.

3 Measures of adequacy

This section focuses on measures of adequacy either graphical methods or numerical methods.

3.1 Histogram and empirical densities

A typical plot to assess the adequacy of a distribution is the histogram. We recall that for plotting an
histogram, observed data are divided into k classes ]aj−1, aj ] for j = 1, . . . , k (generally k is proportional to
log(n)); the number of observation in each class is computed, i.e. frequencies fj ; finally rectangles are drawn
such that the basis is a class ]aj−1, aj ] and the height is the absolute fj or the relative fj/n frequencies.
Thus, the histogram is an estimator of the empirical density, as the area of a rectangle is proportional to
P(X ∈]aj−1, aj ]). This graph is generically provided in the plot function of a "fitdist" object, but does
not allow multiple fitted distributions. So in the example of a gamma fit to the MTPL dataset, we use the
denscomp function.

> txt <- c("MLE","MME","QME(1/3, 2/3)", "MGE-CvM")
> denscomp(list(fgamMLE, fgamMME, fgamQME, fgamMGE), legendtext=txt,
+ fitcol="black", main="Histogram and fitted gamma densities")

Alternatively, we can estimate directly the density function by the popular kernel density estimation. This
is implemented in the density function as shown below

> hist(x, prob=TRUE, ylim=c(0, 1))
> lines(density(x), lty=5)

In order to better assess the fitted gamma densities, the two above graphs are plotted on seperate graphics.
We observe that the MLE and the MME fits best approximates the density between x ∈ [0.5, 1.5] while the
QME and the MGE fit best assess the density between x ∈ [1.5, 4]. However, it is clear that the gamma
distribution cannot appropriately fit the whole distribution, mainly due to its light-tailedness.

3.2 Distribution function plot

Another typical graph is to plot the fitted distribution F (.; θ̂) and the empirical cumulative distribu-
tion function Fn. As already given, the computation of Fn is simpler than for the empirical density
Fn(x) =

∑n
i=1 11xi≤x. A new claim dataset is considered to illustrate this type of plot: we use the cel-

ebrated “Danish” dataset published in McNeil (1997). The dataset is stored in danishuni for the univariate
version and contains fire loss amounts collected at Copenhagen Reinsurance between 1980 and 1990. We
consider three distributions: a gamma distribution G(α, λ), a Pareto distribution P(α, θ), a Pareto-gamma
mixture PG(p, α1, θ1, α2, λ2) defined in Section 1.4 and a Burr distribution Bu(γ, τ, θ).

> data(danishuni)
> x <- danishuni$Loss
> fgam <- fitdist(x, "gamma", lower=0)
> fpar <- fitdist(x, "pareto", start=list(shape=2, scale=2), lower=0)
> fmixgampar <- fitdist(x, "mixgampar", start=
+ list(prob=1/2, nu=1, lambda=1, alpha=2, theta=2), lower=0)
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Figure 6: Comparison of fits on a MTPL dataset

> cbind(SINGLE= c(NA, fgam$estimate, fpar$estimate),
+ MIXTURE=fmixgampar$estimate)

SINGLE MIXTURE
NA 0.6849901

shape 1.2975373 10.8671174
rate 0.3832863 6.5413112
shape 5.3689492 5.4070157
scale 13.8424418 29.9966023

When fitted alone, the parameters of the gamma distribution are estimated as (α̂, λ̂) = (1.2976, 0.3833) and
the parameters of the Pareto distribution are estimated as (α̂, θ̂) = (5.3689, 13.8413). When used in the
mixture, we get (p̂, α̂1, θ̂1, α̂2, λ̂2) = (0.6849, 10.8706, 6.5436, 5.4182, 30.0700). As only the shape parameter
α̂2 is of similar amplitude, only heavy-tailed distributions (like the Pareto) are appropriate for this dataset.
Finally, we fit a Burr distribution.

> fburr <- fitdist(x, "burr", start=list(shape1=2, shape2=2,
+ scale=2), lower=c(0.1,1/2, 0))
> fburr$estimate

shape1 shape2 scale
0.100000 14.441676 1.085243

Comparing the fitted densities is then carried out using the cdfcomp function.

> cdfcomp(list(fgam, fpar, fmixgampar, fburr), xlogscale=TRUE,
+ datapch=".", datacol="grey", fitcol="black", fitlty=2:5,
+ legendtext=c("gamma","Pareto","Par-gam","Burr"),
+ main="Fitted CDFs on danish")

We also plot the tail of the distribution function on Figure 7 When using the maximum likelihood estimation,
the best fit is provided by the Burr distribution, yet the first shape parameter hits the lower bound of 0.1.
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Figure 7: Comparison of fits on the Danish fire dataset

3.3 Qqplot, ppplot

On the two previous graphs, we consider the plot of the empirical density (resp. the empirical distribution
function) and the fitted density (resp. the fitted distribution function). The pp-plot (resp. the qq-plot)
consists in plotting (directly) the empirical distribution function Fn against the fitted distribution function
F (.; θ̂) (resp. the empirical quantile function Qn,. against the fitted quantile function F−1(.; θ̂)). Those
quantities are computed at the observations, which leads to further simplifications Fn(xi) = rank(xi)/n and
Qn,i/n = x⋆i . This is illustrated on the Danish fire dataset danishuni and the four distributions considered
by using the ppcomp and qqcomp functions.

> qmixgampar <- function(p, prob, nu, lambda, alpha, theta)
+ {
+ L2 <- function(q, p)
+ (p - pmixgampar(q, prob, nu, lambda, alpha, theta))^2
+ sapply(p, function(p) optimize(L2, c(0, 10^3), p=p)$minimum)
+ }
> ppcomp(list(fgam, fpar, fmixgampar, fburr), xlogscale=TRUE,
+ ylogscale=TRUE, fitcol="black", main="PP-plot on danish",
+ legendtext=c("gamma","Pareto","Par-gam","Burr"), fitpch=1:4)
> qqcomp(list(fgam, fpar, fmixgampar, fburr), xlogscale=TRUE,
+ ylogscale=TRUE, fitcol="black", main="QQ-plot on danish",
+ legendtext=c("gamma","Pareto","Par-gam","Burr"), fitpch=1:4)

As there is no closed-form formula for the quantile function of the mixture distribution (i.e. inverse of
x 7→ pγ(α, νx)/Γ(ν) + (1 − p)(1 − θα/(θ + x)α)), a numerical optimization is carried out using the Golden
line-search (implemented in optimize). On Figure 8, quantiles and probabilities are plotted as a point, while
the straight line corresponds to the identity function. The more points that are close to the line, the better
fit the distribution. The pp-plot reveals that only the Burr distribution sufficiently fit the data, whereas the
qq-plot shows that both the Pareto-gamma mixture and the Burr distributions best approximates the data.

The plot method of a "fitdist" object provides the four above graphs (for the fitted distribution) in the
following order: an histogram with the fitted density, an emp. cumulative distribution function (ecdf-plot)
with the fitted distribution function, a (theo.) quantile - (emp.) quantile plot and a (theo.) probability -
(emp.) probability plot.
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Figure 8: Comparison of fits on the Danish fire dataset

3.4 Goodness-of-fit statistics and tests

We turn our attention to goodness-of-fit statistics to complement the four previous goodness-of-fit graphs.
For continuous distributions, the three statistics presented in Section 2.4 can be computed, that is Cramer
- von Mises, Kolmogorov-Smirnov and Anderson-Darling statistics. For discrete distribution, the more
common statistic is the chi-square statistic defined as

∆2 =

m∑
i=0

(ni − npi)
2

npi

where ni the empirical frequency count for the level i, n the total number of observations, the theoretical
probability pi = P(X = i; θ) (i.e. npi the theoretical frequency count), m the number of cells. In practice,
the number of cells is either fixed by the experimenter or chosen so that empirical frequencies are greater
than five and pi is replaced by p̂i = P(X = i; θ̂). The chi-square statistic is linked to the Pearson’s hypothesis
test of goodness-of-fit, for which under the null hypothesis ∆2 converge in law to a chi-square distribution
χ2(m− d− 1) (where d is the number of parameters). For all distributions, we consider also the information
criterions (AIC and BIC) proportional to the opposite of the log-likelihood. All of this is provided in
the gofstat function. A numerical illustration is proposed on a TPL claim number dataset, for which a
Poisson, a negative binomial and a zero-modified Poisson distributions are fitted by the maximum likelihood
estimation.

