
HAL Id: hal-04723263
https://hal.science/hal-04723263v1

Submitted on 7 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Form-based semantic caching on time series
Trung-Dung Le, Verena Kantere, Laurent d’Orazio

To cite this version:
Trung-Dung Le, Verena Kantere, Laurent d’Orazio. Form-based semantic caching on time series.
International Conference on Computational Science and Its Applications (ICCSA), Jul 2024, Hanoi
(Vietnam), France. �hal-04723263�

https://hal.science/hal-04723263v1
https://hal.archives-ouvertes.fr


Form-based semantic caching on time series

Trung-Dung Le1[0000−0001−9560−1180], Verena Kantere2[0000−0002−3586−9406],
and Laurent d’Orazio3[0000−0001−8614−1848]

1 Thuyloi University, Hanoi, Vietnam
dung_lt@tlu.edu.vn

2 School of ECE, National Technical, University of Athens, Athens, Greece
verena@dblab.ece.ntua.gr

3 Univ Rennes, 2 rue du Thabor - CS 46510 - 35065 Rennes CEDEX
laurent.dorazio@univ-rennes1.fr

Abstract. Time Series Databases Management System (TSMS) has
been overcoming the Database Management Systems (DBMS) in stor-
ing vast amounts of data [35]. Nevertheless, TSMS only supports simple
aggregate functions to analyze Time Series Data (TSD). Besides, to ac-
celerate and save data transferring between clients and servers in the
DBMS, semantic caching can be used. However, the semantic caching
approach is not efficient because of not fully supporting aggregate func-
tions in TSMS. Furthermore, the query result of TSD in the semantic
caching technique could be huge for the in-memory database where the
semantic caching technique is running on. A model-based compression
can be used to compress data, reducing the data space in the in-memory
database. In this paper, we present Form-based semantic caching for
TSD system. The approach reduces both query result storing based on
semantic caching technique and the data transfer between clients and
servers. In particular, the approach accelerates up to 122 and 1.82 times
the execution speed, comparing to the without cache and basic semantic
caching approaches, respectively. On the public Reference Energy Dis-
aggregation Data Set, the compression model ratio in the approach can
be reached to 526.8:1.

Keywords: Semantic Caching · Time Series Data · Linear Regression.

1 Introduction

Smart cities applications face increasing pressure on the number of Internet of
Things (IoT) connected devices and their data. In order to organize Time Series
Data (TSD), which is generated by IoT devices, the Database Management
System (DBMS) technology is used to represent, store, and query sensor data.
It can be standard relational systems, key-value stores, document databases,
or time series stores. Some systems are designed to provide fast ingestion rates
and fast selection on time ranges, such as InfluxDB [5], GridDB [4], and Warp
10™ [11], called Time Series Management System (TSMS).

The standard relational DBMS can process complex Online analytical pro-
cessing (OLAP) queries, and semantic caching is often used to speed up the



2 Trung-Dung Le et al.

standard relational DBMS. However, it is hard to speed up these queries in a
TSMS. The previous work, Think-Cities® [17], improves query processing by
Form-based semantic caching technique in a specific TSMS, Warp 10™. How-
ever, Form-based semantic caching needs to improve experiments in TSMS.

Semantic caching is an approach which stores the answer of a query instead
of just the raw data. It allows exploiting resources in the cache and knowledge
contained in the queries themselves [21]. Form-based semantic caching technique
is used to accelerate the complex OLAP queries in TSMS [17]. However, the
sensor data can be stored in the in-memory database is huge. It leverages to
reduce TSD semantic cache size to store more data in the same in-memory
database memory. Besides, ModelarDB [36] uses models to store sensor data
with lossy and lossless compression. This approach has not been applied to the
semantic caching technique. Hence, the sensor data and semantic cache in TSMS
can be compressed using model-based compression.

In this context of queries in a time series database system, the problem is how
to improve time series processing in TMSM by the semantic caching technique
and reducing the cache size in the in-memory database.

Semantic caching approaches [12,20,21,28,32,34] have been studies to reduce
network traffic and improve response time. These methods can be used in the
standard relational DBMS. In addition, Form-based query makes it possible to
optimize queries submitted via HTML forms [30,31]. However, the existing works
[12,20,21,28,32,34,30,31] were built for Structured Query Language (SQL) query
and the backend DBMS to execute, not TSMS.

