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Revisiting remote sensing cross-sensor Single
Image Super-Resolution: the overlooked impact of

geometric and radiometric distortion
Julien Michel, Ekaterina Kalinicheva, Jordi Inglada

Abstract—In remote sensing, Single Image Super-Resolution
can be learned from large cross-sensor datasets with matched
High Resolution and Low Resolution satellite images, thus
avoiding the domain gap issue that occurs when generating the
Low Resolution image by degrading the High Resolution one. Yet
cross-sensor datasets come with their own challenges, caused by
the radiometric and geometric discrepancies that arise from using
different sensors and viewing conditions. While those discrepan-
cies can be prominent, their impact has been vastly overlooked
in the literature, which often focuses on pursuing more complex
models without questioning how they can be trained and fairly
evaluated in a cross-sensor setting. This paper intends to fill this
gap and provide insight on how to train and evaluate cross-
sensor Single-Image Super-Resolution Deep Learning models.
First, it investigates standard Image Quality metrics robustness
to discrepancies and highlights which ones can actually be trusted
in this context. Second, it proposes a complementary set of
Frequency Domain Analysis based metrics that are tailored
to measure spatial frequency restoration performances. Metrics
tailored for measuring radiometric and geometric distortion are
also proposed. Third, a robust training and evaluation strategy
is proposed, with respect to discrepancies. The effectiveness of
the proposed strategy is demonstrated by experiments using two
widely used cross-sensor datasets: Sen2Venµs and Worldstrat.
Those experiments also showcase how the proposed set of metrics
can be used to achieve a fair comparison of different models in
a cross-sensor setting.

Index Terms—Super-Resolution, Sentinel-2, Optical flows, Im-
age Quality

I. INTRODUCTION

S INGLE Image Super-Resolution (SISR), is the process
of reconstructing a High Resolution (HR) image from

a single low resolution (LR) observation by restoring or
synthesizing HR details. In the computer vision field, after a
first era of blind deconvolution or deblurring based on linear
optimization and regularization priors [1], [2], Deep Learning
based SISR has gained considerable attention in the last decade
[3]–[5]. Meanwhile, in the remote sensing domain SISR has
gradually gained an interest as an alternative or a complement
to address the user need for ever higher resolution data [6]–
[8]. In this context, SISR is envisioned either as a means
to enhance lower resolution data from public archives such
as Landsat-8 [9] or Sentinel-2 [10]–[12] in order to enable
applications requiring higher resolutions for which Very High
Resolution (VHR) commercial imagery would have to be
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purchased, or as a means to further increase the effective
spatial resolution of the latter VHR imagery [13]–[15].

A. The domain gap in SISR

As in most Deep Learning application fields, large datasets
are required to achieve convergence of the optimization pro-
cess and good generalization of the SISR models. In the
general computer vision field, those images are harvested from
the internet. In this context, corresponding LR images are
derived from HR images by simulating image degradations
[16]. However, using such simulated datasets leads to the
so-called domain gap issue: the distribution of real images
encountered at inference time differs from the distribution of
simulated images generated for training, resulting in models
that are not correctly adapted to the real data they will be used
on. Efrat et al. [17] note that a critical concern is how well
the synthetic forward model approximates real camera blur.
In [18], Rad et al. show that applying these methods on real
images, with unknown degradation from cameras, cell-phones,
etc. often leads to poor results. More recently, Zhao et al. [19]
analyzed how the down-sampling in the simulation process
affects the training and performance evaluation, noting that
super-resolution models are not correctly evaluated by using
such a process. The domain gap is also well illustrated by Liu
et al. [20] (fig. 2, p. 5463).

In remote sensing, the domain gap is even more critical.
From a signal processing point of view, sensors are well
characterized: optics and detector properties are carefully en-
gineered and monitored during the lifetime of the instrument,
motion is known with great accuracy and depth can be con-
sidered constant. The whole system acts as a relatively stable
spatial low pass filter that is usually summarized by its cut-off
spatial frequency for each spectral band [21] and its Ground
Sampling Distance (GSD). On the other hand, there is a great
diversity of designs from one sensor to another, including,
but not limited to, different spectral bands, different Spectral
Sensitivity Responses (SSR), or different designs of their focal
planes [22], [23]. Simulating a SISR dataset for a given sensor
implies using data from another sensor with a smaller GSD,
which may have completely different characteristics. This
makes the simulation impractical or unrealistic in many cases,
because of the imperfect match between between the source
and target sensor features: for instance, spectral sensitivity
or spatial frequency response of source and target bands
may differ. However, to the notable exception of producing
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base maps, remote sensing optical images are not used only
for visualization: they represent physical measurements of
surface reflectances that are further processed by means of
physical or mathematical modelling in order to derive value
added indicators such as Essential Climate Variables [24] or
Essential Biodiverisity Variables [25]. For instance, Sentinel-2
applications include vegetation monitoring [26], Land Cover
and Land Use Mapping [27], European Common Agricultural
Policy control [28] and monitoring of Water Bodies [29], all
of which require meaningful and physically correct surface
reflectance measurements as input. Therefore, remote sensing
SISR bears far more correctness and accuracy expectations
from downstream applications than the general computer vi-
sion SISR.

B. Cross-sensor SISR remote sensing datasets

Unlike the general computer vision field, where such pro-
cess would be impractical [30], corresponding LR and HR
remote-sensing images can be acquired by leveraging dif-
ferent sensors with different resolutions observing the same
area, leading to cross-sensor datasets as opposed to sim-
ulated datasets. As one of the most widely used sources
of remote sensing imagery of the last decade, Sentinel-2
has naturally been matched with a selection of HR imagery
from PlanetScope [31], PeruSat [32] and Worldview-3 [33],
though none of those datasets have been released to the sci-
entific community. More recently, several open datasets have
been published to tackle either Multi-Image Super-Resolution
(MISR) or SISR of Sentinel-2, and are listed in table I. Most
datasets have been designed for MISR, where several LR
images are matched with a single HR image, with a relaxed
constraint on the synchronous acquisition dates. If Worldstrat
[34] and BreizhSR [35] use the same pairs of sensors, the
former covers less surface than the latter, albeit with a greater
geographical diversity. It should be noted that great care has
been taken in sampling the Worldstrat dataset, in order to
capture a wide range of landscapes, by means of auxiliary
land cover maps and humanitarian Points Of Interest, while
BreizhSR only covers the Brittany region, in France. MuS2
[36], which is another MISR oriented dataset, uses Worldview
2 as the HR sensor and provides the highest potential up-
sampling factor, but also the smallest dataset in terms of
coverage. SISR oriented datasets are more scarce. In 2022,
we proposed Sen2Venµs [37], which provides a large coverage
and 8 Sentinel-2 bands with a target resolution of 5 m. More
recently, Aybar et al. proposed Sen2NAIP [38] which offers
by far the highest target resolution, but relies on aerial 8 bit
imagery. It must be stressed that if the up-sampling factor of
Sen2Venµs looks small, achieving higher up-sampling factors
with Worldstrat or BreizhSR requires to use pan-sharpening
[39] in order to merge the 6 meter multispectral image with the
1.5 meter panchromatic image in order to produce a 1.5 meter
multispectral image. It therefore leverages another technique to
improve the spatial resolution, which has its own flaws. Last,
Aybar et al. recently proposed OpenSR [40], which gathers
data from Sen2Venµs, NAIP and Worldstrat into a dataset
dedicated to SISR evaluation for remote sensing.