> library(CASdatasets)
> data("freMTPLfreq")
> x <- freMTPLfreq$ClaimNb
> fpois <- fitdist(x, "pois")
> fnbinom <- fitdist(x, "nbinom")
> fpoisZM <- fitdist(x, "poisZM", start=list(
+ prob=sum(x == 0)/length(x), lambda=mean(x)),
+ lower=c(0,0), upper=c(1, Inf))
> gofstat(list(fpois, fnbinom, fpoisZM), chisqbreaks=c(0:4, 9),
+ discrete=TRUE, fitnames=c("Poisson","NegBinomial","ZM-Poisson"))

Chi-squared statistic: 1008.58 3.245916 26.39691
Degree of freedom of the Chi-squared distribution: 4 4 3
Chi-squared p-value: 4.934275e-217 0.5175469 7.875999e-06
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the p-value may be wrong with some theoretical counts < 5
Chi-squared table:

obscounts theo Poisson theo NegBinomial theo ZM-Poisson
<= 0 397779 3.973006e+05 3.977803e+05 3.977781e+05
<= 1 14633 1.555969e+04 1.464111e+04 1.462057e+04
<= 2 726 3.046861e+02 7.084345e+02 7.506765e+02
<= 3 28 3.977527e+00 3.701326e+01 1.927131e+01
<= 4 3 3.894349e-02 2.005249e+00 3.298210e-01
> 4 0 3.070350e-04 1.175589e-01 4.277418e-03

Goodness-of-fit criteria
Poisson NegBinomial ZM-Poisson

Akaike's Information Criterion 138343.4 137792.5 137801.2
Bayesian Information Criterion 138354.3 137814.3 137823.0

From the chi-square statistic and the chi-square table (ni, np̂i)i, the negative binomial distribution is clearly
the best distribution. This is also confirmed by the AIC and the BIC criterions.

3.5 Skewness-kurtosis graph

When selecting a distribution, depending on the type of applications, the experimenter may give a particular
attention to the tail, some quantiles or the body of the distribution for which a natural way of choosing
the “best” distibution emerges. In actuarial science, a great care is put on the tail of distribution, and also
on first moments. The code below provide values of quantiles (plotted before) as well as the first two raw
moments.

> p <- c(.9, .95, .975, .99)
> rbind(
+ empirical= quantile(danishuni$Loss, prob=p),
+ gamma= quantile(fgam, prob=p)$quantiles,
+ Pareto= quantile(fpar, prob=p)$quantiles,
+ Pareto_gamma= quantile(fmixgampar, prob=p)$quantiles,
+ Burr= quantile(fburr, prob=p)$quantiles)

p=0.9 p=0.95 p=0.975 p=0.99
empirical 5.541526 9.972647 16.26821 26.04253
gamma 7.309525 9.262005 11.19005 13.71334
Pareto 7.412939 10.342085 13.67489 18.79567
Pareto_gamma 7.091501 12.164170 17.93063 26.78132
Burr 5.345242 8.637989 13.95912 26.32738

> compmom <- function(order)
+ c(empirical= sum(danishuni$Loss^order)/length(x),
+ gamma=mgamma(order, fgam[[1]][1], fgam[[1]][2]),
+ Pareto=mpareto(order, fpar[[1]][1], fpar[[1]][2]),
+ Pareto_gamma= as.numeric(fmixgampar[[1]][1]*
+ mgamma(order, fmixgampar[[1]][2], fmixgampar[[1]][3])+
+ (1-fmixgampar[[1]][1])*
+ mpareto(order, fmixgampar[[1]][4], fmixgampar$estimate[5])),
+ Burr=mburr(order, fburr[[1]][1], fburr[[1]][2], fburr[[1]][3]))
> rbind(Mean=compmom(1), Mom2nd= compmom(2))

empirical gamma Pareto Pareto_gamma Burr
Mean 0.0177542 3.385296 3.168369 3.282111 2.986242
Mom2nd 0.4395279 20.292516 26.036581 39.819947 Inf
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For higher moments, it is typical to look at the skewness and the kurtosis coefficients defined as

sk(X) =
E[(X − E(X))3]

V ar(X)
3
2

, kr(X) =
E[(X − E(X))4]

V ar(X)2
,

for a random variable X. For heavy-tailed distributions, such coefficients may not exist, yet empirically they
always exist. The descdist function provides the so-called Cullen and Frey graph, which plots the empirical
estimates of sk(X) and kr(X) as well as the possible values for some classic distributions (including the
gamma family for continuous distributions and the Poisson distribution for discrete distributions) This is
illustrated on the danishuni and the tplcaimnumber datasets on Figure 9. The fit analysis can also be
completed by looking at the uncertainty of parameter estimate with a bootstrap analysis. This is possible
with the bootdist function of fitdistrplus.
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Figure 9: Cullen and Frey graph for danish and tplclaimnumber

4 Aggregate loss distribution

This section deals with the aggregate loss amount distribution, i.e. the distribution of the compound sum

S =
N∑
i=1

Xi,

where N is the claim number and (Xi)’s are the claim severities. Firstly, the computation of the distribution
function FS of S is studied. Then, an application to a TPL motor dataset is carried out. Finally, a
continuous-time version of this problem is analyzed via the ruin theory framework.

4.1 Computation of the aggregate loss distribution

A classical assumption on the aggregate amount S is to require that N is independent of claim amounts
(Xi)i. Another common assumption is that (Xi)i

i.i.d.∼ X. Therefore, the distribution function simplifies to

FS(s) =

+∞∑
n=0

P(N = n)P(X1 + · · ·+Xn ≤ s) =

+∞∑
n=0

P(N = n)F ⋆n
X (s),

whereF ⋆n
X the n-order convolution product of FX . In a small number of distribution of X, the distribution

of the sum X1 + · · ·+Xn is easy. For instance, when X follows a gamma distribution G(α, λ), then the sum
X1 + · · ·+Xn follows a gamma distribution G(nα, λ). This can be implemented by the following function.
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> pgamsum <- function(x, dfreq, argfreq, shape, rate, Nmax=10)
+ {
+ tol <- 1e-10; maxit <- 10
+ nbclaim <- 0:Nmax
+ dnbclaim <- do.call(dfreq, c(list(x=nbclaim), argfreq))
+ psumfornbclaim <- sapply(nbclaim, function(n)
+ pgamma(x, shape=shape*n, rate=rate))
+ psumtot <- psumfornbclaim %*% dnbclaim
+ dnbclaimtot <- dnbclaim
+ iter <- 0
+ while( abs(sum(dnbclaimtot)-1) > tol && iter < maxit)
+ {
+ nbclaim <- nbclaim+Nmax
+ dnbclaim <- do.call(dfreq, c(list(x=nbclaim), argfreq))
+ psumfornbclaim <- sapply(nbclaim, function(n)
+ pgamma(x, shape=shape*n, rate=rate))
+ psumtot <- psumtot + psumfornbclaim %*% dnbclaim
+ dnbclaimtot <- c(dnbclaimtot, dnbclaim)
+ iter <- iter+1
+ }
+ as.numeric(psumtot)
+ }

In general, the distribution of the sum X1 + · · ·+Xn does not necessarily have the same distribution as
X. So alternative computations are necessary. The Panjer recursion provides a recursive method to compute
the mass probability function of S in the case X has a discrete distribution and N belongs to the (a, b, n)
family, see Panjer (1981). The recursion formula for the mass probability function pS is

pS(s) =

[pX(1)− (a+ b)pX(0)]pX(s) +
s∧m∑
y=1

(a+ by/x)pX(y)pS(s− y)