Moreover, InfluxDB [5], GridDB [4], and ModelarDB [36,37,38] provide fast
ingestion rates, good compression, and quick selection on time ranges. However,
they fail to support complicated OLAP queries [26]. Hence, Form-based seman-
tic caching [17] is proposed as a novel to solve the limitations above based on
many aggregated functions in Warp 10™ [11], a specific time series system. Nev-
ertheless, Warp 10™ does not support Structured Query Language directly. Any
query should be converted into a script written in WarpScript™ language. It is
not easy to translate an OLAP query into the form of WarpScript™.

Furthermore, the sensors are sampled at regular intervals, and it is currently
impossible to store the huge amounts of data points in in-memory databases.
The comparison of common storage solutions in ModarDB [36] showed that the
compression solution can reduce 782.87 GiB of data storing in PostgreSQL to
2.41 GiB of data in ModarDB. This solution has not been used in semantic
caching techniques.

To the best of our knowledge, none of these efforts fully address the issues of
Form-based semantic caching of time series data systems.

This paper expands Form-based semantic caching in the previous work [17]
for a specific time series data system. The approach aims to improve the per-
formance of query processing in TSMS. In particular, the implementation shows
that the approach accelerates up to 122 times the execution speed, comparing to
the without cache approach. Comparing to the basic semantic caching technique,



Form-based semantic caching on time series 3

the proposed semantic caching can speed up to 1.82 times the execution speed,
as can be shown in Section 4.

We also integrate the model-based compression to reduce the time series data
storage in the semantic caching system. The model-based compression is also
reused to restore all the data points and answer the incoming queries. In par-
ticular, the compress model ratio can be reached to 526.8:1 with the public
Reference Energy Disaggregation Data Set [19], as can be shown in Section 4.

This paper is organized as follows. Section 2 defines the context and the mo-
tivation. Section 3 presents the detail of Form-based semantic caching approach.
The implementations are described in Section 4. Section 5 describes the related
works. The conclusion is presented in Section 6.

2 Preliminaries

First of all, the preliminaries of this paper show the background of techniques
we use to propose Form-based semantic caching approach.

2.1 Time series data

Time Series Data Model can be as a relations T(st, v) with two attributes:
st(time stamp) and v(value). For example, the time series of ocean tides heights
are Time Series Data. Data in a smart city are from various sensors, such as
rainwater, carbon footprint sensors, etc.

Methods for time series analysis [16,18] may be divided into two classes:
frequency-domain methods and time-domain methods. The former includes spec-
tral analysis and wavelet analysis; the latter includes auto-correlation and cross-
correlation analysis. In the time domain, correlation and analysis can be made
in a filter-like manner using scaled correlation, thereby mitigating the need to
operate in the frequency domain. Time series analysis can be divided into linear
and non-linear, and univariate and multivariate [24,27].

2.2 Linear Regression

The model-based compression [36] is used to compress a group of time series data
by Linear Regression model:

yi = β0 + β1ti + ϵ, (1)

where β0, β1 are parameter of the model; ti, i = 1, ..., N, are time stamp values;
yi, i = 1, ..., N, are the time series data value, and ϵ is random error following
normal distribution N (0, σ2) with zero mean and variance σ2.

The fitted equation is defined by:

ŷ = β̂0 + β̂1t. (2)



4 Trung-Dung Le et al.

t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

p5

p4

p3

p2

Real time series data Linear Regression model of time series data

p1 p1*

p2*

p3*

p4*

p5*

Fig. 1: Linear Regression Model.

Instead of storing all the data points, the model-based compression method
stores the model’s information, such as the size of the observation window, the
min and max value of time series data. Fig. 1 shows the model-based compression
of time series data. For example, by storing T1(t1, p∗

1) and T2(t5, p∗
5), we can

restore other data points by Linear Regression model with the user-defined error
bound.

2.3 Semantic Caching

Semantic caching [12,34] allows us to exploit resources in the cache and knowl-
edge contained in the previous queries. Consequently, it enables effective rea-
soning, delegating part of the computation process to the cache, reducing data
transfers and the load on servers.

When a query is submitted, it is divided into two disjoint pieces: (1) a probe
query, Qprobe, which retrieves the portion of the result available in the local
cache, and (2) a remainder query, Qremain, which retrieves any missing tuples in
the answer from the server. If the remainder query exists, it is sent to the server
for processing.

