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Abstract
Highlighting atypical segments of a sequence is an important goal in very diverse do-mains. In the case where no prior information on the length of the segment to behighlighted is known, Karlin and Altschul defined in 1990 the local score for biologi-cal sequence analysis, and an asymptotic approximation of its distribution is proposedin 1992. There exist now many other theoretical results to establish the local score
p-value in different contexts.We developed an R package gathering these results for a sequence modeled by inde-pendent and identically distributed variables. It allows to compute the local score, thesuboptimal scores, their position, and proposes to establish the local score p-value us-ing the different theoretical methods available so far. An automatic analysis is also pro-posed to perform the most appropriate method according to the analyzed sequence.We present here the package and different examples of application. Comparisonswith other tools used depending on the context of application are also given. The
localScore package is available on the Comprehensive R Archive Network. It is dis-tributed under the GPL-2 licence for the core program (and various licenses for embed-ded Eigen library)
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2 David Robelin et al.
Introduction2

Highlighting atypical periods or segments in sequences is an issue of interest in many fields,3

such as Bioinformatics and Genomics, Biosurveillance, Ecology and Environmental Sciences, Epi-4

demiology and Health Sciences, Finance, Reliability and Quality Control, Telecommunication Sci-5

ences, and many others... Karlin and Altschul, 1990 defined the local score statistic to analyze6

biological sequences: it corresponds to the maximum cumulative value of a given property over7

every possible segments in a sequence, considering segments of any position and any length (see8

Equation (1)). The calculation of the statistical significance of the local score is crucial in order9

to distinguish atypical values from ones that could have appeared by chance. Karlin and Dembo,10

1992 proposed asymptotic approximations of the distribution of the local score when the length11

of the sequence is growing to the infinity. A generalization of this approximation for the sequence12

comparison case is developed in BLAST Software1, but to our knowledge no development have13

been done for a single sequence analysis case. At the present time, results exist that consider in-14

dependent or dependent models on the sequence. Those results include: improvements of the15

approximations of Karlin et al. (see Cellier et al., 2003 for the independent model and Grusea16

and Mercier, 2020 for the Markov model); exact methods (see Mercier and Daudin, 2001 for17

the independent model and Hassenforder and Mercier, 2007 for the Markov model); a result on18

the distribution for the pair of the local score value and the length of the segment that realizes19

the local score value (see Chabriac et al., 2014; Lagnoux et al., 2017). We developed the package20

localScore (Simon et al., 2023) for the software R (R Core Team, 2024). In this first version of21

the package, we focus on the different ways to establish the statistical distribution of the local22

score in a sequence modeled by independent and identically distributed (I.I.D.) random variables,23

and address a first result in the Markovian case.24

The remainder of the article contains a brief presentation of themain theoretical backgrounds25

implemented in the localScore package. Then the package is described in Section through a26

standard workflow to follow and a description of the main functions. Section presents examples27

of using localScore in four different domains: biological sequence analysis and a comparison28

with a sliding window statistics; a signal detection context and a comparison with control charts;29

epidemiology and a comparison with scan statistics; a genomic sequence analysis.30

Theoretical background31

Let us consider a sequence as a succession of components that belong to a finite set A. It32

can be for example a DNA sequences with A = {A, C , G , T}. Let us define a score scheme33

or a score scale as a function s that assigns a real number to any letter of A. The score can, for34

example, quantify a physico-chemical property. See the web site of Protscale2 for an illustration35

of different score scales in biological sequence analysis context. LetA = (Ai )16i6n be a sequence,36

and let us denoteXi := s(Ai ), for i > 1, the scoring sequence associated to the sequenceA based37

on the score function s . Examples of scoring functions are presented in Section .38

1https://blast.ncbi.nlm.nih.gov/2https://web.expasy.org/protscale
2



David Robelin et al. 3
With X0 := 0, the local scoreMn of one sequence X of length n is defined by39

(1) Mn := max
06i6j6n

j∑
k=i

Xk .

In Mercier and Daudin, 2001 the authors proved that the local score can also be defined as:40

Mn := max06i6n Ui with U0 := 0 and Ui+1 := max(Ui + Xi+1, 0) the Lindley, or CUSUM process,41

associated to the sequence (Xi )16i6n. The Lindley process defines non negative excursions and42

the height of the highest one is equal to the local score. The other excursions are called the sub43

optimal segments.44

The local score approach avoids the choice of a segment length when no prior information45

on it is available. Let us present below the twomain kinds of results, approximation and the exact46

method, when the random variables (Ai )16i6n are independent and identically distributed (I.I.D.)47

and so are the (Xi )16i6n.48

Karlin and Dembo approximation49

The asymptotic approximation of Karlin and Altschul, 1990 and Karlin and Dembo, 1992 cor-50

responds to an asymptotic result converging to a Gumbel distribution when the length of the51

sequence n tends to infinity. This result stands on the two following hypotheses: The average52

score must be non positive, E[X ] < 0, and a non negative score must be possible, P(X > 0) > 0.53

We have54

(2) lim
n→+∞

P

(
Mn 6

ln n

λ
+ x

)
= e−K

∗e−λx

where λ and K ∗ depend on the score distribution. The parameter λ corresponds to the single55

root of a polynomial of degree equal to the amplitude of the scores (maximum score minus56

minimum score) and checking E[exp(λX )] = 1. The existence of λ is ensured by the assumption57

E[X ] < 0. The set of other roots is also used for the calculation of K ∗ notably by means of a58

square matrix called Vandermonde comprising at each line a geometric progression associated59

with one of the roots of the polynomial. This gives the following approximation for an observed60

local score a61

(3) P(Mn 6 a) ≈ e−K
∗ne−λa

.

The computation of the approximation given in (3) is very accurate for sequence length larger62

than thousands and very fast to obtain but must be avoided for sequence shorter than a hundred63

components.64

Karlin by Monte Carlo65

The Karlin and Dembo approximation in (2) calculates the value of two parameters λ and K ∗66

in function of the values and distribution of the scores. Here we propose to estimate them by a67

Monte Carlo approach. This method is useful in the case of a too long score sequence to perform68

a direct and efficient Monte Carlo of the local score distribution as it does not need to simulate69

3



4 David Robelin et al.
full length sequences. Formula (3) can be linearized in λ and K ∗ using logarithms as long as n is70

large enough. That leads to the following formula:71

(4) ln {− ln {P(Mn 6 a)}} ≈ lnK ∗ − λa+ ln n .

Given the previous formula, the Karlin by Monte Carlo procedure consists in:72

(1) Choosing a sequence length nsim for the simulation big enough to have a satisfying Karlin73

and Dembo approximation and small enough to be computed with reasonable resources.74

(2) Simulating sequences of size nsim.75

(3) Calculating the local score of each sequence in order to derive empirical distribution76

function of the local score for sequence of size nsim.77

(4) Deriving estimation of λ and K ∗ by a linear regression on the empirical distribution func-78

tion using Formula (4), i.e., λ̂ = −b̂ and K̂ ∗ = exp (â)/nsim where â and b̂ are respectively79

the slope and the intercept of the regression.80

(5) Using Karlin and Dembo approximation to calculate the p-value of the local score ob-81

served on the full sequence of size n.82

Daudin83

For a an observed local score value, the exact method in the I.I.D. case is based on an appro-84

priate stopped process constructed to be a Markov chain and taking its values in {0, ... , a}. Let85

us denote P = (Pij)06i ,j6a its corresponding transition matrix. Mercier and Daudin, 2001 proved86

that87

(5) (∀a > 0) P(Mn > a) = (Pn)(0,a) .