TABLE I
MULTI-IMAGE SUPER-RESOLUTION AND

SINGLE-IMAGE SUPER-RESOLUTION ORIENTED CROSS-SENSOR
DATASETS USING SENTINEL-2 AS THE LR IMAGE (P IS FOR

PANCHROMATIC BAND, NIR IS FOR NEAR INFRA RED BAND, P+XS
STANDS FOR PANSHARPENED IMAGES).

Name 1e3 km² HR Sensor HR bands HR res.
Worldstrat [34] 9,8 SPOT6/7 P+RGB+NIR 6m (1.5 m)
MuS2 [36] 3,2 WV2 RGB+NIR 1.5 m (0.4 m)
BreizhSR [35] 35 SPOT6/7 P+RGB+NIR 6m (1.5 m)
Sen2Venµs [37] 216,7 Venµs 8 S2 bands 5 m
Sen2NAIP [38] 2, 3 NAIP RGB+NIR 0.6 m

C. Geometric and radiometric discrepancies

By using true LR images during training, cross-sensor
datasets avoid the domain gap issue at inference time, but
gathering such datasets is challenging [41]. From the temporal
point of view, same-day satellite overpasses depend on orbits
of the different sensors, which may greatly limit data availabil-
ity. As MISR-oriented datasets, WorldStrat [34], MuS2 [36] ,
BreizhSR [35] match several Sentinel-2 images with commer-
cial VHR and do not guarantee that a same-day acquisition
exists. Sen2NAIP also may have temporal differences of up to
30 days. Those datasets are therefore prone to containing land-
scape changes. They also use different classes of sensors for
LR and HR images, with a lot of critical differences: missing
spectral bands, different levels of radiometric processing (Top
of Canopy reflectances versus uncalibrated digital counts),
geometric processing (ortho-rectification, pan-sharpening), and
image encoding (8-bits aerial imagery in Sen2NAIP). Among
those datasets, Worldstrat is of particular interest, because of
its fair sampling strategy which ensures high variability of
patches and makes sure that their distribution is representative
of end-users interests.

On the other hand, Sen2Venµs is the cross-sensor dataset
publicly available which better takes into account the above-
mentioned limitations. Its super-resolution factor of 2 for the
Sentinel-2 10 m bands and 4 for the 20 m bands may seem
modest, but it is the only dataset that offers a same-day,
15-minute apart guarantee on the LR and HR pairs. Both
the LR sensor (Sentinel-2) and the HR sensor (Venµs [42])
have similar spectral bands and similar SSR. Both have been
processed to level 2A (TOC reflectance), using the same L2A
processing software [43]. It is therefore tailored for remote
sensing applications, where both radiometric and geometric
accuracies matter.

Two kind of discrepancies arise in cross-sensor datasets:
geometric discrepancies and radiometric discrepancies. The
primary source of geometric discrepancies is the difference in
viewing angles between the HR target image and the LR input
image: different viewing angles will cause parallax effects
resulting in local shifts that may be up to several pixels
in areas with significant elevation variations. A secondary
issue is the difference in accuracy of ground projection tools
that are used to obtain map projected HR and LR images
for superimposition. A possible mitigation strategy, which
may actually reduce variability and has not been applied to
Sen2Venµs or Worldstrat but is used in MuS2, is to manually
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filter out data with geometric discrepancies. Another common
mitigation strategy is to try to estimate and compensate for
translations between LR and HR images using SIFT [37] or
SuperGlue points [40]. Figure 1 shows color compositions
that highlight local mis-registration for sample patches from
the Sen2Venµs and Worldstrat datasets. This first qualitative
assessment demonstrates that even the supposedly coherent
Sen2Venµs dataset exhibits local shifts of several pixels, which
may be explained by the large viewing angles of the Venµs
mission. Worldstrat exhibits even larger and more systematic
shifts, pointing toward differences in location accuracy in
addition to differences in viewing angles. Note that the overall
redness of the Worldstrat patches in figure 1 is caused by
radiometric bias.

On the radiometric consistency side, even if similar spectral
bands are available on both HR and LR sensors, there might be
slight differences in their SSR. However the largest source of
radiometric discrepancies is Bidirectional Reflectance Distri-
bution Function (BRDF) effects, which cause variation of ob-
served surface reflectances depending on the difference in ob-
servation angles. Some datasets contain HR images processed
by means of histogram matching [40], while in Sen2Venµs a
simple linear transformation [37] is used in order to get closer
to the LR radiometry. Figure 2 shows scatter plots of sample
patches from Worldstrat and Sen2venµs, for each spectral
band. First, it can be observed that Worldstrat is significantly
less radiometrically consistent that Sen2venµs. In addition to
the previously mentioned primary causes, it must be stressed
that Worldstrat does not offer same-day acquisitions as in
Sen2Venµs, and it does not even provide cloud masks for
Spot6/7 images, as the Level 2A of Venµs does, which explains
such large discrepancies. For the latter, it can be seen that even
if it has indeed been aligned radiometrically with an affine
transform, local radiometric discrepancies remain, as shown
in figure 3.

Sen2Venµs Sen2Venµs Worldstrat Worldstrat

Sen2Venµs Sen2Venµs Worldstrat Worldstrat

Fig. 1. Color compositions highlighting geometric discrepencies of images
from the Sen2Venµs and Worldstrat datasets (R: B3 from Sentinel-2, B, G:
B3 from Venµs or Spot6/7). Geometric discrepancies appear in red or blue
fringes. The overall redish appearance of Worldstrat patches is caused by the
radiometric bias in this dataset.