2.4 Motivation

Form-based semantic caching technique makes us possible to optimize, accelerate
query processing in the environment of time series data and a specific TSMS.
Moreover, we can use the model-based compression to store the value of data
points in TSMS with the user-defined error bound or the data points in the gap
time where there is no real data in the in-memory database. Using the model-
based compression reduces TSD semantic cache size to store more data in the



Form-based semantic caching on time series 5

Form-based semantic
caching

Web application

Time series
management system

Sensor Sensor Sensor

Time series data

User

Fig. 2: The architecture.

same in-memory database memory. Also, processing a query with the model-
based compression can reduce the volumes of data transferred between the client
and server when the time data series is requested many times. Using the model-
based compression also reduces TSD semantic cache size to store more data in
the same in-memory database memory.

In conclusion, this paper introduces the novel and implementation of Form-
based semantic caching on time series data to reduce query result storing based
on the semantic caching and the model-based compression techniques.

3 Form-based Semantic Caching

The Form-based semantic caching architecture is shown in Fig. 2. A TSMS is
used to organize TSD and Form-based semantic caching to accelerate query
processing and reduce query results storing by semantic caching technique.

3.1 Form-based query
Example 1. The form of queries is:

SELECT sen.time , MIN(sen. value )
FROM SENSOR sen
WHERE T1 < sen. time < T2

We start with a Form-based query example. The query as shown in Example 1
is a function of calculating the min value of sen.value in a period of time from
T1 to T2. When a user submits the update function in our project, a request



6 Trung-Dung Le et al.

Semantic caching
model

Form-based query
processing

User

Time series data

Server

Fo
rm

-b
as

ed
 s

em
an

tic
 c

ac
hi

ng

Form-based queries

Fig. 3: Form-based semantic caching.

containing the parameters is sent to the server running a time series database
engine.

Semantic caching is used to exploit resources in the cache and knowledge con-
tained in the previous queries. Semantic caching approach is considered. When a
query is submitted, only Qremain is sent to the server to retrieve any missing tu-
ples. A responding SQL query from the example template is given in Example 1.
In particular, any aggregate function can be used in the Form-based query.

3.2 Cache management

Memcached [6], Redis [9] are in-memory databases that are key-value stores.
They are designed to simplify memory management [14]. Form-based query ap-
proach analyses, optimizes queries, and communicates through a simple set of
APIs: Set, Add, Replace to store semantic data, Get or Remove to retrieve or
remove semantic data. The data structure is simplified, and the access time is
kept in specific period times. We use the Least Recently Used (LRU) policy for
eviction of the data. Form-based semantic caching uses Memcached as the query
result cache store. Furthermore, we use Linear Regression compression to re-
duce the data points and store these time series data on the key-value stores. By
uncompressing data using model-based compression, Linear Regression model,
in key-value stores, we can restore all data points of time series data with the
user-defined error bound which is defined before the model is built.



Form-based semantic caching on time series 7

semantic cache

semantic
manager

semantic cache
processor

Semantic caching model

key/value

key/value

queryquery
generator

query

result

script
generator

network
connection
to server

Fig. 4: The model.

3.3 Form-based semantic caching architecture

Form-based semantic caching architecture is shown in Fig. 3. It is built based on
Form-based query and semantic caching approach. Form-based semantic caching
allows us to exploit resources in the cache and knowledge contained in the queries
themselves. Consequently, it enables effective reasoning, delegating part of the
computation process to the cache, reducing both data transferring and the load
on servers. The semantic caching model is built in a client in the client/server
model where a time series data database engine is installed on servers to manage
and simplify time series data processing.

Fig. 3 presents an overview of our Form-based semantic caching approach.
It relies on 3 phases: (1) Form-based querying, (2) semantic processing, and (3)
time series optimization. A specific in-memory database is used to manage the
semantic cache. When the client receives a query, as shown in Fig. 4, the semantic
cache processor will check the previous query results via semantic manager.
The necessary queries are generated by query generator. After that, Qremain is
translated into a script by script generator. Finally, the scripts are sent to servers
to get the results. In particular, Form-based query processing enables users to
access data via template queries. The obtained parameterized queries can then
be decomposed into probe queries and remainder queries. The remainder queries
will then be grouped into a query and translated into the instruction of time
series database language, such as WarpScript™ in Warp 10™. After that, the
script is sent to the specific time series database engine to get the results. As
shown in Fig. 4 and section 2, the semantic caching model can be deployed with
an in-memory database. The semantic caching model and time series database
engine can be implemented in the separate or same servers.