1− apX(0)
,

where s ∈ N, X has a discrete distribution on {0, 1, . . . ,m} with a mass probability function pX , N belongs
to (a, b, 0) family and starting at pS(0) = GN (pX(0)) with GN the probability generating function. The
recursion is stopped when the sum of elementary probabilities P(S = 0, 1, . . . ) is arbitrary closed to 1. In
practice, the distribution of the claim amount is not discrete but can be discretized. The upper discretization
is the foward difference f̃(x) = FX(x + h) − FX(x), the lower discretization is the backward difference
f̃(x) = FX(x)−FX(x−h), the unbiased discretization is f̃(x) = (2E(X∧x)−E(X∧x−h)−E(X∧x+h))/h
where h is the step of discretization, see Figure 10 and Dutang et al. (2008) for further details.
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Figure 10: Comparison of three discretization methods (a paralogistic distribution)

Approximation based on the normal distribution are also available: (i) the normal approximation is given
by

FS(x) ≈ Φ

(
x− E(S)

σ(S)

)
,
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(ii) the normal-power approximation is given by

FS(x) ≈ Φ

(
− 3

sk(S)
+

√
9

sk(S)2
+ 1 +

6

sk(S)

x− E(S)

σ(S)

)
,

where σ(S) is the standard deviation of S and sk(S) is the skewness coefficient of S. The skewness coefficient
can be written as

sk(S) =
sk(N)V ar(N)3/2E(X)3 + 3V ar(N)E(X)V ar(X) + E(N)sk(X)V ar(X)3/2

V ar(S)3/2
.

An approximation based on the gamma distribution is also possible, see Gendron & Crepeau (1989). These
approximations are reasonably correct at the heart of the distribution but not at the tails of the distribution.
The most common alternative to exact computation is the simulation procedure. It consists in simulating n
claim numbers N1, . . . , Nn, Ni’s claim severities (Xi,j)j in order to get n realizations S1, . . . , Sn. All these
alternative methods are available in the aggregateDist function of the actuar package. We consider two
examples: the gamma case (N follows a Poisson distribution P(10) and X follows a gamma distribution
G(3, 2)) and the Pareto case (N follows a Poisson distribution P(10) and X follows a Pareto distribution
P(3.1, 4.2)). The following code computes the gamma case.

> parsev <- c(3, 2); parfreq <- 10
> meansev <- mgamma(1, parsev[1], parsev[2])
> varsev <- mgamma(2, parsev[1], parsev[2]) - meansev^2
> skewsev <- (mgamma(3, parsev[1], parsev[2]) -
+ 3*meansev*varsev - meansev^3)/varsev^(3/2)
> meanfreq <- varfreq <- parfreq[1]; skewfreq <- 1/sqrt(parfreq[1])
> meanagg <- meanfreq * meansev
> varagg <- varfreq * (varsev + meansev^2)
> skewagg <- (skewfreq*varfreq^(3/2)*meansev^3 + 3*varfreq*meansev*
+ varsev + meanfreq*skewsev*varsev^(3/2))/varagg^(3/2)
> Fs.s <- aggregateDist("simulation", model.freq = expression(y =
+ rpois(parfreq)), model.sev = expression(y =
+ rgamma(parsev[1], parsev[2])), nb.simul = 1000)
> Fs.n <- aggregateDist("normal", moments = c(meanagg, varagg))
> Fs.np <- aggregateDist("npower", moments = c(meanagg, varagg, skewagg))
> Fs.exact <- function(x) pgamsum(x, dpois, list(lambda=parfreq),
+ parsev[1], parsev[2], Nmax=100)
> x <- seq(25, 40, length=101)
> plot(x, Fs.exact(x), type="l",
+ main="Agg. Claim Amount Distribution", ylab="F_S(x)")
> lines(x, Fs.s(x), lty=2)
> lines(x, Fs.n(x), lty=3)
> lines(x, Fs.np(x), lty=4)
> legend("bottomright", leg=c("exact", "simulation",
+ "normal approx.", "NP approx."), col = "black",
+ lty = 1:4, text.col = "black")

Similarly, we have the Pareto case. We show here only the recursive computation calls.

> parsev <- c(3.1, 2*2.1) ; parfreq <- 10
> xmax <- qpareto(1-1e-9, parsev[1], parsev[2])
> fx2 <- discretize(ppareto(x, parsev[1], parsev[2]), from = 0,
+ to = xmax, step = 0.5, method = "unbiased",
+ lev = levpareto(x, parsev[1], parsev[2]))
> Fs2 <- aggregateDist("recursive", model.freq = "poisson",
+ model.sev = fx2, lambda = parfreq, x.scale = 0.5, maxit=2000)
> fx.u2 <- discretize(ppareto(x, parsev[1], parsev[2]), from = 0,
+ to = xmax, step = 0.5, method = "upper")
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> Fs.u2 <- aggregateDist("recursive", model.freq = "poisson",
+ model.sev = fx.u2, lambda = parfreq, x.scale = 0.5, maxit=2000)
> fx.l2 <- discretize(ppareto(x, parsev[1], parsev[2]), from = 0,
+ to = xmax, step = 0.5, method = "lower")
> Fs.l2 <- aggregateDist("recursive", model.freq = "poisson",
+ model.sev = fx.l2, lambda = parfreq, x.scale = 0.5, maxit=2000)

The two graphs are displayed on Figure 11. Despite that the expectation E(X) is identical in both
cases, high-level quantiles of the aggregate claim distribution are significantly different. For the gamma
case, the normal-power approximation suitably fits the exact distribution function, while for the gamma
case, the normal-power approximation overestimates as the skewness sk(S) is very high and not repre-
sentative of the shape of the distribution. As their name suggests, the upper and the lower recursive
computations surrounds the true distribution function. The simulation number is voluntary chosen low
(1000), but can be set to a much larger number. If convergence is achieved for a high number of sim-
ulation, parallelization, GPU computation and quasi - Monte Carlo sampling methods can be used to
fasten the process, see http://cran.r-project.org/web/views/HighPerformanceComputing.html and
http://cran.r-project.org/web/views/Distributions.html.
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Figure 11: Aggr. claim distribution (gamma case / Pareto case)

4.2 Ruin models

Ruin theory deals with the study of stochastic processes linked to the wealth of an insurer, see Asmussen
& Albrecher (2010) for a recent survey. A reserve risk process (Ut)t≥0 is considered. The initial model of
Cramér-Lundberg assumes that the surplus (Ut)t≥0 of an insurance company at time t is represented by

Ut = u+ ct−
Nt∑
i=1

Xi,

where u is the initial surplus, c is the premium rate, (Xi)i≥1 are i.i.d. successive claim amounts and (Nt)t≥0

is the claim arrival process assumed to be a Poisson process of intensity λ. Andersen (1957) generalized
this model by proposing a renewal process for the claim arrival process (Nt)t≥0 (the claim waiting times
are denoted by (Ti)i≥1). When claim severities and claim waiting times follow a phase-type distribution,
closed-form formulas exist for the ruin probability

ψ(u) = P(∃t > 0 : Ut < 0|U0 = u),

see Asmussen & Rolski (1991). We provide below examples of that article.
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> psi <- ruin(claims = "e", par.claims = list(rate = 1/0.6),
+ wait = "e", par.wait = list(rate = 1/0.6616858))
> ## Phase-type claims,
> ## exponential interarrival times
> p <- c(0.5614, 0.4386)
> r <- matrix(c(-8.64, 0.101, 1.997, -1.095), 2, 2)
> lambda <- 1/(1.1 * mphtype(1, p, r))
> psi2 <- ruin(claims = "p", par.claims = list(prob = p, rates = r),
+ wait = "e", par.wait = list(rate = lambda))
> ## Phase-type claims,
> ## mixture of two exponentials for interarrival times
> a <- (0.4/5 + 0.6) * lambda
> psi3 <- ruin(claims = "p", par.claims = list(prob = p, rates = r),
+ wait = "e", par.wait = list(rate = c(5 * a, a), weights =
+ c(0.4, 0.6)), maxit = 225)
> plot(psi, from = 0, to = 50)
> plot(psi2, add=TRUE, lty=2)
> plot(psi3, add=TRUE, lty=3)
> legend("topright", leg=c("Exp - Exp", "PH - Exp",
+ "PH - MixExp"), lty=1:3, col="black")

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

Probability of Ruin

u

ψ
(u

)

Exp − Exp
PH − Exp
PH − MixExp

Figure 12: Ruin probability

5 Copulas and multivariate distributions

This section deals with distributions of multivariate random vectors X = (X1, . . . , Xd). Due to the growing
litterature (e.g. Frees & Valdez (1998), Embrechts et al. (2001), Frees & Wang (2006)) on copulas (defined
as multivariate distribution functions of random vector with uniform marginals) since 2000, we focus on
copulas in this section.