D. Contributions
Although discrepancies of cross-sensor datasets may impair

the training of SISR Deep Learning models and the proper
evaluation of their performances, their impact has been over-
looked in recent remote sensing SISR cross-sensor works. In

0.0 0.1 0.2 0.3 0.4
Sentinel-2 reflectance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Sp
ot

 6
/7

 P
+X

S

B2

0.0 0.1 0.2 0.3 0.4
Sentinel-2 reflectance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Sp
ot

 6
/7

 P
+X

S

B3

0.0 0.1 0.2 0.3 0.4
Sentinel-2 reflectance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Sp
ot

 6
/7

 P
+X

S

B4

0.0 0.2 0.4 0.6 0.8
Sentinel-2 reflectance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ot

 6
/7

 P
+X

S

B8

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Sentinel-2 reflectance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ve
nµ

s r
ef

le
ct

an
ce

.

B2

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Sentinel-2 reflectance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ve
nµ

s r
ef

le
ct

an
ce

.

B3

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Sentinel-2 reflectance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ve
nµ

s r
ef

le
ct

an
ce

.

B4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sentinel-2 reflectance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ve
nµ

s r
ef

le
ct

an
ce

.

B8

0.0 0.1 0.2 0.3 0.4
Sentinel-2 reflectance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ve
nµ

s r
ef

le
ct

an
ce

B5

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Sentinel-2 reflectance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ve
nµ

s r
ef

le
ct

an
ce

B6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sentinel-2 reflectance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ve
nµ

s r
ef

le
ct

an
ce

B7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sentinel-2 reflectance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ve
nµ

s r
ef

le
ct

an
ce

B8A

Fig. 2. Scatter plot of pan-sharpened Spot6/7 vs. Sentinel-2 reflectance from
sample patches from the Worldstrat dataset (first row) and of Venµs vs.
Sentinel-2 reflectance for sample patches from the Sen2Venµs dataset (second
and third rows)
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Fig. 3. Difference between Venµs and Sentinel-2 for B4, B3 and B2. For each
band, the difference range [−0.02, 0.02] is mapped to [0, 1] for visualization,
so that absence difference results in a mid-gray color, while strong positive
or negative differences result in dark or white areas.

[44], the authors observe that Peak Signal to Noise Ratio
(PSNR) is actually higher for SISR output with more blur. In
[36], the authors find that bicubic interpolation consistently
prevails over considered SISR techniques in some regions,
when evaluating them with PSNR. In [45], the authors show
that PSNR prefers blurred images over sharp but distorted
images, and propose to turn to perceptual IQ metrics. In
[46], the authors note that PSNR penalizes a bias in intensity
much more than noise, and propose cPSNR, which consists in
applying a set of pixel-wise shifts to one of the images and
use the maximum PSNR, in order to make PSNR more robust
to spatial mis-registration. We hypothesize that those obser-
vations are in fact related to the geometric and radiometric
discrepancies of cross-sensor datasets.

In this paper, we intend to investigate the impact of those
discrepancies, and propose a new strategy to train and assess
the performances of SISR models in a cross-sensor setting. We
intend to answer those questions by studying two major cross-
sensor datasets: the Sen2Venµs dataset, with limited ×2 (×4



TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. X, XXX 2024 4

for the 20 m bands) up-sampling factor to 5 meter resolution
and mild level of discrepancies, and the Worldstrat dataset
with high level of discrepancies and a more challenging ×4
up-sampling factor to 2.5 m resolution. There are four main
contributions in this work:

1) We analyze the limitations of Image Quality (IQ) metrics
commonly used in remote sensing SISR with respect to
radiometric and geometric discrepancies. This allows us
to identify which metrics and losses should be used in
a cross-sensor setting.

2) We propose a new set of Frequency Domain Analysis
(FDA) metrics tailored for assessing image restoration
in terms of spatial frequencies, complementing the iden-
tified set of metrics.

3) We demonstrate how the proposed metrics can be used
in order to analyze cross-sensor SISR datasets in terms
of SISR potential as well as level of geometric and
radiometric distortions.

4) We propose a more robust strategy with respect to cross-
sensor geometric and radiometric distortions for the
training and evaluation of cross-sensor SISR models.
We demonstrate that this strategy efficiently mitigates
the impact of cross-sensor distortions and enables a fair
evaluation of the performances.

The remainder of this paper is organized as follows. Section
II focuses on the analysis of existing IQ metrics, describes
the proposed FDA metrics and derives a set of robust metrics
that allow to analyze every aspect of cross-sensor SISR. In
section III, the identified metrics are then used to analyze the
potential of both the Sen2Venµs and the Worldstrat datasets in
terms of SISR performances as well as the level of geometric
and radiometric discrepancies they contain. Finally, section
IV proposes a strategy to mitigate cross-sensor discrepancies
in SISR training, and precisely measures the benefit of each
of its components in terms of radiometric and geometric
faithfulness. It also assesses achieved spatial frequency restora-
tion and general Image Quality (IQ), and shows how these
metrics can be used for robust comparison of models, in
a controlled experimental setting based on a state-of-the-art
algorithm using the Sen2Venµs and Worldstrat datasets.

E. Notations

Throughout this paper, HR image patches will have width
and height noted as H × W , whereas LR patches will have
width and height H ×W . Rb(i, j) designates a h×w matrix
of pixels (2D tensor in DL parlance) for band b of target HR
patch, Pb(i, j) designates a W × H tensor for band b of a
predicted SISR patch, and Xb(i, j) designates a w× h tensor
for band b of input LR patch, where H = s ·h and W = s ·w
and s ∈ N+⋆ is the integer scale factor. Indices (i, j) and
subscript b may be dropped when unnecessary, for the sake of
the reader.

II. ASSESSING CROSS-SENSOR SISR PERFORMANCES

This section first reviews common IQ metrics in remote
sensing SISR. A benchmark of those metrics is then proposed,

in order to evaluate how they react to geometric and radiomet-
ric discrepancies, but also to noise level or chessboard patterns.
This benchmark allows to identify which metrics should be
used to evaluate SISR models in a cross-sensor context. A new
set of FDA based metrics is then introduced to complement
this analysis. Last, the set of identified metrics is used in order
to assess the SISR potential of the Sen2Venµs and Worldstrat
datasets.

A. A short review of common IQ metrics used in SISR

IQ metrics can be divided into:
• Full Reference (FR) metrics, that require a reference HR

image in the SISR context, further divided into:
– traditional pixel-based metrics, which are derived

from local statistics of the images difference,
– perceptual metrics, which assess the discrepancies

between predicted and reference images by project-
ing them both into a feature space, usually derived
from pre-trained neural networks, and

• No Reference (NR) metrics, that attempt to evaluate
intrisic IQ without any reference image.

Some metrics may also be used as objective functions
(called loss functions in DL parlance) for model training. To
qualify as loss functions, metrics require to be differentiable
and numerically stable.