Example 2. Fig. 5 shows an example of Form-based query and Form-based se-
mantic caching. The form of queries is shown in Example 1, where the cache has
the results of queries

– From 01-02-2020 to 05-02-2020,



8 Trung-Dung Le et al.

SELECT sen.time, MIN(sen.value)
 FROM SENSOR sen

 WHERE T1 < sen.time < T2

01 05 07 10

Query

03

Time series management system

User

Semantic
caching

Fig. 5: An example of form-based semantic caching

– From 07-02-2020 to 10-02-2020.

The incoming query requires results from 03-02-2020 to 10-02-2020. Then, it
is decomposed into Qprobe and Qremain. Qprobe is optimized in the semantic
caching to get results:

– From 03-02-2020 to 05-02-2020,
– From 07-02-2020 to 10-02-2020.

Qremain is optimized and translated into a script. After that the script is sent
and get results from Warp 10™ server:

– From 05-02-2020 to 07-02-2020,

Finally, the results are integrated from 2 parts in caches and a part from distance
server. They are shown as follows:

– Semantic caching: From 03-02-2020 to 05-02-2020,
– Warp 10™ server: From 05-02-2020 to 07-02-2020,
– Semantic caching: From 07-02-2020 to 10-02-2020.

4 Validation

Our experiments use Memcached [6] to organize the cache on a client built-
in Open JDK Java 1.8. All experiments are run on a machine with following



Form-based semantic caching on time series 9

parameters: Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz × 4, 16GB RAM.
The operating system is Linux Ubuntu 16.04.6 Long Term Support distribution
based on kernel 4.15.0-106-generic.

4.1 Think-Cities® and Warp 10™

In this experiment, the servers organize time series data in Think-Cities® by
Warp 10™ platform, as shown in Fig.6. So, the remainder query should be
translated into WarpScript™ scripts to process time series data.

Semantic caching model

Form-based
query processing

User

WarpScript processing

Warp 10

Fo
rm

-b
as

ed
 s

em
an

tic
 c

ac
hi

ng

Form-based queries

Translator

Think-Cities

Fig. 6: Form-based semantic caching and Warp10 in Think-Cities®

Context To analyze the efficiency in terms of time, we assume that time series
data is organized in servers. A query often requires to get data in the form of an
aggregate function of sensor values, such as the scoring metric of CO2 in an area



10 Trung-Dung Le et al.

should be taken by the average function in a minute or an hour. The aggregate
function of values should be calculated in the form of database engine languages,
such as WarpScript™ in Warp 10™.

The results of 10 queries have already been stored in the cache, as shown in
Table 1. The queries are formed in the uniform of Query X in Area A From T1 to
T2. In this form, Query X means: Select TimeStamp, AggregateFunction(x), and
area A means that the values of x are taken from all the sensors in geographic
A. From T1 to T2 means that time series data are taken in a period of time
from T1 to T2. The data of TimeStamp and the mean value of sensors around
TimeStamp can be reused in the application. For example, the metric score of
CO2 in an area in the 1st quarter of 2020 can be calculated via the results of Q1:
Query X in Area A From 2020-01-01 to 2020-03-01 and Q2: Query X in Area A
From 2020-03-01 to 2020-03-31.

Results The experiment focuses on comparing the execution time among With-
out Caching (WC), Basic semantic Caching (BC), and Form-Based Semantic
Caching (FBSC) approaches. In BC and FBSC experiments, all the query re-
sults, as shown in Table 1, have already been stored in the semantic cache.
Different workloads in various tests, as shown in Table 2, are used to compare
the execution time in three methods. In the query processing, the data is trans-
ferred from servers to the client cache when queries miss hit (M) the previous
results in the cache. In the basic semantic caching approach, the entire result
that has already been stored in caches is returned from caches to answer the
respective query, which are Hits (H) cases. In FBSC method, a part of the pre-
vious queries can be reused to return the request, which calls Partial hits (P). In
particular, the approach reads all the keys in the cache and finds exactly where
the answers are stored. Only the miss information in caches should be sent from
servers to client caches in Form-based semantic caching. The ratios of Hits (H),
Miss hits (M), or Partial hits (P) in tests are showed in Table 3.

Each test runs 100 times. Their average execution time is illustrated in Fig. 7.
We have 4 experiments with different sizes of caches. Fig. 7a, 7b, 7c, and 7d show
the experiments of 597071, 479870, 359582, and 239231 bytes in the semantic
cache, respectively. As shown in Fig. 7, the response time of query processing
using FBSC is shorter than using WC and BC in most cases.