5.1 Definition of copulas

Let FX be the distribution function of X with marginals FXj i.e. FX(x) = P(X1 ≤ x1, . . . , Xd ≤ xd).
As F−1

Xj
(U) has the same distribution as Xj for U a uniform variate, it is easily checked that P(X1 ≤
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F−1
X1

(u1), . . . , Xd ≤ F−1
Xd

(ud)) = P(FX1
(X1) ≤ u1, . . . , FXd

(Xd) ≤ ud). A copula function C is a multivarite
distribution function such that C(u1, . . . , ud) = P(FX1

(X1) ≤ u1, . . . , FXd
(Xd) ≤ ud) for u ∈ [0, 1]d. The

C function is bounded by the so-called Fréchet bound as (
∑d

i=1 ui − (d − 1))+ ≤ C(u) ≤ min(u1, . . . , ud)
generally denoted by W (u) and M(u), see Nelsen (2006) for a recent introduction. By the Sklar theorem
(Sklar (1959)) for any random vectors X with marginals FXj

, there exists a copula function C such that

P(X ≤ x) = P(X1 ≤ x1, . . . , Xd ≤ xd) = C(FX1
(x1), . . . , FXd

(xd)),

for x ∈ Rd. The copula C is unique on the support of X, and not otherwise. Let us note that in the
independent case where Xi ⊥ Xj for i ̸= j, the copula function is simply C(u) = u1× · · ·×ud. As described
below, classical multivariate distributions such as the multivariate Gaussian distribution and the multivariate
Pareto distribution can be represented using a copula function.

5.2 Archimedean copulas

A wide class of copulas is given by the family of Archimedean copulas. An Archimedean copula is charac-
terized by a generator function ϕ : [0, 1] 7→ [0,∞] such that

C(u) = ϕ−1

(
d∑

i=1

ϕ(ui)

)
,

where u ∈ [0, 1]d and ϕ is infinitely differentiable, completely monotone and invertible. We refer to Theorem
2.1 of Marshall & Olkin (1988) for the construction of Archimedean copulas. In this family, the three most
classical copulas are the Gumbel copula ϕ(t) = (− log(t))−α, the Frank copula ϕ(t) = log(eα−1)−log(eαt−1)
and the Clayton copula ϕ(t) = t−α − 1 for a parameter α. We get the following copula function

• Gumbel: CGu(u) = exp(−((− log(u1))
α + · · ·+ (− log(ud))

α)1/α), for α ≥ 1.

• Frank: CF (u) = − log(1 + (e−αu1 − 1)× (e−αud − 1)/(eα − 1))/α, for α ̸= 0.

• Clayton: CC(u) = (1− d+ u−α
1 + · · ·+ u−α

d )−1/α, for α ∈ [−1,+∞[\{0}.

In fact, the survival Clayton defined as P(U > u) = CC(1 − u) is linked to the multivariate Pareto distri-
bution. According to Arnold (1983), the multivariate Pareto distribution is characterized by the following
survival function

P(X > x) =

(
1 +

d∑
i=1

x
1
γi
i

)−α

.

The marginal distribution of Xi is also Pareto distributed, since P(Xi > xi) = (1 + x
1/γi

i )−α = 1− FXi
(xi).

It is easy to check that P(X1 > F−1
X1

(u1), . . . , Xd > F−1
Xd

(ud)) = CC(1−u). In other words, the multivariate
Pareto distribution has a Clayton survival copula.

5.3 Elliptic copulas

Before introducting elliptic copulas, we define elliptical distributions. A random variable X has an elliptical
distribution if its characteristic function φX verifies φX(t) = eitµψ(t2σ) for some parameters µ, σ and some
function ψ. Generally a random vector X follows an elliptical distribution if its characteristic function
verifies

φX(t) = eit
Tµψ(tTΣt),

for some column-vector µ, some positive definite matrix Σ, some function ψ and t ∈ Rd For such a distribu-
tion, the density function is given by

fX(x) =
cd√

det(Σ)
ϕ((x− µ)TΣ−1(x− µ)/2),
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for x ∈ Rd, some function ϕ : R+ 7→ R such that
∫∞
0
xd/2−1ϕ(x)dx <∞ and some normalizing constant cd.

We get the multivariate normal distribution when ϕ(t) = e−t with mean vector µ and covariance matrix Σ,
the multivariate Student distribution with m degrees of freedom when ϕ(t) = (1 + t/m)(d+m)/2.

An elliptical copula is defined as

C(u) = H(H−1
1 (u1), . . . ,H

−1
d (ud)),

where H is a multivariate distribution with marginals Hi belonging to the elliptical family. In particular for
a symmetric positive definite matrix Σ, the Gaussian and the student copulas are defined as

• Gaussian
CGa(u) =

∫ z1

−∞
· · ·
∫ zd

−∞
c̃de

−xTΣ−1x/2dx1 . . . dxd,

where zi = Φ−1(ui) and Φ−1 is the quantile function of the standard normal distribution.

• student

CSt(u) =

∫ z1

−∞
· · ·
∫ zd

−∞
c̃d

(
1 +

xTΣ−1x

2m

) d+m
2

dx1 . . . dxd,

where zi = F−1
St (ui) is the quantile of a Student distribution with m > 0 degrees of freedoms.

Note that in the bivariate case, the covariance matrix Σ simplifies to

Σ =

(
1 ρ
ρ 1

)
,

where ρ ∈ [0, 1].

5.4 Properties and extreme copulas

The copulas presented in the previous subsections have a density function c : [0, 1]d 7→ [0, 1] since the copula
function is differentiable with respect to all variables on the unit hypercube. The dependence induced by a
particular copula can be quantified through the theory of concordance measures introduced by ?. The two
main measures of concordance are the tau of Kendall or the rho of Spearmann. The tau of Kendall of a
bivariate vector (X,Y ) is defined as

τ(X,Y ) = P((X − X̃)(Y − Ỹ ) > 0)− P((X − X̃)(Y − Ỹ ) < 0),

where (X̃, Ỹ ) is an independent replicate of (X,Y ). Similarly, the rho of Spearmann of (X,Y ) is defined as

τ(X,Y ) = 3P((X − X̃)(Y − Ȳ ) > 0)− 3P((X − X̃)(Y − Ȳ ) < 0),

where (X̃, Ỹ ) and (X̄, Ȳ ) are independent replicates of (X,Y ). As these two measures satisfy the criterions
of concordance measures, τ(X,Y ) ∈ [0, 1], τ(X,Y ) = 1 means that the copula of (X,Y ) is the upper Fréchet
bound, τ(X,Y ) = 0 means that the copula of (X,Y ) is the independent copula (the same holds for ρ(X,Y )).
In the bivariate case, closed-form formulas are available for the copulas previously presented, see e.g. Nelsen
(2006) and Joe (1997).