1) Full Reference local metrics: Surely the gold standard
for pixel-based metrics in computer vision and SISR in partic-
ular has been the Peak Signal to Noise Ratio (PSNR), which
has been used in almost all SISR published works. Starting
from the Mean Squared Error (MSE) given by:

MSE(Pb, Rb) =
1

WH

W−1∑
i=0

H−1∑
j=0

(Pb(i, j)−Rb(i, j))
2, (1)

and PSNR is given by:

PSNR(Pb, Rb) = 10 · log10
( d2

MSE(Pb, Rb)

)
, (2)

where d denotes the expected data range.
Another widely used metric found in SISR papers is the

Structural Similarity Index Measure (SSIM) [47], which is
given by:

SSIM(Pb, Rb) =
(2µPb

µRb
+ c1)(2σPbRb

+ c2)

(µ2
Pb

+ µ2
Rb

+ c1)(σ2
Pb

+ σ2
Rb

+ c2)
, (3)

where µx is the mean of image x, σx is the standard deviation
of image x, σxy is the covariance between images x and y,
and c1 and c2 are user defined constants allowing to enhance
the stability when images means or standard deviations are
close to zero. SSIM is computed on small local windows, and
averaged over the full image extent. As such, SSIM remains a
local metric despite its formulation based on image statistics.

Although widely adopted, PSNR and SSIM are known to
correlate poorly with visually assessed IQ [48]. Other pixel-
based metrics that are less widely adopted include Image
Fidelity Criterion [49] and the Gradient Magnitude Similarity
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Deviation [50]. Though advertised by the authors as perceptual
IQ metrics, they still rely on local computations.

2) Full Reference Perceptual metrics: Obvious limitations
of PSNR and SSIM have pushed researchers towards percep-
tual metrics, a class of metrics that tries to better match the
human perception. Perceptual metrics consist in using a neural
network that has been trained for a computer vision task, and
compute the L2 norm between the deep embeddings of refer-
ence and predicted patches, out of an intermediate layer of the
network. The network itself can be a pre-trained VGG model
[51] for instance. The most widely known perceptual metric is
the Learned Perceptual Image Patch Similarity (LPIPS) [45].
LPIPS is used in SISR review papers to compare methods [3],
[6]. Another lesser known perceptual metric is PieAPP [52],
which directly predicts similarity scores based on a network
trained using pair-wise human preference annotations. Because
they are based on neural networks, perceptual metrics are fully
differentiable and can thus also be used as a loss function [53],
[54].

3) No Reference metrics: In order to be able to assess
IQ in contexts where no reference image is available, many
NR IQ metrics have been proposed in the literature. Mitall
et al. proposed BRISQUE [55], which builds local features
mapped to IQ score by a Support Vector Regressor. It is
trained on human annotated scores, yielding a score between
0 and 100, 0 being the best IQ. NIQE [56] elaborates on the
idea of collecting quality aware features from the image but
differs from BRISQUE in that those features are fit with a
multivariate Gaussian, which is then compared to a multi-
variate Gaussian fitted on a corpus of natural images. PIQE
[57] differs from the previous approaches in that no human
annotated supervision is required, the final score being derived
from local blocks by a set a of expert rules. More recently, Ma
et al. [58] used a human supervised study in order to derive
SISR quality of natural images by means of a regression model
working on features from Discrete Cosine Transform (DCT),
Wavelet Decomposition and patch-level Principal Components
Analysis. CLIP-IQA [59] uses Contrastive Language-Image
Pre-training (CLIP), which is a model that is trained on pairs
of image and text. The model uses the cosine similary between
non-ambiguous antonym text prompts as the basis to provide
a NR IQ metric. In [44] the authors propose to use CLIPA-v2
[60] with cosine similarity (agreement of 82.5% with visual
inspection). In [15], the authors used BRISQUE and PIQE for
the qualitative assesment of IQ of their SISR algorithm.

B. Benchmark of metrics for cross-sensor SISR

IQ metrics suited for cross-sensor SISR should be able to
correctly assess the level of blur of SISR predictions in the
presence of geometric and radiometric discrepancies in the
dataset. In particular, different SISR models yielding increas-
ing levels of blur should be correctly ranked by the metric. In
order to assess how cross-sensor dataset discrepancies affect
the blur ranking capabilities of standard SISR metrics, the
following experiments have been conducted.

Starting from a set of sample HR patches Rb for band b, ge-
ometric discrepancies are simulated by a simple translation in
the diagonal direction, with a bicubic resampling, as follows:

Rgeom
t = ω

(
R, (t/

√
2, t/

√
2)
)
, (4)

where ω is the bicubic resampling operator, and t is the
magnitude of the diagonal translation.

Radiometric discrepancies are simulated by a simple linear
transform of the radiometry of slope a around a fixed point c,
as given in equation 5:

Rrad
a,c = b+ a(R− c). (5)

After radiometric or geometric distortion simulation, blur is
simulated by convolving the data with a Gaussian kernel of
width σ0, where σ0 is computed as the standard deviation of
a Gaussian kernel having a mtf value m at Nyquist rate given
by:

fmtf→σ(m) =
1

π

√
−2 ln(m). (6)

The Gaussian kernel is given by:

ϕσ(i, j) =
1

σ
√
2π

e−
i2+j2

2σ2 , (7)

and its convolution with the input image, as well as optional
addition of noise with standard deviation σnoise, is formulated
as:

Rsmooth
σ0,σnoise

= R ∗ ϕσ0 + ϵ, ϵ ∼ N (0, σnoise). (8)

Note that the noise term ϵ can also be replaced by a 2D
periodic pattern (also called chessboard pattern), of variable
intensity, which will be used to assess the metrics robustness
to chessboard artifacts that can be yielded by sub-pixel con-
volution layers.

This simulation process is applied to 128 HR patches from
the Sen2Venµs dataset using band B4. The choice of this
particular spectral band is arbitrary and does not impact the
analysis. The simulation order is as follows: spatial distortion,
radiometric distortion, blur, noise, and chessboard pattern.
One parameter among those is varied at a time, for a fixed
range of mtf values. Radiometric distortion uses c = 0.1 and
a ∈ [0, 0.1] for the slope values. Geometric distortion uses
t ∈ [0, 2] pixels. Noise level is given by σnoise ∈ [0, 0.01]. For
the pattern experiment, a fixed 4×4 random pattern has been
generated. Each investigated metric is used to measure the
similarity between the input images with no degradation and
the simulated images with increasing levels of blur and studied
distortion. Only a selection of the most interesting results are
presented in the following sections, and more results can be
found in appendix A. Metric implementations from the PIQ
library [61] have been used.