There is no restriction on the sign of the average score for the use of the exact method. This88

method is accurate and very fast for n up to several thousands but must be avoided for very long89

sequence of order a million because it could be too time and space consuming. As there exists90

a limit to the exponentiation of P for n tending to infinity, it is not necessary to use the correct91

value of n for sequence of length larger than a hundred of thousands, to obtain an accurate value,92

but a smaller value could be used.93

Improved approximation of Karlin et al. in the I.I.D. case94

An improved approximation of the one proposed in Karlin and Dembo, 1992 is proposed in95

Cellier et al., 2003. As with the Karlin et al. method, it is necessary to calculate the roots of the96

same polynomial which are then used in several steps in order to calculate the additive correcting97

terms to improve the approximation of Karlin et al.We have for large a values98

(6) P(Mn 6 a) ≈ (1−
∑
i=1

KiR
a
i )

n
µ
+1

with (Ri )i the roots of module strictly less than 1 of a polynomial directly defined with the99

score distribution. The degree of this polynomial is equal to the range of the possible scores.100

Based on the two hypothesis used in the work of Karlin and Dembo, there exits a unique positive101

real root with module less than 1, e−λ, with λ defined in Equation (2). The parameters Ki and102

µ are also derived from the score distribution and the computation based on the Vandermonde103

4



David Robelin et al. 5
matrix and some equation system resolutions. The improved approximation in (6) is accurate and104

fast for values of n from several hundreds, but must be avoided for sequence length lower than105

one hundred.106

All the above theoretical results must be considered complementary for practical application107

depending on the score scheme, with its range, the sign of the average score, and the length of108

the sequence to be analyzed.109

Software features and contents110

Workflow111

A tentative workflow using localScore could be:112

(1) Transform the component of a given sequence set into score sequences through a given113

score function.114

(2) Learn the distribution of the scores on the score sequences.115

(3) Compute the local score of each sequence.116

(4) Compute the corresponding p-values using the automaticmethod for the computed local117

score value, the corresponding sequence length and the global score distribution.118

Main functions119

Following the workflow presented above, here are the main functions that can be used in120

each step.121

To get a score sequence: The transformation of a component sequence, as a DNA one, into a122

score sequence can be done with the CharSequence2ScoreSequence function. Integer or123

real scores can be considered.124

To learn a distribution: Learning distribution of the components of the sequences or the given125

scores can be performed using several functions. For instance, the empirical distribution from126

one numerical sequence or a list of sequences is built byscoreSequences2probabilityVector.127

To compute the local score:The functionlocalScoreC (respectivelylocalScoreC_double)128

calculates the local score for a sequence of integer (resp. real) scores. It provides the local score129

and all suboptimal segmentswith associated scores. FunctionssuboptimalSegment orLindley130

can be used to obtain the others localizations of the different realizations of the local score.131

To compute the corresponding p-values: Then, the following functions propose different meth-132

ods to compute p-values associated to the local score of a sequence:133

• karlin: The Karlin et al’s approximation (see (3)). This method needs a non positive134

average score, E[X ] < 0, and integer scores, and is more adapted for long sequences135

with length larger than a few thousand components, depending on the expectation of136

the score distribution.137

• mcc: An improved approximation of the previous one presented in Cellier et al., 2003.138

This method also needs a non positive average score, E[X ] < 0, and integer scores, and139

is more adapted for sequences with length from a few hundreds components, depending140

on the expectation of the score distribution.141

• daudin: An exact method for integer scores is also incorporated and can be used what-142

ever the sign of the expected score (see (5)). This method is computationally adapted143

for not too long sequences, but several thousands of components can be easily handled.144

5



6 David Robelin et al.
Table 1 – Adequate methods to compute the local score p-value depending on the av-erage score value E[X ] and the sequence length n order ; with E : daudin() ; MCC :
mcc() ; K : karlin() ; MC : monteCarlo() ; MC-K : karlinMonteCarlo().

n < 100 102 6 · < 103 103 6 · < 104 > 104

E[X ] < 0 E ; MC E ; MCC ; MC E ; MCC ; MC MCC ; K ; MC ; MC-K
E[X ] > 0 E ; MC E ; MC E

The implementation is based on the exponentiation of a square matrix of size a, with a a145

given local score value.146

• monteCarlo: A classical Monte Carlo method147

• karlinMonteCarlo and karlinMonteCarlo_double: A mix between the Karlin et148

al.’s and the Monte Carlo method. It allows an approximated distribution with a lower149

time computation than the empirical Monte Carlo method, for very long sequences. This150

mixed method also needs E[X ] < 0.151

We also developed the function automatic_analysis for users with less experience. This152

function, as its name indicates, automatically picks the adequate p-valuemethod for the user’s in-153

put according to the configuration described in Table 1. The function calculates the p-value based154

on the length of each of the sequences given as input. It can either use an empirical score distribu-155

tion based on the input or a distribution provided by the user. By setting themethod_limit, the156

user can also decides up to what sequence length the computation-intensive methods (daudin,157

exact_mc) should be used to calculate the p-value.158

Inputs / outputs159

Inputs. When starting the workflow, the first input is a sequence. It can be imported in R from160

an ASCII file using the standard reading functions such as read.table and related functions.161

For users interested in analyzing biological sequences composed of nucleotides or amino acids,162

the package can also handle FASTA files as inputs. In FASTA files, every sequence is preceded by163

a title (marked by a ">") and a line break. One sequence takes one line, followed by a line break164

and a line only containing a tab.165

Furthermore, if no sequences are passed to the automatic_analysis function, it let the166

user pick a FASTA file. In this case, and if the user hasn’t provided any score system (as it can167

be done by passing a named list with the appropriate scores for each character), the second file168

dialog pops up. The latter allows to choose a file containing the score, and if the user provides an169

extra column for the probabilities, they are used, too - see Section File Formats in the vignette170

for details.171

Score files can also be imported in a standard way from an ASCII file. Such a file must contain172

a header and each row contains a letter and its score. Optionally, a probability for each score173

can also be provided.174

Numerical outputs. The main numerical output is given by the localScoreC function. It con-175

tains a list with the following attributes:176

• The local score value and the begin and end index of the segment realizing this optimal177

score.178

• All the local maxima of the Lindley process (non negative excursion) and their begin and179

end index.180

6



David Robelin et al. 7
• The record times of the Lindley process but only the ones corresponding to the begin181

index of non negative excursions.182

Every method calculating p-values only provide the value obtained.183

Graphical outputs. Graphical outputs can be optionally displayed by the monteCarlo and the184

karlinMonteCarlo functions. They represent the distribution of all local scores simulated and185

the cumulative distribution.186

Example data187

Some datawe propose to analyze in Section are already embedded in the package for illustra-188

tion purpose. Seq1093 is a real biological sequence with 1093 characters referring to Q60519189

queries in UniProt Data base1. SeqListSCOPe contains 285 protein sequences with length190

from 31 to 404. They are referred as CF_scop2dom_20140205aa in the Structural Classifica-191

tion Of Proteins database (SCOP)2. SJSyndrome.data corresponds to a dataset of 824 lines,192

each describing a Stevens-Johnson syndrome appearance described by 15 covariates including193