A desirable feature of copulas lies in the fact that they can model dependence between two or more
variables with or without a tail dependency. This is characterized by the tail dependance coefficients. The
upper tail coefficient of (X,Y ) is defined as

λU (X,Y ) = lim
t→1−

P(Y > F−1
Y (t)|X > F−1

X (t)),

while the lower tail coefficient λL(X,Y ) is obtained when t→ 0+. When X,Y have a continuous distribution
with a dependency given by a copula CX,Y , those coefficients can be rewritten as

λU (X,Y ) = lim
t→1−

1− 2t− CX,Y (t, t)

1− t
and λL(X,Y ) = lim

t→0+

CX,Y (t, t)

t
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For the copulas presented here, we have λU = 0 except for the Gumbel copula λU = 2−21/α and the Student
copula λU = 2FSt(

√
m+ 1

√
1− ρ/ρ1 + ρ), whereas λL = 0 except for the Clayton copula λL = 2−1/α and

the Student copula λL = λU . In other words, copulas with λU = 0 cannot model dependence at the
right-hand tail.

Another desirable property of copulas is the max-stability. A copula function C is max-stable if

C(u1, . . . , ud) =
(
C(u

1/k
1 , . . . , u

1/k
d )

)k
,

for all k > 0. This property is linked to the extreme value theory since the right-hand side is the copula
of component-wise maxima of a random vector sample (X1, . . . ,Xk). Copulas verifying this property are
called extreme copulas: the Gumbel and the Husler-Reiss copulas belong to this family. The Husler-Reiss
copula is defined as follows in the bivariate case

CHR(u1, u2) = exp (log(u1)Φ(d+) + log(u2)Φ(d−)) ,

where d± = 1/α ± α/2 log(log(u1)/ log(u2)) and ϕ is the distribution function of the standard normal
distribution.

5.5 Copula fitting methods

There are four main methods to calibrate copulas which differ on how the marginals are considered in
the fitting process. Consider a sample of random vectors (X1, . . . ,Xn) and corresponding observations
x1, . . . ,xn where the ith marginal has a density fi(.; θi) and a distribution function Fi(.; θi). A (full)
maximum likelihood estimation is the first option, which consists in maximizing the likelihood

L(α, θ1, . . . , θd,x1, . . . ,xn) =

n∏
i=1

c(F1,i, . . . , Fd,i;α)f1,i × · · · × fd,i,

where Fj,i = Fj(xj,i; θj), fj,i = fj(xj,i; θj), α is the parameter (vector) of the copula C and θi its parameter.
The optimization is carried out over the whole parameter space.

The second estimation method is the method of moments which consists as in the univariate in matching
theoretical moments and empirical moments. Marginal parameters θi are set by equalizing the empirical
moments of the sample (Xi,1, . . . , Xi,n), while the copula parameters α are determined by matching the tau
of Kendall and/or the rho of Spearmann.

The third estimation called inference for margins is a two-step procedure. First marginal distributions are
fitted by maximum likelihood, then a pseudo sample is defined as ui = (u1,i, . . . , ud,i) = (F (x1,i, θ̂1), . . . , F (xd,i, θ̂d))
for i = 1, . . . , n. Then the copula is fitted on u1, . . . ,un by maximizing the likelihood

L(α,u1, . . . ,un) =

n∏
i=1

c(u1,i, . . . , ud,i;α).

The inference for margins method takes the advantage of the two steps to reduce the dimension of the likeli-
hood from (α, θ1, . . . , θd) to α. Finally, the canonical maximum likelihood method is similar to the inference
for margins and consists in replacing the parametric estimate by the non-parametric estimates in the pseudo
data. That is to say, ui = (Fn(x1,i), . . . , Fn(xd,i)) which further simplifies to ui = (rank(x1,i)/n, . . . , rank(xd,i)/n).
In the following section, we only consider the inference for margins method, yet our code is generic and can
be easily adapted for other estimation methods.

5.6 Application and copula selection

Numerical illustrations of copulas and their estimation is carried out on the loss-ALAE data of Frees &
Valdez (1998). The dataset comprises 1,500 general liability claims (expressed in USD) where each claim is
a two-component vector: an indemnity payment (loss) and an allocated loss adjustment expense (ALAE).
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> data(lossalae)
> par(mfrow=c(1,2))
> plot(lossalae, log="xy", main="Scatterplot of loss-ALAE")
> plot(apply(lossalae, 2, rank)/NROW(lossalae),
+ main="rank transform of loss-ALAE")

On Figure 13, we plot the scatter plots of the data (xi, yi) and the empirical distributions evaluated at
(xi, yi), i.e. (Fn,X(xi), Fn,Y (yi)) = (rank(xi)/n, rank(yi)/n).
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Figure 13: Loss-ALAE dataset

On this dataset, we choose to fit the following bivariate copulas: (i) the Gaussian copula CGa(., .; ρ), (ii)
the Student copula CSt(., .; ρ,m), (iii) the Gumbel copula CGu(., .;α), (iv) the Frank copula CF (., .;α) and
(v) the Husler-Reiss copula CHR(., .;α). We use the implementation done in the fCopulae package (part of
the Rmetrics project , see https://www.rmetrics.org/). For ease of use, we define the following functions

> dnormcop <- function(U, param)
+ as.numeric(dellipticalCopula(U, rho=param[1], type="norm"))
> dtcop <- function(U, param)
+ as.numeric(dellipticalCopula(U, rho=param[1], type="t",
+ param=param[2]))
> dgumcop <- function(U, param)
+ as.numeric(devCopula(U, type="gumbel", param=param[1]))
> dHRcop <- function(U, param)
+ as.numeric(devCopula(U, type="husler.reiss", param=param[1]))
> dfrankcop <- function(U, param)
+ as.numeric(darchmCopula(U, type="5", alpha=param[1]))

In addition to finding an appropriate copula, a choice of distribution must be done for marginals. A Pareto
chart on both marginals shows that they follow heavy-tailed distributions.

> paretochart <- function(x, ...)
+ plot(-log((1:length(x))/(length(x)+1)), log(sort(x)), ...)
> paretochart(lossalae$Loss)
> paretochart(lossalae$ALAE)

Therefore, we choose a Pareto type II distribution and a lognormal distribution for candidate distributions
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of marginals. As there is no package fitting copulas for any kind of copula, we implement the inference for
margins method in the following function.

> fit.cop.IFM.2 <- function(obs, copula, marg, arg.margin=list(),
+ method.margin="mle", arg.cop=list(), initpar, ...)
+ {
+ Obs1 <- obs[,1]
+ Obs2 <- obs[,2]
+ #marginal fit
+ if(marg %in% c("exp","gamma","lnorm","pareto","burr"))
+ {
+ Obs1 <- Obs1[Obs1 > 0]
+ Obs2 <- Obs2[Obs2 > 0]
+ }
+ marg1 <- do.call(fitdist, c(list(data= Obs1, distr=marg,
+ method=method.margin), arg.margin))
+ marg2 <- do.call(fitdist, c(list(data= Obs2, distr=marg,
+ method=method.margin), arg.margin))
+
+ #fitted distrib. func.
+ comput.cdf <- function(fit, obs)
+ {
+ para <- c(as.list(fit$estimate), as.list(fit$fix.arg))
+ distname <- fit$distname
+ pdistname <- paste("p", distname, sep = "")
+ do.call(pdistname, c(list(q = obs), as.list(para)))
+ }
+ #pseudo data
+ pseudomarg1 <- comput.cdf(marg1, Obs1)
+ pseudomarg2 <- comput.cdf(marg2, Obs2)
+ U <- cbind(pseudomarg1, pseudomarg2)
+ #log likelihood
+ copLogL <- function(x)
+ {
+ if(all(arg.cop$lower <= x) && all(arg.cop$upper >= x))
+ res <- -sum(remove.naninf(log(copula(U, param=x))))
+ else res <- Inf
+ return(res)
+ }
+ resopt <- optim(par=initpar, fn=copLogL, method="L-BFGS-B",
+ lower=arg.cop$lower, upper=arg.cop$upper, ...)
+
+ list(marg1=marg1, marg2=marg2, copula=
+ list(name=arg.cop$name, alpha=resopt$par))
+ }
> remove.naninf <- function(x)
+ x[!is.nan(x) & is.finite(x)]

The copulas are now fitted using the function fit.cop.IFM.2 by defining the corresponding arg.cop argu-
ment. Note that the marginal distributions are fitted using fitdist.