Query Days
Q1 Query X Area A From 2020-02-01 To 2020-02-11

10

Q2 Query X Area A From 2020-02-11 To 2020-02-21
Q3 Query X Area A From 2020-02-21 To 2020-03-02
Q4 Query X Area A From 2020-03-02 To 2020-03-12
Q5 Query X Area A From 2020-03-12 To 2020-03-22
Q6 Query X Area A From 2020-03-22 To 2020-04-01
Q7 Query X Area A From 2020-04-01 To 2020-04-11
Q8 Query X Area A From 2020-04-11 To 2020-04-21
Q9 Query X Area A From 2020-04-21 To 2020-05-01

Q10 Query X Area A From 2020-05-01 To 2020-05-11
Table 1: Queries are stored in the cache.



Form-based semantic caching on time series 11

1 2 3 4 5 6
0
2
4
6
8

10 8.
78 9.
01 9.
16 9.
41

9.
5

9.
39

7.
8

6.
2

4.
49

2.
86

1.
11

7.
2

·1
0−

2

6.
72

5.
03

4.
14

2.
44

0.
61

7.
7

·1
0−

2

Tests

E
xe

cu
tio

n
tim

e
(s

)

(a) 597071 bytes of cache

1 2 3 4 5 6
0

2

4

6

8 7.
15 7.
33 7.
57 7.
73 7.
96

7.
87

6.
36

4.
98

3.
66

2.
28

0.
91

6.
4

·1
0−

2

5.
49

4.
12

3.
34

1.
97

0.
47

7.
1

·1
0−

2

Tests

E
xe

cu
tio

n
tim

e
(s

)

(b) 479870 bytes of cache

1 2 3 4 5 6
0

2

4

6 5.
35 5.
68 5.
84 6.
02 6.
19

6.
08

4.
72

3.
83

2.
82

1.
79

0.
77

6.
6

·1
0−

2

4.
12

3.
18

2.
57

1.
55

0.
44

7.
7

·1
0−

2

Tests

E
xe

cu
tio

n
tim

e
(s

)

(c) 359582 bytes of cache

1 2 3 4 5 6
0

2

4 3.
75 3.
91 4.
15 4.
34 4.
57

4.
43

3.
29

2.
61

1.
96

1.
24

0.
57

7.
6

·1
0−

2

2.
94

2.
25

1.
8

1.
13

0.
37

9.
5

·1
0−

2

Tests

E
xe

cu
tio

n
tim

e
(s

)

(d) 239231 bytes of cache

Fig. 7: Execution time in second of WC, BC and FBSC.



12 Trung-Dung Le et al.

Test
Workload

Part1 Part2 (Q11)
Days From To Days

1 Q1 10 2020-03-27 2020-06-25 90
2 Q1-Q3 30 2020-04-06 2020-06-15 70
3 Q1-Q5 50 2020-04-16 2020-06-05 30
4 Q1-Q7 70 2020-04-26 2020-05-26 30
5 Q1-Q9 90 2020-05-06 2020-05-16 10
6 Q1-Q10 100 Non Non 0

Table 2: Workload in tests

Test WC BC FBSC
1

100%M

10%H 90%M 10%H 45%P 45%M
2 30%H, 70%M 30%H, 35%P, 35%M
3 50%H, 50%M 50%H, 25%P, 25%M
4 70%H, 30%M 70%H, 15%P, 15%M
5 90%H, 10%M 90%H, 5%P, 5%M
6 100%H 100%H

Table 3: Percentage of hits in tests using to measure the execution time

4.2 Model-based compression

In this section, we show the semantic caching technique with and without the
model-based compression. The data sets we used is The public Reference Energy
Disaggregation Data Set (REDD) [19]. REDD includes data sets of energy con-
sumption from six houses collected over two months. The Form-based semantic
caching query has a form as shown below:

SELECT timestamp , value
FROM house1
WHERE sensor_id = sensor_x
AND timestamp > timeStamp1
AND timestamp < timeStamp2

Fig. 8 and Fig. 9 shows the data of House1 and House2 of REDD [19] in four
cases of storing, respectively. It compares the real data points and the data
stored by Form-based semantic caching. As shown in Fig. 8, and Fig. 9, the
Linear Regression model’s compress ratio varies from 1.1:1 to 526:1 (number of
data points/number of data points in Linear Regression models on the memory,
Fig. 8-b).