A perfect IQ metric for cross-sensor SISR would of course
rank levels of blur correctly regardless of the level of distor-
tion. If it were to be used as a loss function, this IQ metric
should also not respond to distortion at all, regardless of the
blur level: if less distortion yields better loss values, chances
are that the model will learn the distortion along with the
image sharpening.
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1) Local metrics: Figure 4 presents the result of the
benchmark for PSNR. Since Sen2Venµs uses L2A surface
reflectances, data range for PSNR is set as d = 1. Each chart
in the figure shows how the metric reacts to one of the four
investigated distortions, for different levels of blur ranging
from None (no blur applied) or m = 0.4 (very sharp image)
to m = 0.001 (very blurry image).
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Fig. 4. Benchmarking of PSNR (higher is better) with respect to geometric
distortion, radiometric distortion, noise level and chessboard pattern level, for
different levels of blur, ranging from mtf =None (no blur applied) or mtf =0.4
(very sharp images) to mtf =0.001 (very blurry images).

Since PSNR is a metric that should be maximized (higher
values are better), it would be expected that increasing levels
of blur yield decreasing PSNR values. However, it can be
observed that if geometric distortion is higher than 1 pixel,
PNSR does not distinguish sharper images from smoother
ones, and will even prefer the latter. For a given level of
sharpness, PSNR of course favors less spatial distortion, which
means that a network learning some spatial distortion during
training might exhibit higher PSNR, regardless of whether
it actually has better super-resolution performances. PSNR is
also sensitive to spectral distortion, as its values for different
levels of smoothness become very close as spectral distortion
gets higher. This means that PSNR might favor networks
that have learned the spectral distortion of the cross-sensor
datasets better over networks that have sharper, undistorted
predictions. This experiment confirms observations on PSNR
behavior with respect to visual inspection made in [36], [44],
[45]: in a cross-sensor setup, PSNR will simply not measure
SISR performances and will favor smoothness, as well as
learned radiometric and geometric distortions. Works such as
[62], which propose a new SISR method and report a modest
improvement of PSNR of 0.377 to 0.958 decibels (dB) on
the Sen2Venµs dataset, should be analyzed with great caution:
their method may have captured more of the spatial and
spectral discrepancies of the dataset, without any improvement
in sharpness.

Despite being advertised as fixing the defects of PSNR and
other MSE based-metrics [48], SSIM suffers from the same
sensitivity to spatial and spectral distortion, as shown in figure
5. In fact, all pixel-based metrics that have been analyzed in
these experiments show the same trends.
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Fig. 5. Benchmarking of SSIM (higher is better) with respect to geometric
distortion, radiometric distortion, noise level and chessboard pattern level, for
different level of blur, ranging from mtf =None (no blur applied) or mtf =0.4
(very sharp images) to mtf =0.001 (very blurry images)

According to these findings, none of those metrics should
be used to evaluate cross-sensor SIRS, or as loss terms to
train cross-sensor SISR models, as they are unable to measure
or promote sharpness, and will be dominated by spatial and
spectral distortions. This of course does not hold for simulated
datasets where such discrepancies do not exist.

2) Perceptual metrics: Defects of local metrics, though not
characterized as in the present work, have been empirically
observed by researchers and have justified the introduction
of the perceptual metrics and losses, as presented in section
II-A2. Since most of them are trained for RGB images, in this
work a single band is used and duplicated to form a gray-
scale RGB image, which is clipped to the range [0, 1]. Figure
6 shows that the LPIPS metric indeed behaves consistently
in the presence of geometric and radiometric distortion and
consistently favors sharpness over blur. The same gentle slope
toward less distortion can be observed regardless of the level
of blur. This slope exists, which means that when used as a
loss term, LPIPS will push the network toward learning to
reduce those distortions. If LPIPS also behaves consistently
with respect to the level of noise, it seems to favor a small
amount of chessboard pattern, especially for the more blurry
images. Though not shown in these experiments, LPIPS is
also well conditioned to be used as a loss term, since it is
ultimately a L2 loss applied to features extracted by a CNN,
and is therefore fully differentiable.

3) No Reference Image Quality metrics: Figure 7 shows
how the BRISQUE score responds to the experiments. As
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Fig. 6. Benchmarking of LPIPS (lower is better) with respect to geometric
distortion, radiometric distortion, noise level and chessboard pattern level, for
different levels of blur, ranging from mtf =None (no blur applied) or mtf =0.4
(very sharp images) to mtf =0.001 (very blurry images)
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Fig. 7. Benchmarking of BRISQUE (lower is better) with respect to geometric
distortion, radiometric distortion, noise level and chessboard pattern level, for
different levels of blur, ranging from mtf =None (no blur applied) or mtf =0.4
(very sharp images) to mtf =0.001 (very blurry images)

a NR QI metric, BRISQUE is blind to the radiometric and
geometric distortions, the slight variations in response to
geometric distortion being caused by the bicubic resampling.
An interesting outcome of this experiment is the fact that
BRISQUE favors a certain amount of noise or chessboard
pattern. Being trained on human perception annotations, this
surely reflects the fact that noise makes images look less
synthetic. Nevertheless, in a SISR context, this trend might
be problematic, especially when using BRISQUE for selecting
the best model during training for instance.

C. Frequency Domain Analysis and derived metrics

As established by the experiments presented in the previous
section, local metrics should be avoided in the context of
cross-sensor SISR, while perceptual and NR IQ metrics are
better choices for this task. However, they still have important
limitations: perceptual metrics are not completely insensitive
to discrepancies, while NR IQ metrics favor properties such as
noise that may be related to the dataset they have been trained
on.

This section proposes to leverage the conventional Discrete
Fourier Transform (DFT), noted F , in order to derive indi-
cators focused on spatial frequency restoration. Analysing IQ
through image decomposition has been proposed in [63] and
[58]. DFT in particular has been largely used to derive Image
Quality metrics [64]–[66]. More recently, FDA has been used
[67] in order to study the effects of the simulation process
in a remote sensing SISR context using simulated datasets.
The proposed approach draws inspiration from [68], [69] but
adapts it to the problem of SISR. It consists in analysing the
Frequency Attenuation Profile (FAP ) for bandwidth [fm, fM ].
Let

Ufm,fM =
{
(u, v) : fm ≤

√
u2 + v2 < fM

}
(9)

denote the set of discrete spatial frequencies (u, v) that lies
within a ring defined by fm and fM in Fourier plane, FAP is
given by:

FAP [P ](fm, fM ) =
1

#Ufm,fM

∑
(u,v)∈Ufm,fM

|F [P ](u, v)|,

(10)
where #Ufm,fM is the number of elements in Ufm,fM , and
F [P ](u, v) is the DFT of image P .
FAP [P ](fm, fM ) is successively computed over a set of

non-overlapping bandwidth intervals as given by the DFT
quantization. For the sake of simplicity, the resulting set of
values is denoted FAP [P ](fn), n ∈ [0, N ] in the following,
with fn the central frequency of each frequency intervals.
It is then averaged across batches and dataset. Finally, the
normalized logarithmic FAP is computed, which gives spatial
frequency attenuation in dB:

FAP
⋆[P ](fn) = 10 ·

(
log10

(
FAP [P ](fn)

)
− log10

(
FAP [P ](f0)

))
,

(11)

Figure 8 shows such average FAP
⋆ for original Venµs

patches, bicubic up-sampled Sentinel-2 patches and blur levels
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in-between, using band B4 and the same 128 patches as used in
section II-B. The increasing damping of higher frequencies can
be clearly observed. The area highlighted in green, between
the bicubic up-sampled Sentinel-2 curve and the Venµs curve,
represents the maximum frequency restoration that can be
expected from a SISR algorithm trained on this dataset.
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Fig. 8. Normalized log-Frequency Attenuation Profile FAP
⋆ for reference

Venµs patches, Sentinel-2 2x bicubic up-sampled, and different levels of blur,
for band B2. Spatial frequencies in x axis correspond to normalized spatial
frequencies f = fn

fN
.

0.0 0.2 0.4 0.6 0.8 1.0
Spatial freq. f (1/px)

35

30

25

20

15

10

5

0

At
te

nu
at

io
n 

(d
B)

Venµs
Sentinel-2 bicubic
Sentinel-2 SISR
Potential Freq. Restoration (PFR)
Actual Freq. Restoration (AFR)
Freq. Restoration Undershoot (FRU)
Freq. Restoration Overshoot (FRO)
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Figure 9 gives an example of the same graph as in figure 8
with the addition of a single SISR algorithm. The three curves
allow to define different areas. In this work we define the
Potential Frequency Restoration (PFR) w.r.t. bicubic spatial
interpolation as the area between the FAP

⋆ of the original
venus and the FAP

⋆ of the bicubic interpolation. It is esti-
mated as :

PFR(Rb, Xb) =
∑

max
(
(FAP

⋆[Rb]−FAP
⋆[Xb]), 0

)
.

(12)

Likewise, we define the Actual Frequency Restoration
(AFR), which measures the amount of spatial frequency con-
tent that has been restored with respect to bicubic up-sampling,
as:

AFR(Pb, Rb, Xb) =
∑

max
(

min
(
FAP

⋆[Pb],FAP
⋆[Rb]

)
,

min
(
FAP

⋆[Xb],FAP
⋆[Rb]

))
−min

(
FAP

⋆[Rb],FAP
⋆[Xb]

)
.

(13)

From PFR and AFR, we derive the Frequency Restoration
Rate (FRR) as follows:

FRR(Pb, Rb, Xb) =
AFR(Pb, Rb, Xb)

PFR(Rb, Xb)
. (14)

FRR measures how much of the PFR have actually been
restored, as given by AFR. It ranges from 0 when no frequency
have been restored to 1 when the full PFR has been restored
by the algorithm.

There might be ranges of frequencies for which the SISR
FAP

⋆ is actually higher than the reference FAP
⋆, meaning

that the restoration of those frequencies is too strong. In
order to measure this, we define the Frequency Restoration
Overshoot (FRO) as the ratio between the FRO area and the
total area under the reference FAP

⋆, as illustrated in figure 9,
and given by:

FRO(Pb, Rb, Xb) =
1∑

FAP
⋆[Rb]

(∑
FAP

⋆[Rb]

− max(FAP
⋆[Pb],FAP

⋆[Rb])
)
.

(15)

Similarly, there might be ranges of frequencies for which
the SISR FAP

⋆ is actually lower than the bicubic upsampled
LR FAP

⋆, meaning that the restoration of those frequencies
is worse than a bicubic interpolation. In order to measure this,
we define the Frequency Restoration Undershoot (FRU), as the
ratio between the FRU area and total are under the bicubic up-
sampled FRA, as illustrated in figure 9, and given by:

FRU(Pb, Rb, Xb) =
1∑

FAP
⋆[Xb]

∑(
FAP

⋆[Xb]

− min(FAP
⋆[Pb],FAP [Xb])

)
.

(16)

According to these definitions, the SISR algorithm in figure
9 has a FRR of 43.6%, a FRO of 0.5% and a FRU of -
2.49%. Note that by design, bicubic up-sampling always has
0% for AFR, FRR, FRU and FRO. Figure 10 shows the results
of applying the benchmark protocol of section II-B to FRR.
The proposed metric exhibits a great sensitivity to blur and is
almost insensitive to spectral distortion. It is also insensitive
to spatial distortions, the oscillations of the sharper mtf being
caused by the bicubic interpolation during the simulation
process. As expected, noise increases the spatial frequency
content, which can be mistakenly interpreted as frequency
restoration. However, ordering of blur levels remain consistent
even at higher noise levels.
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Fig. 10. Benchmarking of the proposed FRR metric (higher is better)
with respect to geometric distortion, radiometric distortion, noise level and
chessboard pattern level, for different level of blur, ranging from mtf =None
(no blur applied) or mtf =0.4 (very sharp images) to mtf =0.001 (very blurry
images)

D. Robust metrics for cross-sensor SISR

The analysis presented in this section shows that PSNR
and other local metrics should absolutely not be used for
the evaluation of cross-sensor SISR performances. It allows
to define a set of robust metrics for this task:

• The LPIPS perceptual metric allows to measure proximity
with target images, while being relatively insensitive to
radiometric and geometric discrepancies, even if LPIPS
has a tendency to favor chessboard patterns,

• The BRISQUE metric can be used to assess the general
image quality and is insensitive to radiometric and geo-
metric discrepancies. It should be noted that BRISQUE
favors a bit of noise or chessboard patterns,

• The proposed AFR, FRR, FRO and FRU allows for fine
grain characterization of the achieved spatial frequency
restoration.