> library(fCopulae)
> argnorm <- list(length=1, lower=0, upper=1, name="Gaussian")
> argt <- list(length=2, lower=c(0,0), upper=c(1,1000),
+ name="Student")
> arggum <- list(length=1, lower=1, upper=100, name="Gumbel")
> argHR <- list(length=1, lower=0, upper=1000, name="Husler-Reiss")
> argfrank <- list(length=1, lower=-1000, upper=1000, name="Frank")
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> #Gaussian copula
> fgausspareto <- fit.cop.IFM.2(lossalae, copula= dnormcop,
+ marg="pareto", arg.margin=list(start=list(shape=10, scale=100),
+ lower=c(1, 1/2)), arg.cop= argnorm, initpar=1/2)
> #Student copula
> ftpareto <- fit.cop.IFM.2(lossalae, copula= dtcop,
+ marg="pareto", arg.margin=list(start=list(shape=10, scale=100),
+ lower=c(1, 1/2)), arg.cop= argt, initpar=c(1/2, 4))
> ftpareto$copula$alpha[2] <- round(ftpareto$copula$alpha[2])
> #Gumbel copula
> fgumbelpareto <- fit.cop.IFM.2(lossalae, copula= dgumcop,
+ marg="pareto", arg.margin=list(start=list(shape=10, scale=100),
+ lower=c(1, 1/2)), arg.cop= arggum, initpar=10)
> #Husler-Reiss copula
> fHRpareto <- fit.cop.IFM.2(lossalae, copula= dHRcop,
+ marg="pareto", arg.margin=list(start=list(shape=10, scale=100),
+ lower=c(1, 1/2)), arg.cop= argHR, initpar=10)
> #Frank copula
> ffrankpareto <- fit.cop.IFM.2(lossalae, copula= dfrankcop,
+ marg="pareto", arg.margin=list(start=list(shape=10, scale=100),
+ lower=c(1, 1/2)), arg.cop= argfrank, initpar=10)
> recap <- function(x)
+ {
+ res <- c(alpha=x$copula$alpha, x$marg1$estimate, x$marg2$estimate)
+ if(length(res) < 6)
+ res <- c(res[1], NA, res[2:5])
+ res <- as.matrix(res)
+ colnames(res) <- x$copula$name
+ res
+ }
> round(cbind(recap(fgausspareto), recap(ftpareto),
+ recap(fHRpareto), recap(fgumbelpareto),
+ recap(ffrankpareto) ), 4)

Gaussian Student Husler-Reiss Gumbel Frank
alpha 0.4783 0.4816 1.1133 1.4444 3.1141

NA 10.0000 NA NA NA
shape 1.2379 1.2379 1.2379 1.2379 1.2379
scale 16236.7759 16236.7759 16236.7759 16236.7759 16236.7759
shape 2.2233 2.2233 2.2233 2.2233 2.2233
scale 15142.4430 15142.4430 15142.4430 15142.4430 15142.4430

The level of dependency seems low since the value of the first parameter is either close to 1 (for non-elliptic
copulas) or close to 0 for elliptic copulas. Unsurprisingly, the fitted parameters of the marginal distributions
are identical. In order to assess the quality of the fit, we look at the tail coefficents λU (X,Y ) and λL(X,Y ),
which are computable given a copula. They can be estimated on data by using a non-parametric estimate
of C(t, t), i.e. the empirical bivariate distribution function Cn(t, t) =

∑n
i=1 11xi≤t11yi≤t/n. This is done by

the following function.

> Lemp <- function(u, obs)
+ sapply(1:length(u), function(i)
+ 1/NROW(obs)*sum(obs[,1] <= u[i] & obs[,2] <= u[i]) )/u
> Uemp <- function(u, obs)
+ (1-2*u+sapply(1:length(u), function(i)
+ 1/NROW(obs)*sum(obs[,1] <= u[i] & obs[,2] <= u[i]) ))/(1-u)
> Lcop <- function(u, pcop, param=param)
+ pcop(cbind(u, u), param=param)/u
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> Ucop <- function(u, pcop, param=param)
+ (1-2*u+pcop(cbind(u, u), param=param))/(1-u)

The plot of the two tail coefficients is now possible.

> u <- seq(0, 0.4, length=101)
> rklossalae <- apply(lossalae, 2, rank)/NROW(lossalae)
> plot(u, Lemp(u, rklossalae), type="l", main="Lower coefficient",
+ ylim=c(0,.6), xlab="u", ylab="L(u)")
> lines(u, Lcop(u, pgumcop, fgumbelpareto$copula$alpha), lty=2)
> lines(u, Lcop(u, pHRcop, fHRpareto$copula$alpha), lty=3)
> lines(u, Lcop(u, ptcop, ftpareto$copula$alpha), lty=4, col="grey25")
> lines(u, Lcop(u, pnormcop, fgausspareto$copula$alpha), lty=5, col="grey25")
> lines(u, Lcop(u, pfrankcop, ffrankpareto$copula$alpha), lty=6, col="grey25")
> legend("bottomright", lty=1:6, col=c(rep("black", 3), rep("grey25", 3)),
+ leg=c("emp.", "Gumbel","Husler-Reiss","Student","Gaussian","Frank"))
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Figure 14: Tail coefficients

As shown on Figure 14, the tail coefficients are best approximated by the extreme copulas : Gumbel and
Husler-Reiss. When considering the tau of Kendall and the rho of Spearmann, these two copulas are also
reasonably good. Therefore, we continue the analysis only with the Gumbel and the Husler-Reiss copula.

> cbind(emp=cor(lossalae, method="kendall")[1,2],
+ Frank=taufrankcop(ffrankpareto$copula$alpha),
+ Gumbel= taugumcop(fgumbelpareto$copula$alpha),
+ HR= tauHRcop(fHRpareto$copula$alpha),
+ Gauss = taunormcop(fgausspareto$copula$alpha),
+ Student = tautcop(ftpareto$copula$alpha))
> cbind(emp=cor(lossalae, method="spearman")[1,2],
+ Frank=rhofrankcop(ffrankpareto$copula$alpha),
+ Gumbel= rhogumcop(fgumbelpareto$copula$alpha),
+ HR= rhoHRcop(fHRpareto$copula$alpha),
+ Gauss = rhonormcop(fgausspareto$copula$alpha),
+ Student = rhotcop(ftpareto$copula$alpha))
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emp Frank Gumbel HR Gauss Student
Tau 0.3154175 0.3171205 0.3076784 0.3008567 0.317476 0.3198715

emp Frank Gumbel HR Gauss Student
Rho 0.451872 0.4622857 0.4424592 0.4360085 0.45 0.45

Given a copula, quantities of interest can be estimated by a Monte-Carlo method. Focusing on the distribu-
tion of the total expense, i.e. the sum of loss and ALAE, we simulate this sum with the following template
function

> simul.cop.2 <- function(n, rcopula, fit)
+ {
+ U <- rcopula(n, fit$copula$alpha)
+ qmarg1 <- paste("q", fit$marg1$distname, sep="")
+ qmarg2 <- paste("q", fit$marg2$distname, sep="")
+ cbind(
+ X1=do.call(qmarg1, c(list(p=U[,1]), fit$marg1$estimate)),
+ X2=do.call(qmarg2, c(list(p=U[,2]), fit$marg2$estimate))
+ )
+
+ }

where rcopula is the copula random generator defined as

> rgumcop <- function(n, param)
+ revCopula(n, type="gumbel", param=param[1])
> rHRcop <- function(n, param)
+ revCopula(n, type="husler.reiss", param=param[1])
> rindep <- function(n,param)
+ cbind(runif(n), runif(n))

Choosing a sample size of n = 1e4, we plot the empirical distribution functions of the sum for the Gumbel,
the Husler-Reiss and the independent copulas.