Case ID, Initial FDA Received Date, days since last fda. The third column corresponds to the194

number of days between two adverse events. Aeso consists of individual dates of birth over 35195

cases of the birth defects oesophageal and tracheo-oesophagean fistula observed in a hospital196

in Birmingham.197

Illustrations198

We illustrate the use of the localScore package on four examples in different fields. First,199

one of the biological sequences embedded in the package is used as a toy example to show200

a basic use of the package. In the same vein, we illustrate how to deal simultaneously with201

a set of sequences. Then, we analyze two medical data sets to show how local score can be202

used to detect eventual shift in sequential observations. Subsection deals with the study of a203

chromosome to associate genomic regions with phenotype differentiation. We also present, for204

each case, results of other methods.205

Biological sequences206

We first describe how to analyze one single sequence then we show how to deal with a set207

of several sequences at once.208

One single sequence. Several sequences are already embedded in the package. Let us use the209

Seq1093 object, corresponding to the protein Q60519 SEM5B_MOUSE3. With 1093 charac-210

ters, we consider it as a sequence for which quite all the possible proposed methods can be used211

to establish the statistical significance (see Table 1).212

R> library(localScore)213

R> data(Seq1093)214

R> MySeq <- Seq1093215

R> nchar(MySeq)216

1https://www.uniprot.org2https://scop.mrc-lmb.cam.ac.uk/3https://www.uniprot.org/uniprot/Q60519
7



8 David Robelin et al.
The function CharSequence2ScoreSequence converts the character sequence into a217

score sequence using the HydroScore object providing the correspondence between a letter218

and its score according to Kyte & Doolittle hydrophobic score scale (Kyte and Doolittle, 1982).219

R> data(HydroScore)220

R> SeqScore <- CharSequence2ScoreSequence(MySeq, HydroScore)221

Then the local score computation can be performed.222

R> ResLocalScoreMySeq <- localScoreC(SeqScore)223

R> ResLocalScoreMySeq224

$localScore225

value begin end226

65 956 1001227

228

$suboptimalSegmentScores229

value begin end230

[1,] 40 1 20231

[2,] 10 71 73232

[3,] 23 80 99233

[4,] 3 114 114234

[5,] 3 124 124235

[6,] 4 128 128236

[7,] 23 130 150237

[8,] 16 181 195238

[9,] 2 217 217239

[10,] 4 224 224240

[...]241

[70,] 2 1054 1054242

[71,] 3 1056 1056243

[72,] 4 1059 1059244

[73,] 4 1064 1064245

[74,] 4 1074 1074246

[75,] 3 1079 1079247

[76,] 2 1083 1083248

[77,] 6 1089 1090249

250

$RecordTime251

[1] 1 71 80 114 124 128 130 181 217 224 229252

[12] 294 301 304 312 379 384 387 390 411 413 416253

[23] 523 533 548 554 563 566 574 588 633 637 644254

[34] 654 661 680 691 697 711 715 725 740 742 746255

[45] 748 754 756 766 773 778 794 799 807 811 813256

[56] 822 832 844 848 864 879 883 890 924 931 934257

[67] 951 956 1048 1054 1056 1059 1064 1074 1079 1083 1089258

We retrieve only the local score value for further use when calculating the p-value.259

8



David Robelin et al. 9
R> LocalScoreMySeq <- ResLocalScoreMySeq$localScore[1]260

The functionscoreSequences2probabilityVector builds an empirical distribution from261

the sequence.262

R> ProbDistribution <- scoreSequences2probabilityVector(SeqScore)263

R> round(ProbDistribution, 3)264

-5 -4 -3 -2 -1 0 1 2 3 4 5265

0.074 0.203 0.020 0.075 0.212 0.078 0.000 0.071 0.094 0.144 0.028266

The exact method (see (5)) can then be used to compute the p-value.267

R> ResDaudin <- daudin(localScore = LocalScoreMySeq,268

+ sequence_length = length(SeqScore),269

+ score_probabilities = ProbDistribution,270

+ sequence_min = min(SeqScore),271

+ sequence_max = max(SeqScore))272

R> ResDaudin273

[1] 0.072274

The approximate method of Karlin et al. (see (3)) can be performed equivalently with the275

karlin function.276

R> ResKarlin <- karlin(localScore = LocalScoreMySeq,277

+ sequence_length = length(SeqScore),278

+ score_probabilities = ProbDistribution,279

+ sequence_min = min(SeqScore),280

+ sequence_max = max(SeqScore))281

R> ResKarlin282

[1] 0.076283

The two p-values are rather close (0.072 for the exact method, 0.076 for the approximate284

one).285

In comparison, here are the results obtained with ProtScale Expasy web tool on the same286

sequence. ProtScale computes and represents the profile on a selected protein produced by287

any amino acid scale and accumulating the score values over a sliding window of a chosen size.288

Note that the possible window size are restricted to odd values from 3 to 21. We used the289

hydropathicity scale proposed by Kyte and Doolittle, 1982. We chose a size equal to 21 which is290

the closest value to the length of the optimal segment given by the local score approach without291

any prior information on it. The results are presented in Figure 1. We can observe one main peak292

and the numerical output (not shown) gives us a window value equal to 2.195 and a center index293

equal to 989 (begin index 979; end index 999). This segment corresponds to the one highlighted294

by the local score but with a length equal to 45 with begin index 956 and end index 1001. The295

local score p-value allows us to say that this region is not statistically significant. For a window296

size equal 9 corresponding to the one given by default, we can observe several picks with a297

similar value before the one we discuss previously. We have also represented the corresponding298

Lindley process using the {lindley function.299

R> LindleySeqScore <- lindley(SeqScore)300

R> plot(LindleySeqScore, type="l")301

9



10 David Robelin et al.

Figure 1 – Top: Graphical output of the results provided by the Expasy ProtScale web toolfor the corresponding sequence Q60519, the Kyte and Doolittle scale and a window sizeequal to 21. Bottom: Lindley process calculated with the localScore package.
A set of sequences. The data consists in a list of 285 character strings with their entry codes as302

names extracted from the Structural ClassificationOf Proteins database (SCOP)2. More precisely303

this data contain the 285 protein sequences of the data called “CF_scop2dom_20140205aa”304

with sequence length from 31 to 404.305

2https://scop.mrc-lmb.cam.ac.uk/
10



David Robelin et al. 11
This sequence is a part of the package and can be loaded and briefly explored with:306