Finally, this set of metrics should be complemented with
metrics that measure the spectral and spatial distortions in-
duced by the SISR network. Measuring spectral distortion is
obvious, and has been used for years in the pan-sharpening
community [39]. The SISR output is Low Pass Filtered (LPF)
and down-sampled back to the input patch size, after what
traditional local metrics such as RMSE can be used, as given
by:

RMSELR(P,X) =

√
1

WH

∑
w,h

(
X −

(
P ∗ ϕσ0

)
↓s

)2

, (17)

where ↓s denotes the decimation operator by a stride of s and
ϕσ0

is a Gaussian kernel as introduced in equation 7.
In order to measure geometric discrepancies, we propose

to leverage an auxiliary pretrained UNet that estimates the

optical flow between input LR patches X and predicted SISR
patches P , noted as FP⋆

b →Xb
. Pretraining of this model is

not specific to this work, and is detailed in appendix B. The
proposed Geometric Distortion (GD) metric is the L2 norm of
the estimated optical flow:

GD(Pb, Xb) =
√
|FP⋆

b →Xb
|2. (18)

III. ANALYSING DATASETS WITH PROPOSED METRICS

In this section, we propose to use metrics identified in
section II in roder to obtain a prior insight on the level of
geometric and radiometric distortions, as well as on the general
HR images IQ and the potential of frequency restoration of
each dataset.

A. Sen2Venµs

The 130k patches of Sen2Venµs are spread across 29
sites, for each of which the Venµs zenith viewing angle
is constant across time. Because of the optimization of the
orbital resource, most of those 29 sites are acquired with
a viewing angle higher than 20°. Since the actual spatial
resolution follows the cosine of the zenith angle, sites with
higher viewing angle might actually provide less interesting
patches in terms of frequency restoration. Fortunately, the PFR
FDA metric proposed in section II-C can be leveraged to gain
insight on the potential of frequency restoration for each site.
Figure 11 presents a scatter plot comparing the Venµs zenith
view angle and the PFR for each site averaged over 10 m
bands. It can be observed that most of the highest viewing
angle sites have indeed an average PFR below 6%. Most of
sites with lower viewing angles have an average PFR between
6% and 12%, with the notable exception of sites K34-AMAZ
and FGMANAUS, which exhibit PRR higher than 17%. Those
sites are located in tropical forests. The number of patches is
limited (less than 2000) with respect to other sites, and all
patches are patches over forest areas, which have a specific
texture that causes this boost in PFR. This points out that the
PFR is not only related to the intrisic sensor parameters, but
also to the observed landscape, as a very smooth landscape
will exhibit low PFR even with good HR sensors.

In order to analyze the impact of mix of PFR in the training
set, two different training sets have been selected, as shown
in figure 11. The number of patches has been limited to 2000
patches per sites so as to avoid over-representation of some
land cover types such as forest. Training set s2v1 has 20 sites
for a total of 35 954 training patches, with a majority of sites
with high viewing angles and low PFR, whereas training set
s2v2 has only 8 sites among those with PFR higher than 6%,
for a total of 14 615 patches. This allows to investigate the
relative importance of having a diverse dataset with respect
to selecting good quality samples. A separate testing set is
formed with sites MAD-AMBO and ES-IC3XG, which have
mid-range viewing angles and PFR, for a total of 3 392
patches.

Metrics proposed in section II-D can be used to analyze the
quality of the two Sen2Venµs training sets s2v1 and s2v2.
Table II shows the PFR, radiometric bias and RMSE, and



TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. X, XXX 2024 10

5 10 15 20 25 30 35
Venµs Zenith Angle (°)

4

6

8

10

12

14

16

18

Po
te

nt
ia

l F
re

qu
en

cy
 R

es
to

ra
tio

n 
Ra

te
 (%

)

FR-LQ1

NARYN

FGMANAUS

MAD-AMBO

ARM

BAMBENW2

ES-IC3XG

ANJI

ATTO

ESGISB-3

ESGISB-1FR-BIL

K34-AMAZ

ESGISB-2ALSACE

LERIDA-1

ESTUAMAR

SUDOUE-5
KUDALIAR

SUDOUE-6
SUDOUE-4SUDOUE-3

SO1
SUDOUE-2

ES-LTERA

FR-LAMSO2

BENGA

JAM2018
Training set s2v1
Training set s2v2
Testing set

Fig. 11. Average PFR vs. number of patches available for each of the
Sen2Venµs sites.

HR BRISQUE score for all 8 bands of both training sets.
As expected, training set s2v2 exhibits higher PFR values
than training set s2v1 for all bands, with increases of 2 to
3%. It also exhibits lower radiometric distortion on all bands,
which can be explained by lower BRDF effects induced by
lower viewing angles. The BRISQUE scores are rather similar
between both training sets but surprisingly, are a bit better for
training set s2v1. This may be explained by the ratio between
blur and noise being slightly different in both sets.

TABLE II
POTENTIAL FREQUENCY RESTORATION RATE (PFR), RADIOMETRIC BIAS

AND RMSE, AND HR BRISQUE SCORE FOR RAW AND CORRECTED
(BETWEEN PARENTS) ESTIMATED FROM 1600 PATCHES OF THE

SEN2VENµS TRAINING SETS S2V1 AND S2V2. HERE, THE ↑ (RESP. ↓)
INDICATES THAT THE METRIC SHOULD BE MAXIMIZED (RESP.

MINIMIZED).

TS Band PFR (%) ↑ Bias ± rmse (1e-3)↓ BRISQUE ↓
s2v1×2 B2 5.60% -0.012 ± 6.980 53.78

B3 5.12% -0.001 ± 8.018 49.06
B4 5.88% 0.034 ± 9.755 44.60
B8 6.79% 0.155 ± 19.572 35.74

s2v2×2 B2 7.51% -0.060 ± 6.157 60.32
B3 8.00% -0.096 ± 6.925 47.75
B4 8.70% -0.050 ± 8.459 48.66
B8 9.72% -0.295 ± 17.800 37.10

s2v1×4 B5 15.11% 0.225 ± 8.632 40.85
B6 15.23% 0.683 ± 13.632 37.12
B7 14.95% 0.763 ± 15.565 36.36
B8A 16.17% 0.757 ± 16.621 35.01

s2v2×4 B5 18.46% -0.089 ± 7.502 40.16
B6 18.73% 0.099 ± 11.585 38.40
B7 18.64% 0.111 ± 13.441 37.96
B8A 19.51% 0.082 ± 14.504 37.24

Table III shows the mean and standard deviation of the
optical flow amplitude estimated with trained models on s2v1
and s2v2, expressed in HR pixels. It can be observed that
the level of geometric distortion is similar in all datasets,
with a mean amplitude around 0.6 HR (5 m) pixels and a

standard deviation of the same amount. Geometric Distortion
is similar in both training sets and coherent between 10 m
and 20 m bands. Since geometric distortion is yielded by both
high viewing angles and relief, and training set s2v2 still has
large viewing angles for most sites, this result is expected.

TABLE III
MEAN AND STANDARD DEVIATION OF SPATIAL DISTORTION AMPLITUDE

MEASURED ON 1600 PATCHES OF THE SEN2VENµS TRAINING SETS S2V1,
S2V2.