> sumlossalae <- rowSums(lossalae)
> n <- 10^4
> sumgumpareto <- rowSums(simul.cop.2(n, rgumcop, fgumbelpareto))
> sumHRpareto <- rowSums(simul.cop.2(n, rHRcop, fHRpareto))
> sumindeppareto <- rowSums(simul.cop.2(n, rindep, fgumbelpareto))
> plot(ecdf(sumlossalae), log="x", main="", xlim=range(sumlossalae))
> z <- 10^seq(1, log(max(sumlossalae)), length=201)
> lines(z, ecdf(sumgumpareto)(z), lty=2)
> lines(z, ecdf(sumHRpareto)(z), lty=3)
> lines(z, ecdf(sumindeppareto)(z), lty=4)
> legend("bottomright", lty=1:4, col="black",
+ leg=c("emp.", "Gumbel", "Husler-Reiss", "indep."))

On Figure 15, we observe that both extreme copulas are particularly adapted for the lossalae dataset
irrespective of the choice of the marginal distribution. Yet, we notice that the choice of the lognormal
distribution better suits the tail of the empirical distribution. However, as extreme claims above 1 million
of dollar are less observed (by definition) than large claims (between 100 thousand and 1 million), the
experimenter must take a prudential view of the right-hand tail without overfitting data. The independent
copula seems to be a reasonable approximation of the tail of the distribution (yet not of the rest of the
distribution).

30



1e+05 2e+05 5e+05 1e+06 2e+06

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Sum with Pareto margins

x

F
n(

x)

emp.
Gumbel
Husler−Reiss
indep.

1e+05 2e+05 5e+05 1e+06 2e+06

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Sum with lognormal margins

x

F
n(

x)

emp.
Gumbel
Husler−Reiss
indep.

Figure 15: Tails of the distribution of the total claim

6 Parametric inference with covariates

Assume as in Section 2 that the Xi’s are independent and identically distributed randoms variables according
to a generic random variable X with identical distribution function F (.;θ) for θ ∈ Θ ⊂ Rd is a strong
assumption. As discussed in Chapter 4, ifX is a binary random variable indicating if a loaner had experienced
non-payment, the probability P(X = 1) can be function of some covariate, such as the length and the amount
of the loan. Similarly, in chapter 8, if X is a binary random variable indicating if an insured is still alive,
or not, at some specific date, P(X = 1) can be function of the age of the insured today (or at the specific
date). And finally, in Chapter 13, if X denotes the number of claims per claim in motor insurance, X is
usually a function of the age of the driver. Hence, it would be realistic to have models that could incorporate
covariates.

Using standard notations, y will now denote the variable of interest, and x = (x1, . . . , xk) will denote a
collection of k covariates. The extension of the previous framework will be to assume that not only we observe
(y1, . . . , yn), but also associated covariates, (x1, . . . ,xn). And (y1, . . . , yn) are independant realizations of a
random sample (Y1, . . . , Yn) such that Yi has distribution F (.;θ(xi)) where now the parameter is a function
θ : Rk → Θ ⊂ Rd.

6.1 Linear regression

Consider the case where only one covariate is considered here, and that it is assumed to be a continuous
variable. In the (simple) linear regression model, we assume that Y |X = x has a normal distribution
N (θ(x), σ2), for some σ2. Since all conditional variances are assumed to be identical, such models will be
called homoscedastic. In order to have a linear model, we will assume that θ(·) is a linear function of the
parameter (not necessarily of the covariate x).

Note that instead of writing
Y |X = x ∼ N (β0 + β1x, σ

2),

linear models are usually written as

Y = β0 + β1x+ ε where ε ∼ mathcalN(0, σ2).

The R function to estimate parameters of the model (namely (θ̂, σ̂2) = (β̂0, β̂1, σ̂
2)) is the lm function

(standing for linear model). The generic code is
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> linearmodel <- lm(y~x)

where the intercept here is implicit. In other words, the previous code is equivalent to

> linearmodel <- lm(y~x)

where x and y are two numeric vectors with the same length. If one observation is missing for one vector,
the associated value will be removed on the other vector.

Under the Gaussian noise assumption, the estimator of β by maximum likelihood estimation or bythe
least-square method are equivalent. using maximum likelihood. The likelihood function is here

L(β0, β1, σ2, (y1, x1), . . . , (yn, xn)) =

n∏
i=1

e−(yi−[β0+β1xi])
2/2σ2

√
2πσ2

and the argument of the maximum of this function can be written explicitly, since

logL(β0, β1, σ2, (y1, x1), . . . , (yn, xn)) = − 1

2σ2

n∑
i=1

(yi − [β0 + β1xi])
2 − log

(√
2πσ2

)
.

Equivalently, (β̂0, β̂1) is the unique solution of a least square program, since

(β̂0, β̂1, σ̂
2) = argmin(yi − [β0 + β1xi])

2.

For the estimator of σ2, maximum likelihood and least-square are the same up to a constant.

For a multiple regression model, with k explanatory variables,

Y |X = x ∼ N (β0 + β1x1 + . . . βkxk = β′x, σ2),

with the convention that x = (1, x1, . . . , xk). As previously, this model will usually be written

Y = β0 + β1x+ · · ·+ βkxk + ε = β′x+ ε where ε ∼ N (0, σ2).

This is a large class of models that includes simple and multiple regression as well as ANOVA models (where
x ∈ {0, 1} indicates groups). The generic code to estimate this model is

> linearmodel <- lm(y~x1+x2+x3)

x1, · · · , xk and y are numeric vectors with the same length. As discussed in the first chapter, y x1+x2 is
a symbolic expression since the + is not the standard addition symbol, but denotes the operator to regress
on x1 and x2. In order to run a regression on X1 + X2, one should use the I operator, that will inhibit
the interpretation of operators such as + (but also * or ˆ) as a formula operator, so it will be used as the
arithmetical operator.

> linearmodel <- lm(y~I(x1+x2)+x3)

Similarly, to run a regression on X2
1 (or any power transformation), one should use

> linearmodel <- lm(y~I(x1^2)+x2+x3)

The interest of using functions of intiial variates, instead of creating new variates (like x1square<- x12̂) is
that prediction can be obtained directly from initial variates x1, · · · , xk.
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In the case where X is the matrix containing as vectors all explanatory variables, and where the first
column is the unit vector 1, and y = (y1, . . . , yn), then the maximum likelihood estimator of the linear model
model coefficient is then

β̂ = (β̂0, β̂1, . . . , β̂k)
′ = (X ′X)−1X ′y.

If we assume that noises are i.i.d. Gaussian noise (i.e. εi
i.i.d.∼ N (0, σ2).), then from the Gauss-Markov

theorem, in the class of estimators that are linear functions of the explanatory covariates, β̂ is the minimum
variance unbiased estimators of β (see e.g. de Jong & Heller (2008) or Frees (2010) for more details, and
exampled on insurance data).

Remark 1 In the theory of linear regression, the normality assumption is not necessary to have the previous
result (centered with identical variance will be a sufficient condition). The Gaussian assumption is only
necessary for building confidence intervals and hypothesis testing.

The estimator for the mean square error is defined as

σ̂2 =
1

n− (k + 1)

n∑
i=1

2

[yi − x′
iβ̂]︸ ︷︷ ︸

ε̂i

The estimated variance matrix of estimator β̂ is then σ̂2(X ′X)−1. All those quantities can be obtained
using summary of an ”lm” object.