R> data(SeqListSCOPe)307

R> SeqListSCOPe[1]308

P50456309

"ARDVIQVVIDHNVGAGVITDGHLLHAGSSSLVEIGHTQVDPYGKRCYCGNHGCLETIAS310

VDSILELAQLRLNQSMSSMLHGQPLTVDSLCQAALRGDLLAKDIITGVGAHVGRILAIMV311

NLFNPQKILIGSPLSKAADILFPVISDSIRQQALPAYSQHISVEST"312

R> nchar(SeqListSCOPe[1])313

P50456314

165315

R> summary(sapply(SeqListSCOPe, nchar))316

Min. 1st Qu. Median Mean 3rd Qu. Max.317

31.0 78.0 102.0 121.7 141.0 404.0318

The sequence lengths varie from 31 to 404.319

The function CharSequence2ScoreSequence transforms the protein sequence into a320

score sequence using the HydroScore object. The score corresponding to each amino acid321

can be displayed as:322

R> data(HydroScore)323

R> unlist(HydroScore)324

and the conversion is done as follows:325

R> MySeqScoreList <- lapply(SeqListSCOPe,326

+ FUN = CharSequence2ScoreSequence, HydroScore)327

Then we use automatic_analysis function to perform the most appropriate method to328

compute the p-value of the local score of each sequence.329

R> ResAutoAnalysis <- automatic_analysis(sequences = MySeqScoreList,330

+ model=’iid’)331

The results can then be investigated.332

R> ResAutoAnalysis[[1]]333

$‘p-value‘334

[1] 0.06389172335

336

$‘method applied‘337

[1] "Exact Method Daudin et al"338

339

$localScore340

$localScore$localScore341

value begin end342

67 4 144343

344

$localScore$suboptimalSegmentScores345

value begin end346

[1,] 2 1 1347

11



12 David Robelin et al.
[2,] 67 4 144348

349

$localScore$RecordTime350

[1] 1 4351

The first sequence of the list has a local score value equal to 62 and the segment that realizes352

this maximum begins at index 4 and finishes at index 144. Its p-value equals 6.39%.353

We can easily extract the first 10 p-values, the 5 smallest p-values, the significant sequences354

and their local score values.355

R> sapply(ResAutoAnalysis, function(x){x$‘p-value‘})[1:10]356

P50456 P14859 P10037 Q13619 P22262 P20823 P07014 Q9X399 Q0SB06 Q9I641357

0.064 0.973 0.875 0.896 0.451 0.967 0.749 0.681 0.994 0.512358

R> sort(sapply(ResAutoAnalysis, function(x){x$‘p-value‘}))[1:5]359

Q5SMG8 P0A334 Q2W6R1 O27564 P12282360

9.485100e-07 3.442818e-04 4.406208e-04 4.548065e-04 6.167591e-02361

R> which(sapply(ResAutoAnalysis, function(x){x$‘p-value‘}) < 0.05)362

Q2W6R1 O27564 P0A334 Q5SMG8363

14 90 150 192364

The local score of every sequence can be displayed as a boxplot or an histogram (Fig. 2):365

R> SeqLocalScore <- sapply(ResAutoAnalysis,366

+ function(x){x$localScore$localScore[1]})367

R> boxplot(SeqLocalScore, horizontal = TRUE)368

R> hist(SeqLocalScore)369

The methods used to compute the p-values can be retrieved with370

R> table(sapply(ResAutoAnalysis, function(x){x$‘method‘}))371

Exact Method Daudin et al372

206373

The maximum sequence length equals 404 so it is here normal that the exact method is used374

for all the 606 sequences of the data base. The score distribution that has been used to compute375

the p-value for every local scores is the empirical one estimated on the whole data set. It can be376

exhibited using377

R> scoreSequences2probabilityVector(MySeqScoreList)378

-5 -4 -3 -2 -1 0 1 2 3 4 5379

0.055 0.264 0.022 0.041 0.148 0.072 0.000 0.105 0.052 0.175 0.067380

381

Medical data382

In other domains, as Telecommunication Sciences or Quality Control to name only those,
where the goal is to highlight a change or a break point in the signal sequence, the data are ana-
lyzed as soon as there are collected. In such application domains, score scales are not previously
proposed or constructed as it is done in biological sequence analysis. When testing at each time
i , the null hypothesis H0: “The observations (Ak)16k6i follow the distribution fθ with parameter

12



David Robelin et al. 13

Figure 2 – Distribution of the local score of every sequence in the object MySeqList.

θ = θ0” vs H1: “The observations (Ak)16k6i follow fθ1 with θ1 6= θ0”, it is usual to define the score
of a given observation Ai at time i by the following Log Likelihood Ratio:

xi = s(Ai ) = ln

(
fθ1(Ai )

fθ0(Ai )

)
.

Such a score function is used in this subsection and in the Subsection .383

The local score can also be used to detect eventual shift in sequential observations. We384

propose here to analyze data on the apparition of the Stevens-Johnson syndrome, a serious385

dermatological disease due to a drug allergy.386

R> data(SJSyndrome.data)387

R> dim(SJSyndrome.data)388

[1] 824 15389

R> SJSyndrome.data[1:2,1:5]390

Case.ID Initial.FDA.Received.Date days.since.last.fda Event.Date391

1 4227848 10/01/1969 NA 02/16/1969392

2 4227553 10/01/1969 0 07/10/1969393

Latest.FDA.Received.Date394

1 01-OCT-1969395

2 01-OCT-1969396

13



14 David Robelin et al.
The third column days.since.last.fda corresponds to the number of days since the397

last event (the Time Between Event sequence). The data present 824 adverse event apparitions398

that lead to 823 Time Between two adverse Events (TBE) values in days.399

R> DatesTBE <- SJSyndrome.data[-1,3] # the TBE sequence400

R> n <- length(DatesTBE)401

The TBE sequence can be modeled by a geometrical distribution. An estimation of its param-402

eter is given by403

R> p0Hat <- 1/(mean(DatesTBE[1:n]) - 1)404

R> p0Hat405

[1] 0.045349406

with an estimated value equal to 0.045349 corresponding to the probability of observing407

an adverse event at a given day among the whole studied population. Let us denote (Ti )16i6n408

the TBE observations. At each time i , we want to test the following hypotheses : H0 “The obser-409

vations (Tk)16k6i follow a geometrical distribution with parameter p0” vs H1 “The observations410

(Tk)16k6i follow a geometrical distribution with parameter p1 = 1.5 · p0”, with p0 and p1 in ]0, 1[.411

Let us define:
LLR(T ) = ln

f1(T )

f0(T )

with fj the probability density function of a geometrical variable of parameter pj for j = 0, 1. At412

each time i the local score of the sequence (LRR(Tk))16k6i and its corresponding p-value are413

computed using the package. More precisely, we compute LLR = bE · ln f1(T )
f0(T )c with E a tuning414

parameter which allows a larger range of possible non negative scores. The use of this tuning415

parameter does not change the segment that realizes the local score and neither its p-value (see416

Fariello et al., 2017 Supplementarymaterials, formore details), but allows to highlight suboptimal417

segments that could be interesting. We have here at least 3 non negative scores for E = 8.418

R> p0 <- round(p0Hat,4)419

R> p1 <- 1.5*p0420

R> E <- 8421

Let us compute the score sequence and the local score for each sequence up to index i for a422

sequential analysis.423

R> ScoreSeq <- floor((log(dgeom(DatesTBE, p1) /424

+ dgeom(DatesTBE, p0)))*E)425

R> head(ScoreSeq)426

[1] 3 -3 3 -15 -3 3427

R> VectLS <- vector(length = n)428

R> for (i in 1:n) {429

+ VectLS[i] <- localScoreC(ScoreSeq[1:i])$localScore[1]}430

R> head(VectLS)431

R> tail(VectLS)432

[1] 3 3 3 3 3 3433

[1] 189 189 189 189 189 189434

An alarm can be definedwhen the p-value of an observed local score value is less than a given435

nominal level, usually 5% or 1%. In order to establish the p-value, the distribution of the scores436