5 Related Work

This section presents some of the main works related to big data technologies (see
Subsection 5.1), semantic caching and Form-based query (see Subsection 5.2).

5.1 Big data technologies

Hive [13], SparkSQL [22] provide cluster computing frameworks to manage big
data. They provide the way to process complex OLAP queries on large amounts



Form-based semantic caching on time series 13

1 2 3 4 5 6
0

5

10 9.
99

9.
99

2.
63

2.
63

2.
63

2.
63

8.
62

7.
47

2
·1

0−
2

5
·1

0−
2

9
·1

0−
2

1.
52

Sensor_id

D
at

a
po

in
ts

(×
10

2
)

(a) 1,000 time stamps

1 2 3 4 5 6
0

5

10 10 10

2.
63

2.
63

2.
63

2.
63

8.
08 8.
55

5
·1

0−
3

5
·1

0−
3

1.
15

0.
41

Sensor_id

D
at

a
po

in
ts

(×
10

3
)

(b) 10,000 time stamps

1 2 3 4 5 6
0

5

10 9.
97

9.
97

2.
61

2.
62

2.
61

2.
62

8.
72

8.
31

3.
99

·1
0−

2

5.
82

·1
0−

2

1.
66

0.
25

Sensor_id

D
at

a
po

in
ts

(×
10

4
)

(c) 100,000 time stamps

1 2 3 4 5 6
0
2
4
6
8

8.
27

8.
27

2.
56

2.
56

2.
56

2.
56

7.
28

6.
87

2.
02

·1
0−

2

2.
58

·1
0−

2

1.
52

0.
22

Sensor_id

D
at

a
po

in
ts

(×
10

5
)

(d) 1,000,000 time stamps

Fig. 8: Data point of time series data of house 1 of REDD.



14 Trung-Dung Le et al.

1 2 3 4 5 6
0

5

10 9.
99

9.
99

2.
65

2.
65

2.
65

2.
65

5.
17 6.

61

1.
27

0.
91

0.
97

0.
92

Sensor_id

D
at

a
po

in
ts

(×
10

2
)

(a) 1,000 time stamps

1 2 3 4 5 6
0

5

10 10 10

2.
66

2.
66

2.
66

2.
66

6.
26 7.
04

0.
96

0.
52 0.
83

0.
78

Sensor_id

D
at

a
po

in
ts

(×
10

3
)

(b) 10,000 time stamps

1 2 3 4 5 6
0

5

10 10 10

2.
65

2.
65

2.
65

2.
65

5.
92 6.

96

0.
93

0.
73

0.
65

0.
64

Sensor_id

D
at

a
po

in
ts

(×
10

4
)

(c) 100,000 time stamps

1 2 3 4 5 6
0

5

10 9.
86

9.
86

2.
62

2.
62

2.
62

2.
62

5.
57 6.

55

0.
89

0.
71

0.
64

0.
66

Sensor_id

D
at

a
po

in
ts

(×
10

5
)

(d) 1,000,000 time stamps

Fig. 9: Data point of time series data of house 2 of REDD.



Form-based semantic caching on time series 15

of data on multiple machines. However, they do not work well on data ingestion,
simple selections, and real-time queries [26].

The stream processing systems, such as Apache Kafka [1], Storm [2], Flink [25],
support fast response times on window-based continuous and real-time queries.
However, they do not work well on historical data queries.

Moreover, there are various document store engines, such as MongoDB [7],
Couchbase [3], and AsterixDB [33], which are used to store heterogeneous data.
They support the time-applicable logical data model. However, they do not focus
on time series data.

Furthermore, specialized time series database systems, such as GridDB [4],
InfluxDB [5], and ModelarDB [36], are specialized time series database systems.
They provide fast ingestion rates and fast selection on time ranges. However, the
complex OLAP queries are not supported in these systems [26]. Although Warp
10™ [11] supports many aggregated functions, the scripts should be written in
WarpScript™ language. It is not easy to translate an OLAP query into the form
of WarpScript™.

5.2 Semantic caching and Form-based query

As defined in [23], semantic caching is a technique that includes three key fea-
tures. First, a description of the data stored is maintained in the cache in the
form of brief specifications. Second, the policies of replacement policies are flex-
ible in different semantic regions. Third, a semantic description of the data is
maintained using sophisticated value functions that incorporate semantic notions
locality.