Consider for instance the age of a husband and his wife, when they purchase a joint life insurance contract,

> data(canlifins)
> ages <- subset(canlifins, EntryAgeM > 20)
> jointinsurance <- data.frame(Male=ages$EntryAgeM,
+ Female=ages$EntryAgeF)
> linearmodel <- lm(Female~Male,data=jointinsurance)
> summary(linearmodel)

Call:
lm(formula = Female ~ Male, data = jointinsurance)

Residuals:
Min 1Q Median 3Q Max

-66.101 -2.251 0.408 2.762 40.367

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.490587 0.420821 15.42 <2e-16 ***
Male 0.862359 0.006155 140.11 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.692 on 14886 degrees of freedom
Multiple R-squared: 0.5687, Adjusted R-squared: 0.5687
F-statistic: 1.963e+04 on 1 and 14886 DF, p-value: < 2.2e-16

The column Estimate contains estimates β̂, and their standard deviation are in the column Std. Error.
The ratio of the two is the t-statistic of a test H0 : βj = 0 again H1 : βj ̸= 0, and this statistic is given in
the t value column. The p-value associated to this test is the Pr(>|t|) column. The *** indicate that
both coefficient are significant with probability lower than 0.1%. In the lines above, the Residual standard
error is σ̂ (the square root of σ̂2). The R2, defined as

R2 =

∑n
i=1[x

′
iβ̂ − y]2∑n

i=1[yi − y]2
=

∑n
i=1[ŷi − y]2∑n
i=1[yi − y]2

= 1−
∑n

i=1[ŷi − yi]
2∑n

i=1[yi − y]2
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is the Multiple R-squared, while the Adjusted R-squared is defined as

R̄2 = R2 − (1−R2)
k

n− (k + 1)
.

Finally, the F-statistic is the Fisher statistic of a test H0 : β(0) = 0, where β(0) = (β1, . . . , βk).

6.2 Generalized linear models

The model described in the previous section can be extended to the class of distributions in the exponential
family (as in McCullagh & Nelder (1989)). A Generalized Linear Model is characterized by three components:

1. a random component: Yi follows a distribution of the exponential family Fexp(θi, ϕi, a, b, c),

2. a systematic component: the covariate vector Xi produces a linear predictor ηi = XT
i β,

3. a link function g : R 7→ S which is monotone, differentiable and inversible, such that E(Yi) = g−1(ηi),

for i ∈ {1, . . . , n}, where θi is the shape parameter, ϕi the dispersion parameter and a, b, c three functions.
Fexp(θ, ϕ, a, b, c) denotes the natural form of the exponential family defined as

fY (y) = exp

(
yθ − b(θ)

a(ϕ)
− c(y, ϕ)

)
,

for y ∈ N,R+ or R. The link function g is said to be canonical when θi = ηi.

For instance, one can consider the case where Y is a binary variable, taking values 0 and 1. The logistic
regression will be obtained when

Y |X = x ∼ B(θ(x)), where θ(x) = P(Y = 1|X = x) =
eβ0+β1x

1 + eβ0+β1x
,

while the probit model is obtained when

θ(x) = P(Y = 1|X = x) = Φ(β0 + β1x),

where Φ is the cumulative distribution function of the N (0, 1) distribution. In the case where Y is a count
variable, such that conditionally on X, Y has a Poisson distribution, then

Y |X = x ∼ P(θ(x)), where θ(x) = E(Y |X = x) = eβ0+β1x.

For those models, maximum likelihood estimation is used, as discussed in Chapters 4 and 13. In actuarial
science, typical GLMs are summarized in the following table.

Law Canonical link Mean Used for
N (µ, σ2) identity ηi = µi µ = Xβ std linear reg
B(µ) logit ηi = log( µ

1−µ ) µ = 1
1+e−Xβ rate modelling

P(µ) log ηi = log(µi) µ = eXβ claim frequency
G(α, β) inverse ηi = 1

µi
µ = (Xβ)−1 claim severity

IN (µ, λ) squared inverse ηi = − 1
µ2
i

µ = (Xβ)−2 claim severity

Table 2: Family and link functions

34



References

Andersen, S. (1957), ‘On the collective theory of risk in case of contagion between claims’, Bulletin of the
Institute of Mathematics and its Applications 12, 2775–279.

Arnold, B. C. (1983), Pareto Distributions, International Co-operative Publishing House.

Asmussen, S. & Albrecher, H. (2010), Ruin Probabilities, 2nd edn, World Scientific New Jersey.

Asmussen, S. & Rolski, T. (1991), ‘Computational methods in risk theory: A matrix algorithmic approach’,
Insurance: Mathematics and Economics 10(4), 259–274.

Bernegger, S. (1997), ‘The Swiss Re exposure curves and the MBBEFD distribution class’, Astin Bull.
27(1), 99–111.

Bickel, P. & Doksum, K. (2001), Mathematical Statistics: Basic Ideas and Selected Topics, Vol. 1, Prentice
Hall.

Casella, G. & Berger, R. (2002), Statistical Inference, Duxbury Thomson Learning.

D’Agostino, R. & Stephens, M. (1986), Goodness-of-Fit Techniques, first edn, Dekker.

de Jong, P. & Heller, G. (2008), Generalized Linear Models for Insurance Data, Cambridge University Press.

Delignette-Muller, M. & Dutang, C. (2013), fitdistrplus: an R Package for Fitting Distributions. working
paper.

Dutang, C., Goulet, V. & Pigeon, M. (2008), ‘actuar: an R package for Actuarial Science’, Journal of
Statistical Software 25(7).

Embrechts, P., Lindskog, F. & McNeil, A. (2001), Modelling dependence with copulas and applications to
risk management, Technical report, ETH Zurich.

Frees, E. (2010), Regression Modeling with Actuarial and Financial Applications, Cambridge University
Press.

Frees, E. W. & Valdez, E. (1998), ‘Understanding Relationships Using Copulas’, North American Actuarial
Journal 2(1).

Frees, E. W. & Wang, P. (2006), ‘Copula credibility for aggregate loss models’, Insurance: Mathematics and
Economics 38, 360–373.

Gendron, M. & Crepeau, H. (1989), ‘On the computation of the aggregate claim distribution when individual
claims are Inverse Gaussian’, Insurance: Mathematics and Economics 8, 251–258.

Hyndman, R. & Fan, Y. (1996), ‘Sample quantiles in statistical packages’, American Statistician 50, 361–365.

Joe, H. (1997), Multivariate dependence measure and data analysis, in ‘Monographs on Statistics and Applied
Probability’, Vol. 73, Chapman & Hall.

Johnson, N., Kemp, A. & Kotz, S. (2005), Univariate Discrete Distributions, 3rd edn, Wiley-Interscience.

Klugman, S. A., Panjer, H. H. & Willmot, G. E. (2009), Loss Models: From Data to Decisions, Wiley Series
in Proability and Statistics.

Marshall, A. W. & Olkin, I. (1988), ‘Families of multivariate distributions’, Journal of the American Statis-
tical Association 83(403), 834–841.

McCullagh, P. & Nelder, J. A. (1989), Generalized linear models (Second edition), London: Chapman &
Hall.

McNeil, A. (1997), ‘Estimating the tails of loss severity distributions using extreme value theory’, ASTIN
Bulletin 27(1), 117–137.

Nelsen, R. B. (2006), An introduction to copulas, Springer.

35



Olver, F. W. J., Lozier, D. W., Boisvert, R. F. & Clark, C. W., eds (2010), NIST Handbook of Mathematical
Functions, Cambridge University Press.
URL: http://dlmf.nist.gov/

Panjer, H. H. (1981), ‘Recursive evaluation of a family of compound distributions’, Astin Bull. 12(1), 22–26.

Pearson, K. (1895), ‘Contributions to the mathematical theory of evolution, ii: Skew variation in homoge-
neous material’, Philosophical Transactions of the Royal Society of London .

Sklar, A. (1959), ‘Fonctions de répartition à n dimensions et leurs marges’, Publications de l’ISUP de Paris
8 8, 229–231.

Tse, Y. (2009), Nonlife Actuarial Models: Theory, Methods and Evaluation, International Series on Actuarial
Science, Cambridge University Press.

36