14



David Robelin et al. 15
under the H0 hypothesis is needed. It is possible to established theoretically this distribution,437

but in order to have a lighter presentation here, we empirically estimate the score distribution438

on the data.439

R> PkCal <- table(sort(ScoreSeq)) / length(ScoreSeq)440

R> head(PkCal)441

R> tail(PkCal)442

[1] -109 -75 -61 -56 -54 -46443

0.0012151 0.0012151 0.0012151 0.0036452 0.0012151 0.0012151444

[1] -2 -1 0 1 2 3445

0.036452 0.093560 0.117861 0.134872 0.227217 0.160389446

Wecan notice that not all the possible values, between theminimum and themaximum score,447

are present. The vector of the score distribution must be fulfilled.448

R> minXk <- min(ScoreSeq)449

R> maxXk <- max(ScoreSeq)450

R> score <- minXk:maxXk451

R> PkEmp <- rep(0,length(score))452

R> names(PkEmp) <- minXk:maxXk453

R> for (i in 1:length(PkCal)) {454

+ PkEmp[which(names(PkEmp) == names(PkCal)[i])] <- PkCal[i]}455

R> head(PkEmp)456

R> ProbaTh <- PkEmp457

[1] -109 -108 -107 -106 -105 -104458

0.0012151 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000459

R> mean(ScoreSeq)460

[1] -1.633461

The average score under H0 is non positive so any method, exact as approximated ones, can462

be used to compute the statistical significance of the local score. We use the exact method with463

daudin function as the sequence lengths allow it.464

R> VectPval <- vector("numeric", length = n)465

R> for (i in 1:n) {466

+ LS <- localScoreC(ScoreSeq[1:i])$localScore[1]467

+ VectPval[i] <- daudin(localScore = LS,468

+ sequence_length = i,469

+ score_probabilities = ProbaTh,470

+ sequence_min = minXk,471

+ sequence_max = maxXk) }472

R> head(VectPval)473

[1] 0.16039 0.40797 0.58157 0.70423 0.79093 0.85222474

R> min(which(VectPval < 0.05))475

[1] 229476

Figure 3 illustrates the example on the first 300 observations where a first alarm, using a477

nominal level α = 5%, appears at index 229.478

15



16 David Robelin et al.

Figure 3 – Stevens Johnson syndrome: a unique alarm at index 229.
Different values for parameter p1 has been tested, and each case leads to a similar result.479

Figure 3 representing the p-values at each index, can be seen as a control chart usually used480

to analyze on-line sequences in industrial data (see for example the first and the most famous481

control chart defined in 1930 and called the Shewhart chart, see W.A. Shewhart, 1931 mainly482

used for Gaussian distribution). We can see one unique clear alarm at index 229. In Mercier,483

2020 for a Gaussian model, it is shown that using the local score avoids false alarm better than484

the usual control charts and allows to detect an existing change in the parameter in a competitive485

mean time.486

Let us see the Shewhart g chart, adapted for geometrical distribution, and proposed in the487

package qcc in Figure 4.488

R> library(qcc)489

R> qcc(DatesTBE[1:300], type = "g")490

R> Gchart <- qcc(DatesTBE[1:300], type = "g")491

R> violating.runs(Gchart, run.length = qcc.options("run.length"))492

Here the lower control limit (LCL) is equal to 0 and have no direct use. The twelve points up-493

per than the upper control limit (UCL) in red are not “bad” alarm because they are corresponding494

to a longer run than expected between two adverse events and are then considered as an im-495

proved situation. We can observe several violating run in orange, corresponding to a particularly496

numerous successive points under the central control limit, that are considering as alarms. One497

is particularly long beginning at index 206 and including the index 229 of the alarm of the local498

score chart.499

Regarding both local score and g charts we suggest that the violating runs before index 206500

in the g chart could be considered as false alarms.501
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Figure 4 – Stevens Johnson syndrome - Shewhart g chart: A lot of alarms are pointedout.We can observe a violating run, corresponding to a particularly numerous successivepoints under the central control limit, beginning at index 206 and including the index 229of the alarm of the local score chart.
Congenital oesophageal atresia data502

The data consists of individual dates of birth over n = 35 cases of the birth defects oe-503

sophageal and tracheo-oesophagean fistula observed in a hospital in Birmingham, U.K., over504

2191 days from 1950 through 1955, with Day one set as 1 January 1950 (see Knox, 1959). Glaz505

et al., 2009 present in Chapter 17 different works on these data based on the use of scan statis-506

tic. We first present in this section the results of the scan statistic analyses proposed in Glaz507

et al., 2009 and secondly two different approaches based on the local score. The discrete scan508

statistic Sn,k , with k 6 n two positive integers, of a sequence (Si )16i6n of n binary trials (1: suc-509

cess, 0: failure) has been defined as the maximum number of successes within any k consecutive510

trials. Let us consider a discrete sequence (Si )i=1...n. We have Sn,k = max16i6n−k+1
∑i+k−1

j=i Sj .511

The data are given in the following line code. We also derive the Time Between two Events (or512

success). The TBE sequence is modeled by a geometrical law of parameter p.513

R> data(Aeso)514

R> CasesIndex <- which(Aeso[,2] == 1)515

R> tbe <- CasesIndex - c(0, CasesIndex[-length(CasesIndex)]) - 1516

R> p <- sum(Aeso[,2]) / nrow(Aeso)517

R> p518

[1] 0.01597444519

Scan statistic approach. Considering the sequence of the date (Aeso[,2] vector in the previous520

line code), Glaz et al., 2009 give the scan statistic values for different choices of the window521

length k ; the corresponding statistical significance; and the position of the window that realizes522

the maximal value. They also present the method of Nagarwalla, 1996 using a scan statistic523

with a variable window size for which the statistical significance is established by Monte Carlo524

method. The results are presented in Table 2.525
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18 David Robelin et al.
k value p-value begin end
100 7 0.08833 1233 1305
200 10 0.04993 1233 1390
300 15 0.00141 1233 1491
365 16 0.00271 1233 1583Nagarwalla 15 0.00580 1233 1491

Table 2 – Results of the scan statistic approaches.

We can observe that the different statistical significances are very different depending on526

the window size choice: Using nominal level equal to 1%, we get not significant p-values for a527

window size k = 100 or k = 200 and significant ones for k = 300, 365 and for the Nagarwall528

method.529

Log Likelihood Ratio test and local score approach. We propose here to consider an eventual drift
in the parameter p. Let us consider H0: p = p0 and H1: p = p0 · (1 + δ) for a given δ value. Let
us consider first δ = 5%. We associate to the Time Between Events sequence (called tbe in the
previous line code) the following score sequence computed using

X (tbe) = bE · ln
(
f1(tbe)

f0(tbe)

)
c

with fi the probability for a random variable distributed as a geometrical law of parameter pi , for530

i = 0, 1; E a tuning parameter we have previously presented in Subsection .531

R> p0 <- p532

R> delta <- 0.05533

R> p1 <- p0 * (1 + delta)534

R> # Choice for the value of E535

R> # in order to allow at least 3 non negative scores536

R> E <- 1537

R> # Maximum of the scores in a geometrical model538

R> maxXk <- floor(E * log(p1 / p0))539

R> while (maxXk < 3) {540

+ E <- E+1541

+ maxXk <- floor(E * log(p1 / p0)) }542

R> E543

[1] 62544

This leads to the following score sequence545

R> ScoreSeq <- floor(E*log(dgeom(tbe, prob = p1) /546

+ dgeom(tbe, prob = p0)))547

R> ScoreSeq548

R> minX <- min(ScoreSeq)549

R> maxX <- max(ScoreSeq)550

[1] -6 -5 -4 1 -21 -2 -2 -3 2 3 2 2 2 1 -1551

[16] 2 2 0 2 2 2 1 -2 -3 2 -2 -4 0 -1 2552

[31] 2 2 1 0 1553

18
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Score distribution. Let us compute the score distribution by two different ways: The first one554

based on the estimation on the score appearance on the observed sequence and a second way555

using theoretical work on geome-trical model that leads to a more accurate score distribution.556