A query cache using a semantic caching approach allows reducing data trans-
fer between clients and servers [12,20,21,28,32,34]. While [34] studied the seman-
tic data caching and replacement approach for a client-server model, Qun Ren
et al. [32] focuses on select-project queries in the general application. A mobile
environment of semantic caching is also studied in [20]. Besides, a mobile dual
cache and a proxy dual cache are presented in [21]. Furthermore, to prepare
the relevance cache, the semantic caching for rewriting aggregate queries is con-
sidered in [15,28,29]. They use functional dependencies to rewrite an aggregate
query to optimize the storage required for materialized views.

Moreover, Form-based query via HTML forms [30,31] is used to optimize
queries. They parameterize the query in a form. However, semantic caching is
not considered in these methods. Hence, they can be integrated with the semantic
caching approach in parameterizing the query.

Furthermore, the compress method in [36] has been integrated into Spark
and Cassandra to manage time series data. This solution has not been applied
in the semantic caching technique.

5.3 Limitations

In conclusion, TSMS has not supported the semantic caching, and complex
OLAP queries as the standard DBMSs have done. The existing Form-based



16 Trung-Dung Le et al.

query methods do not fully address semantic caching issues for complex OLAP
queries and time series data. Furthermore, Think-Cities® project [17] proposed
Form-based semantic caching as a novel to improve query processing in a specific
TSMS, Warp 10™. However, the novel needs to have experimented and extended
to organize TSD in many TSMSs. Moreover, the model-based compression has
not been applied in semantic caching technique as ModelarDB has done with
Spark and Cassandra. To the best of our knowledge, none of the existing ap-
proach efforts fully address complex OLAP query processing issues in TSMS,
and reducing TSD semantic cache size.

6 Conclusion

This paper introduces a Form-based semantic caching approach for time series
database systems. Besides, we compress time series data and store it in the key-
value store by the model-based compression, which helps us restore all the data
points of time series data with the user-defined error bound.

We are currently implementing and validating these contributions and inte-
grating both synthetic and real data. Future work includes more heterogeneous
caches management. Besides, we will study traditional and specific policies for
traditional and semantic caching.

Acknowledgment

The authors would like to thank members of SHAMAN team at Univ Rennes,
CNRS, IRISA; School of Electrical and Computer Engineering, National Tech-
nical University of Athens; and Faculty of Electrical & Electronics Engineering,
Thuyloi University for insightful comments.

References

1. The Apache Kafka, Stream Processing Engine, Website. https://kafka.apache.org.
2. The Apache Storm, Stream Processing Engine, Website. https://storm.apache.org.
3. The Couchbase, NoSQL Database, Website. https://www.couchbase.com.
4. The GridDB, NoSQL Database System For IoT, Website. https://griddb.net/en.
5. The InfluxDB, Time Series Database System, https://www.influxdata.com.
6. The Memcache Website, https://memcached.org.
7. The MongoDB Website. https://www.mongodb.com.
8. The Prometheus Website, https://prometheus.io.
9. The Redis Website, https://redis.io.
10. The Urban Think Website, http://www.setur.fr/urban-think.html.
11. The Warp10 Website, https://www.warp10.io.
12. A. M. Keller, J. Basu: A Predicate-based Caching Scheme for Client-Server

Database Architectures. VLDB J. 5(1): 35-47 (1996)
13. A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P.

Wyckoff, R. Murthy. Hive: a warehousing solution over a map-reduce framework.
PVLDB, 2(2):1626–1629, 2009.

https://www.couchbase.com
https://griddb.net/en
https://www.influxdata.com
https://memcached.org
https://www.mongodb.com
https://prometheus.io
https://redis.io
http://www.setur.fr/urban-think.html
https://www.warp10.io


Form-based semantic caching on time series 17

14. A. Wiggins, J. Langston. Enhancing the Scalability of Memcached. In In-
tel document, http://software.intel.com/en-us/articles/enhancing-the-scalability-
of-memcached, 2012

15. D. Laurent, N. Spyratos: Rewriting aggregate queries using functional dependen-
cies. MEDES 2011: 40-47

16. E. J. Keogh, C. (Ann) Ratanamahatana: Exact indexing of dynamic time warping.
Knowl. Inf. Syst. 7(3): 358-386 (2005)

17. G. Carfantan, F. Daniel, L. d’Orazio, T. Le, X. Marin, O. Peau, H. Rannou: Think
Cities: the accelerator for sustainable planning. ICDE Workshops 2020: 64-70

18. J. Lin, E. Keogh, S. Lonardi, B. Chiu: A symbolic representation of time series,
with implications for streaming algorithms. DMKD 2003: 2-11

19. J. Z. Kolter, M. J. Johnson. (2011). REDD: A Public Data Set for Energy Disag-
gregation Research. Artif. Intell.. 25.