R> # Estimation on the data557

R> ProbScoreInit <- table(ScoreSeq) / sum(table(ScoreSeq))558

R> ProbScore <- rep(0, maxX - minX + 1)559

R> names(ProbScore) <- minX:maxX560

R> for (i in 1:length(ProbScoreInit)) {561

+ w <- which(names(ProbScore) == names(ProbScoreInit)[i])562

+ ProbScore[w] <- ProbScoreInit[i] }563

R> fonctionProbaX <- function(x,E,p0,p1) {564

+ calcul1 <- ((x/E)-log(p1/p0)) / log((1-p1)/(1-p0))565

+ calcul2 <- (((x+1)/E) - log(p1/p0)) / log((1-p1)/(1-p0))566

+ prob <- pgeom(prob=p0, floor(calcul1)) -567

+ pgeom(prob=p0,floor(calcul2))568

+ return(prob) }569

R> ProbScoreTheo <- rep(0, maxX - minX + 1)570

R> names(ProbScoreTheo) <- minX:maxX571

R> for (i in 1:length(ProbScoreTheo)) {572

+ ProbScoreTheo[i]<-fonctionProbaX(573

+ x = as.numeric(names(ProbScoreTheo)[i]),574

+ E, p0, p1 = (1 + delta) * p0) }575

R> head(cbind(ProbScore, ProbScoreTheo))576

ProbScore ProbScoreTheo577

-21 0.02857143 0.0001725077578

-20 0.00000000 0.0002380570579

-19 0.00000000 0.0003285136580

-18 0.00000000 0.0004533418581

-17 0.00000000 0.0006256021582

-16 0.00000000 0.0008132325583

R> tail(cbind(ProbScore, ProbScoreTheo))584

ProbScore ProbScoreTheo585

-2 0.11428571 0.07592718586

-1 0.05714286 0.09869924587

0 0.08571429 0.14228152588

1 0.14285714 0.19634549589

2 0.37142857 0.27095262590

3 0.02857143 0.01597444591

Let us then compute, for the given shift δ, the local score value and its p-value with the two592

different score distributions. As the length sequence is very short, n = 35, we use the exact593

method to establish the p-value with the function daudin. The begin and end index are also594

given.595

R> localScoreC(ScoreSeq)596
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20 David Robelin et al.
$localScore597

value begin end598

22 9 22599

$suboptimalSegmentScores600

value begin end601

[1,] 1 4 4602

[2,] 22 9 22603

$RecordTime604

[1] 4 9605

R> LS <- localScoreC(ScoreSeq)$localScore[1]606

R> BeginTbe <- localScoreC(ScoreSeq)$localScore[2]607

R> EndTbe <- localScoreC(ScoreSeq)$localScore[3]608

R> BeginDate <- CasesIndex[BeginTbe - 1]609

R> EndDate <- CasesIndex[EndTbe]610

R> pvalue <- daudin(611

+ localScore = LS,612

+ sequence_length = length(tbe),613

+ score_probabilities = ProbScoreTheo,614

+ sequence_min = minX,615

+ sequence_max = maxX )616

R> pvalue617

[1] 0.02647577618

R> BeginDate619

[1] 1233620

R> EndDate621

[1] 1491622

The segment that realizes the local score value begins at the date index 1233 and ends at the623

date index 1491 which corresponds to the segment highlighted by the scan statistic approach624

with a window size k = 300. Its statistical significance of the observed local score is around625

0.026.626

One could say that the choice of the window length in the scan statistic method does not627

have to be done in the local score one. But the choice is change in choosing a δ value to construct628

the score function based on p0 and p1. When no previous knowledge exists on the length of the629

segment we want to highlight, it is easier to choose the smallest drift we would like to detect.630

Let us have a look for a set of different δ values from 1% to 5%.631

We can observed in Table 3 that the local score value does not change and neither the seg-632

ment that realizes the local score: See b.tbe (respectively b.date) the begin index in the tbe (resp.633

date sequence and see e.tbe (respectively e.date) the end index in the tbe (resp. date) sequence.634

Moreover, its statistical significance is quite constant and around 3%.635

Direct analysis on the 0-1 sequence. We propose below to analysis the initial sequence of occur-636

rences (0-1) without constructing the TBE sequence. The model is then based on a Bernoulli637

distribution with still parameter p0 = 0.01597444. Let us consider a drift p1 = 1.05 · p0. We have638
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δ E Local score p − value b.tbe e.tbe b.date e.date

0.01 302 22 0.02962169 9 22 1233 1491
0.02 152 22 0.02835914 9 22 1233 1491
0.03 102 22 0.02757781 9 22 1233 1491
0.04 77 22 0.02735163 9 22 1233 1491
0.05 62 22 0.02647577 9 22 1233 1491

Table 3 – Local score value, its statistical significance, the begin and end indices positionin the tbe sequence and in the date sequence, for different value of δ. We also give in thesecond column the tuning parameter E used to get at least three non negative scores.

two different score values: (ln(p1(1− p0)/(p0(1− p1))) + log((1− p1)/(1− p0))) corresponding639

to 1 and ln((1− p1)/(1− p0)) to 0.640

R> occur <- Aeso[,2]641

R> p1 <- 1.05 * p0642

R> p1643

[1] 0.01677316644

R> (log(p1*(1-p0) / (p0*(1-p1))) + log((1-p1) / (1-p0)))645

[1] 0.04879016646

R> log((1-p1) / (1-p0))647

[1] -0.0008120179648

These first score values lead us to choose a tuning parameter E equal to 1000 in order to649

keep the proportion between those two values and to get integer values which allow to use650

the exact method. We recall that this change in the score function has only consequences on651

the local score value, but no ones on the segment that realized the local score and neither the652

statistical significance.653

R> E <- 1000654

R> ScoreSeq2 <- floor(E*(occur*log(p1*(1-p0) / (p0*(1-p1)))655

+ + log((1-p1) / (1-p0))))656

R> table(ScoreSeq2)657

R> localScoreC(ScoreSeq2)$localScore658

score.seq2659

-1 48660

2156 35661

$localScore662

value begin end663

476 1233 1491664

The two possible scores are then: -1 and 48. We observe that the segment that realizes the665

local score is still the same than with the geometrical model with a begin index 1233 and an end666

index 1491.667

Let us have a look on the statistical significance. But first let us give the score distribution.668

The probabilities under H0 associated to the scores are equal to 1− p0 for -1 and p0 for 48.669

R> ProbScores <- rep(0,50)670

R> names(ProbScores) <- -1:48671

21



22 David Robelin et al.
R> ProbScores[1] <- 1-p0672

R> ProbScores[length(ProbScores)] <- p0673

R> # expected score674

R> -1*(1-p0) + 48*p0675

[1] -0.2172524676

R> LS <- localScoreC(ScoreSeq2)$localScore[1]677

R> daudin(678

+ localScore = LS,679

+ sequence_length = length(ScoreSeq2),680

+ score_probabilities = ProbScores,681

+ sequence_min = -1,682

+ sequence_max = 48 )683

[1] 0.02497491684

The p-value is of the same size as the previous study with the local score approach and with685

the geometrical model on the TBE sequence.686

The two studies based on the local score highlight the same segment than the scan statistic687

with a window size choice of 300 and than the one highlighted by the method of Nagarwalla688

with a variable window. This segment is statistically significant in each method. The local score689

both avoids the window length choice and allows the statistical significance to be theoretically690

established.691

Genomic regions associated with phenotypic differentiation of European local pig breeds692

The original dataset is based on European local pig breeds genetically characterized using693

DNA-pool sequencing data and phenotypically characterized using breed level phenotypes re-694

lated to stature, fatness, growth and reproductive performance traits. It is composed of 19 popu-695

lations of European local pig breeds and 7 populations of industrial breeds. The genetic diversity696

is assessed through a SNP (Single Nucleotide Polymorphism) of medium density array leading697

to 16,403,270 SNPs covering 18 chromosomes of the pig genomes after filtering out SNPs with698

missing data. The second part of the original dataset consists of phenotype characterizations of699

each breed, combined into four distinct groups summarizing stature, fatness, growth, and repro-700

ductive performance. The purpose of the study published in Poklukar et al., 2023 is to detect701

genomic regions with selection signatures linked to phenotypic traits in order to uncover poten-702

tial candidate genes that may be under adaptation to specific environments. Themethododology703

in Poklukar et al., 2023 uses the same approach of Coop et al., 2010 leading to elaborate a Bayes704

Factor measuring the link between phenotypic and genotypic variations for each SNP. Statistical705

significance is then assessed on a SNP by SNP base correcting the multitest problemwith a False706

Discovery Rate (FDR) approach from Benjamini and Hochberg, 1995. They finaly revealed 234707

regions associated with stature, fatness, growth or reproduction traits.708

Here we propose to use a local score approach to analyze the final dataset containing the709

Bayes Factors associated to stature traits kindly provided by the authors of Poklukar et al., 2023.710

For each of the about 16 millions SNPs covering 18 pig chromosomes, we have the SNP posi-711

tions and the associated Bayes Factor statistics. Table 4 shows the number of points for each712

chromosome. Note that a Bayes Factor is a real number, and p-values associated to the local713
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score can not be directly assessed by the function karlin, mcc nor daudin as there associ-714

ated methodologies request integer scores. A proposed solution is to discretize the scores. In715

the second part of this illustration, we also assess the effect of this discretisation on the results,716

comparing three schemes : 1. real scores 2. scores multiplied by 10 and rounded to closest unit717

3. scores rounded to the closest unit. Due to the length of the sequence, we proceed to the eval-718

uation of p-value through karlinMonteCarlo and karlinMonteCarlo_double functions719

see Formula (4).720

Table 4 – Number of SNPs by pig chromosome in the dataset.
Chromosome SNPs count1 14275392 10721763 9463324 9237315 7923666 12067017 8990348 11104229 102053110 69509111 66461012 56340013 122544614 102916215 89932016 69463717 57059918 417965

Data analysis. In order to analyze this big data file, we proceed chromosome by chromosome721

and use the R library sqldf to load the data. Below is the R code to create a sqlite database file722

‘morpho_new_all_Dim1.sqlite’ with the data file ‘morpho_new_all_Dim1.flkadapt’, then to load723

the data of chromosome 1 (refseq id : ‘NC_010443.5’) into a dataframe call ‘NC_010443.5’.724

R> library(sqldf)725

R> read.csv.sql(file="./morpho_new_all_Dim1.flkadapt",726

+ sql = c("attach ’morpho_new_all_Dim1.sqlite’ as new",727

+ "create table new.morpho as select * from file"), sep=" ")728

R> NC_010443.5 <- sqldf(paste(729

+ "select * from morpho where chr=’NC_010443.5’",730

+ "AND [converge.null]=’1’ AND converge=’1’ ;",731

+ sep=" "),732

+ dbname = "morpho_new_all_Dim1.sqlite")733

Without lost of generality, we present here the detailed analysis and results on the chromo-734

some 1.735

R> summary(NC_010443.5$bf)736

Min. 1st Qu. Median Mean 3rd Qu. Max.737

-1.9372 -1.4153 -1.1766 -0.8759 -0.6375 12.5007738
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Figure 5 – Empirical SNP score distribution observed on the chromosome 1.
Note that the empirical expectation of the score is strictly negative and there is strictly posi-739

tive scores as expected for a meaningful local score analysis. Figure 5 shows the empirical score740

distribution obtain on chromosome 1.741

Figure 6 shows the SNPs score observed along the chromosome 1 and the associated Lindley742

process calculated as follows.743

R> ScoresLindley <- lindley(NC_010443.5$bf)744

The local score, its position, and all the suboptimal scores are calculated by thelocalScoreC745

function.746

# Calculate localscore and suboptimal localscores.747

R> scores <- localScoreC_double(NC_010443.5$bf)748

R> print(scores$localScore)749

value begin end750

702.7715 642973.0000 645759.0000751

# Position of the segment realizing the local score752

R> print(NC_010443.5$pos[scores$localScore[c("begin","end")]])753

[1] 86184149 86566846754

# Length (in base-pairs) of this segment755

R> diff(NC_010443.5$pos[scores$localScore[c("begin","end")]])756

[1] 382697757

# Calculate p-value of the local score and estimation758

# of the Karlin parameters K* and Lambda759

R> ResKarlinMC <- karlinMonteCarlo_double(760

+ local_score = scores$localScore["value"],761

+ sequence_length = length(NC_010443.5$bf),762
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Figure 6 – SNP scores observed along the chromosome 1: Top) SNP Score values; Bot-tom) Associated Lindley process, with horizontal lines representing the thresholds associ-ated to the statistical significance of the local score at 5% (red), 1% (green) and 1‰(blue)levels.
25



26 David Robelin et al.
+ FUN = function(x, simulated_sequence_length)763

+ {return(sample(x = x,764

+ size = simulated_sequence_length,765

+ replace = TRUE))},766

+ x = NC_010443.5$bf,767

+ simulated_sequence_length = 10000,768

+ numSim = 1000, plot = FALSE)769

R> kStar <- ResKarlinMC$‘K*‘770

R> lambda <- ResKarlinMC$lambda771

R> print(ResKarlinMC)772

$‘p-value‘773

value774

0775

776

$‘K*‘777

[1] 11.18694778

779

$lambda780

[1] 0.8285248781

The local score on the chromosome 1 is 702.7715 and is realized by the segment situated in782

position (86184149, 86566846) with a p-value < 10−16.783

In the same way, we assess the statistical significance of the sub-optimal segments scores.784

As mentioned in Fariello et al., 2017, the local score threshold given for a first order risk α also785

ensures a first order riskα for at least one false positive among all excursions above this threshold.786

In other word all excursions above this threshold can be considered as significant sub-optimal787

segments scores. On the chromosome 1, we found a total of 67535 segments with positive788

cumulative score, from which 225 segments appear to be significant at 5%-level, 210 segments789

at 1%-level, and 183 segments at 1‰-level. See code below to compute these results.790