20. Ken. C. K. Lee, H. V. Leong, A. Si: Semantic query caching in a mobile environ-
ment. ACM SIGMOBILE Mob. Comput. Commun. Rev. 3(2): 28-36 (1999)

21. L. d’Orazio, M. K. Traoré: Semantic caching for pervasive grids. IDEAS 2009:
227-233

22. M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaf-
tan, M. J. Franklin, A. Ghodsi, M. Zaharia: Spark SQL: Relational Data Processing
in Spark. SIGMOD Conference 2015: 1383-1394

23. M. Maghzaoui, L. d’Orazio, J. Lallet: Toward FPGA-Based Semantic Caching for
Accelerating Data Analysis with Spark and HDFS. ISIP 2018: 104-115

24. M. Taniguchi, R. Matsunaka, K. Nakamichi, 2008. A time-series analysis of the
relationship between urban layout and automobile reliance: have cities shifted to
integration of land use and transport?. 415-424. 10.2495/UT080411.

25. P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas: Apache
Flink™: Stream and Batch Processing in a Single Engine. IEEE Data Eng. Bull.
38(4): 28-38 (2015)

26. P. Gupta, M. J. Carey, S. Mehrotra, R. Yus: SmartBench: A Benchmark For Data
Management In Smart Spaces. Proc. VLDB Endow. 13(11): 1807-1820 (2020)

27. P. Vijai, P. B. Sivakumar: Design of IoT Systems and Analytics in the Context
of Smart City Initiatives in India, Procedia Computer Science, Volume 92, 2016,
Pages 583-588, ISSN 1877-0509.

28. R. Perriot, L. d’Orazio, D. Laurent, N. Spyratos: A Semantic Matrix for Aggregate
Query Rewriting. ISIP 2015: 46-66

29. R. Perriot, L. d’Orazio, D. Laurent, N. Spyratos: Rewriting Aggregate Queries
Using Functional Dependencies within the Cloud. ISIP 2013: 31-42

30. Q. Luo, J. F. Naughton: Form-Based Proxy Caching for Database-Backed Web
Sites. VLDB 2001: 191-200

31. Q. Luo, J. F. Naughton, W. Xue: Form-based proxy caching for database-backed
web sites: keywords and functions. VLDB J. 17(3): 489-513 (2008)

32. Q. Ren, M. H. Dunham, V. Kumar: Semantic Caching and Query Processing. IEEE
Trans. Knowl. Data Eng. 15(1): 192-210 (2003)

33. S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. Borkar, Y. Bu, M. Carey,
I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron, Y.-S.
Kim, C. Li, G. Li, J. M. Ok, N. Onose, P. Pirzadeh, V. Tsotras, R. Vernica, J. Wen,
T. Westmann: AsterixDB: A Scalable, Open Source BDMS. Proc. VLDB Endow.
7(14): 1905-1916 (2014)

34. S. Dar, M. J. Franklin, B. Þór Jónsson, D. Srivastava, M. Tan: Semantic Data
Caching and Replacement. VLDB 1996: 330-341



18 Trung-Dung Le et al.

35. S. K. Jensen, T. B. Pedersen, C. Thomsen: Time Series Management Systems: A
Survey, IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 11,
pp. 2581-2600, 1 Nov. 2017, doi: 10.1109/TKDE.2017.2740932.

36. S. K. Jensen, T. B. Pedersen, C. Thomsen: ModelarDB: Modular Model-Based
Time Series Management with Spark and Cassandra. Proc. VLDB Endow. 11(11):
1688-1701 (2018)

37. S. K. Jensen, T. B. Pedersen, and C. Thomsen: Scalable Model-Based Management
of Correlated Dimensional Time Series in ModelarDB+, IEEE 37th ICDE, 2021, pp.
1380-1391

38. S. K. Jensen, C. Thomsen, T. B. Pedersen: ModelarDB: Integrated Model-Based
Management of Time Series from Edge to Cloud. In Transactions on Large-Scale
Data-and Knowledge-Centered Systems LIII (pp. 1-33). Berlin, Heidelberg: Springer
Berlin Heidelberg.


	Form-based semantic caching on time series