R> SegmentScores <- as.data.frame(scores$suboptimalSegmentScores)791

R> print(dim(SegmentScores)[1])792

[1] 67535793

R> # Sorting sub-optimal segments scores in decreasing794

R> # order of scores795

R> DecScoreOrder <- order(SegmentScores$value, decreasing = TRUE)796

R> SegmentScores = SegmentScores[DecScoreOrder,]797

R> # Calculating "p-values" majorant of each suboptimal798

R> # segment scores until a threshold of 5\% is reached.799

R> k_star <- res.karlinMC$‘K*‘800

R> lambda <- res.karlinMC$lambda801

R> alphaMax <- 0.05802

R> pv <- 0.0803

R> SegmentScores$pvkarlinMC <- NA804

R> i <- 1805

R> while ((pv <= alphaMax) && (i <= dim(SegmentScores)[1])) {806
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+ # Karlin: for n great,807

+ #P( ln(n)/lambda+x>= M) = exp(-K_star*exp(-lambda*x))808

+ # thus we set ln(n)/lambda+x = local_score and obtain809

+ # x = local_score - ln(n)/lambda810

+ x <- SegmentScores$value[i] -811

+ log(length(NC_010443.5$bf)) / lambda812

+ # now we calculate p-value with our approximate813

+ # K star and lambda814

+ pv <- 1 - exp(-k_star * exp(-lambda * x))815

+ if (pv <= alphaMax) {816

+ SegmentScores$pvkarlinMC[i] <- pv817

+ }818

+ i <- i + 1819

+ }820

R> SegmentScoresSignif <-821

+ SegmentScores[!is.na(SegmentScores$pvkarlinMC),]822

R> # Number of significative sub-optimal segments scores at823

R> # thhreshold 0.05, 0.01 and 0.001824

R> alpha <- c(0.05, 0.01, 0.001)825

R> print(sapply(alpha,826

+ function(x){return(sum(827

+ SegmentScoresSignif$pvkarlinMC <= x))}))828

[1] 225 210 183829

The chromosome 1 contains a total of 1421525 SNPs with individual scores. The proportion830

of SNPs presents in significative segments compared to this total, approximates 4% (see Table 5).831

In the paper Poklukar et al., 2023, the whole genome analysis based on the Bayes Factor retains832

2 segments significative at 5% corrected for multiple test, compared here to 225 segments sig-833

nificatively detected by the local score approach for the stature trait.834

Table 5 – Numbers and proportions of SNPs present in a significative segment accordingto the test threshold.
Test threshold 0.05 0.01 0.001Number of SNPs present in significant segment 54129 52954 51357Proportion of SNP present in significant segment 0.04 0.04 0.04

Score discretization assessment. Three scoring schemes are compared: a) real scores as given by835

the Bayes Factor in input b) one decimal scores times 10 then rounded c) rounded scores to836

closest unit. b) and c) give integer scores. Figure 7 shows the empirical distributions of each score837

scheme obtained from chromosome 18. Other chromosomes show very close distributions (not838

shown).839

For each chromosome of the whole genome, Table 6 summaries the number of significant840

detected segments applying a level of 5%, 1% and 1‰. These numbers are also shown regarding841

the scoring scheme.842

27



28 David Robelin et al.

Figure 7 – Empirical distributions of SNP scores obtained on chromosome 18 for threescoring scheme: 1. Real score 2. Two-digits rounded score 3. One-digit rounded score.

Let’s also look at the influence of the three scoring schemes on the length of segments that843

achieve the local score: Figure 8 shows comparable boxplots of the (log)-length of the detected844

segments below the threshold of 5% for the three scoring schemes.845

Considering the segments obtained with the real scores as reference, Table 7 displays the846

numbers of false positive and false negative segments which occur with 1-digit scores and 2-847

digits scores. Care should be taken as a cut-off is applied to p-value less than 5%which can mod-848

ify the significative segments list close to the cut-off. Regarding the big range and the skewness849

distribution of real scores, the 2-digits rounded scores just slightly change the results, missing850

only 9 (0.5%) segments over 1882 real segments on the whole scale and detecting falsely 45851
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Table 6 – Numbers of significant detected segments applying a level of 5%, 1% and ‰.These numbers regarding the scoring scheme are also shown.
chromosomes Real scores 2-digits scores Unit scores

5% 1% 5‰ 5% 1% 5‰ 5% 1% 5‰1 NC_010443.5 226 212 185 225 213 185 218 201 1792 NC_010444.4 70 60 49 70 59 48 67 55 443 NC_010445.4 56 54 46 56 53 45 56 53 454 NC_010446.5 90 78 70 87 78 67 89 80 715 NC_010447.5 94 85 67 94 85 68 105 92 726 NC_010448.4 93 83 74 102 91 78 109 96 887 NC_010449.5 94 83 71 96 85 72 96 84 728 NC_010450.4 131 118 108 131 118 107 127 121 1129 NC_010451.4 132 120 105 134 123 107 145 136 12010 NC_010452.4 108 97 86 111 98 86 123 104 9111 NC_010453.5 67 58 50 66 57 50 60 51 4412 NC_010454.4 52 46 40 55 47 41 56 46 4113 NC_010455.5 161 153 130 162 156 135 160 150 13314 NC_010456.5 135 122 105 143 126 112 140 127 10715 NC_010457.5 142 124 110 157 138 120 152 133 11316 NC_010458.4 74 69 64 75 71 65 81 76 6917 NC_010459.5 70 62 57 68 61 57 68 61 5718 NC_010460.4 87 71 61 87 73 61 86 73 63Total 1882 1695 1478 1919 1732 1504 1938 1739 1521
(2.3%) segments over 1919 detected segments. Note that the brutal unit rounded score perfor-852

mance essentially reflects the real segment detected with only 76 (4%) missing segments (false853

negative) over 1882 and detect falsely (false positive) 157 (8%) segments over 1938 detected854

segments.855

Table 7 – Considering real scoring scheme as detection reference, the table shows thenumbers of segments which differ from the reference for the 2-digit rounded scorescheme, and the unit rounded scheme on the whole genome analysis. "False negative":number of segment which are present in the reference, but not in considered scoringscheme; "False positive": number of segments significantly detected but not present inthe reference.
score scheme Real 2-digits 1-digitTotal detected segments (<5%) 1882 1919 1938False negative 9 (0.5%) 76 (4%)False positive 45 (2.3%) 157 (8%)

Computational details856

The results in this paper were obtained using R 4.3.1. R itself and all packages used are857

available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.858

org/.859

Summary and discussion860

When no a priori information is known about the length of the segments to be highlighted,861

the local score is a dedicated tool to exploit and supplement the methods of sliding-windows or862
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Figure 8 – Log-length of the detected segments below the threshold of 5% for the threescoring schemes by chromosomes.
scan statistics. In addition, the package allows to calculate the statistical significance and to dis-863

tinguish the segments of atypical optimal scores from those appearing by chance. The package864

brings together various functions that notably allow to visualize and point-out the highlighted865

regions. Different ways of assessing the statistical significance are proposed. A function allows866

to perform this calculation by automatically selecting the method most suited to the context867

related to the length of the sequence, and the average score under a given model or learned. If868

initially the local score has been defined for the identification of atypical regions within biolog-869

ical sequences, it can also be useful in many fields of application as we wanted to illustrate in870

our examples. It can also be applied for online analyses including breakpoint detection. Further871

developments will be made for Markov models and the statistical significance of sub-optimal872

segments in a future version of the package.873
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