TS Band Mean (hr pix.) Std. dev. (hr pix.)
s2v1×2 B4 0.578 0.667
s2v1×4 B7 0.603 0.603
s2v2×2 B4 0.685 0.655
s2v2×4 B7 0.621 0.599

B. Worldstrat

The Worldstrat dataset is oriented toward MISR, and offers
several Sentinel-2 patches from different dates for a single
HR date. In order to extract a SISR oriented dataset from
it and minimize discrepencies related to temporal differences
between HR and LR patches, only pairs of patches for which
the acquisition date absolute difference is lower than 10
days have been selected. For POIs where more than one
pair meets this criterion, only the pair with the closest dates
is retained. Sentinel-2 10-meter bands B2, B3, B4 and B8
have been extracted from the L2A product. Since there are
slight variations in patch size and HR patches have no geo-
referencing, a 128x128 pixel patch has been extracted from
the center of the Sentinel-2 L2A patch. The corresponding
pan-sharpened HR patch, whose resolution is 1.6 meter, is
first downsampled to 2.5 meters and 5 meters by means of
equation 8, with mtf value set to 0.1. Then a 512×512 or
256×256 pixels patch is extracted. This process yields a ×4
dataset called ws×4 (10 m → 2.5 m) and a ×2 dataset (10 m →
5 m) called ws×2. Training, validation and test split proposed
in Worldstrat have been retained. Additionally, since no cloud
screening has been performed on the dataset and HR patches
have no cloud mask, the linear correlation between amplitude
of HR and LR patches has been computed and pairs of patches
with a correlation below 0.2 have been discarded. This yields
a rather small dataset of 2 144 training patches, 260 validation
patches and 274 testing patches.

Table IV shows the analysis of the Worldstrat dataset values
for PFR, LR radiometric bias and RMSE, and HR BRISQUE
score. With respect to the Sen2Venµs dataset, Worldstrat
exhibits higher PFR with lower HR BRISQUE scores. The
2.5 m dataset yields a ×4 up-sampling factor that can explain
higher PFR, but even the 5 m dataset, which has the same
up-sampling factor as Sen2Venµs for 10 m bands, has PFR
as large as twice those observed on Sen2Venµs. This points
out that the Worldstrat HR images generated by the process
described above are much sharper and clean than the Venµs
images, and of general higher quality, as pointed out by the
BRISQUE score. On the other hand, because of temporal
changes and general consistency between sensors, radiometric
distortion is also much larger on Worldstrat, with non null
biases and larger RMSE values.
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TABLE IV
POTENTIAL FREQUENCY RESTORATION RATE (PFR), RADIOMETRIC BIAS
AND RMSE, AND HR BRISQUE SCORE ESTIMATED FROM 160 PATCHES
OF THE WORLDSTRAT TRAINING SET. HERE, THE ↑ (RESP. ↓) INDICATES

THAT THE METRIC SHOULD BE MAXIMIZED (RESP. MINIMIZED).

Dataset Band PFR (%) ↑ Bias ± rmse (1e-3)↓ BRISQUE ↓
ws×4 B2 22.65% -21.946 ± 87.776 43.10

B3 22.60% -32.887 ± 83.459 38.87
B4 22.04% -37.619 ± 83.835 39.96
B8 26.01% -81.538 ± 94.546 32.33

ws×2 B2 18.15% -21.403 ± 88.224 33.13
B3 18.40% -32.457 ± 84.272 28.65
B4 18.31% -37.438 ± 84.511 30.02
B8 22.42% -80.350 ± 95.298 17.35

Table V shows the mean and standard deviation of the
optical flow amplitude estimated with trained models on ws×4
and ws×2 training sets, expressed in HR pixels. It can be
observed that Worldstrat based datasets exhibit higher geo-
metric distortion than Sen2Venµs datasets, with more than 6
(2.5 m) pixels of mean amplitude and almost 5 (2.5 m) pixels
of standard deviation.

TABLE V
MEAN AND STANDARD DEVIATION OF SPATIAL DISTORTION AMPLITUDE

MEASURED ON 1600 PATCHES OF THE WS×2 AND WS×4 DATASETS.

TS Band Mean (hr pix.) Std. dev. (hr pix.)
ws×4 B4 6.274 4.789
ws×2 B4 3.157 2.389

IV. ROBUST STRATEGY FOR CROSS-SENSOR SISR

In this section, we propose a strategy for training and
evaluating models that is robust to radiometric and geometric
distortions. This strategy is then applied to the 6 different
training datasets as summarized in table VI. An ablation
study is performed in order to demonstrate the benefits of
the proposed strategy in terms of learned radiometric and
geometric discrepancies.

TABLE VI
SUMMARY OF THE CONDUCTED EXPERIMENTS WITH TRAINING SET,

SENTINEL-2 BANDS AND ASSOCIATED UP-SAMPLING FACTOR.

Training set Source Dataset Bands Up-sampling
s2v1×2 Sen2Venµs B2, B3, B4, B8 10 m → 5 m
s2v2×2 Sen2Venµs B2, B3, B4, B8 10 m → 5 m
s2v1×4 Sen2Venµs B5, B6, B7, B8A 20 m → 5 m
s2v2×4 Sen2Venµs B5, B6, B7, B8A 20 m → 5 m
ws×2 Worldstrat B2, B3, B4, B8 10 m → 5 m
ws×4 Worldstrat B2, B3, B4, B8 10 m → 2.5 m

A. Proposed strategy

In order to mitigate the effect of geometric and radiometric
distortions on cross-sensor SISR training, we propose the
following strategy, which consists in generating distortions-
free HR patches during training, so that the model avoids
learning discrepancies. This strategy is described in figure 12.
This strategy involves three main steps:

1) estimate FX⋆
b →Xb

, the optical flow between the LR patch
and the HR patch,

2) use the estimated flow in order to resample HR patch
onto LR patch, thus reducing geometric distortion to the
extent of what has been captured by the optical flow
estimation,

3) inject low frequency radiometric residuals into geo-
metrically corrected HR patch in order to correct for
radiometric discrepancies.

It should be noted that this strategy is only applied
during training : the set of metrics derived in section II has
been selected to be robust to discrepancies, and those metrics
are computed one raw data during model evaluation. Step 1
is covered by the pre-trained optical flow estimation auxiliary
UNet, as has already been covered in appendix B. Step 2 and
3 will be detailed in the following sections.

1) Geometric correction (step 2): The FX⋆
b →Xb

optical
flow estimated by the pretrained UNet as described in section
IV-C is first low-pass filtered with a Gaussian kernel of
width σ1 in order to smooth out irregularities that might
alter the quality of images that will be resampled using the
flow. Value of σ1 is empirically set to a large width of
σ1 = fmtf→σ(1e

−6) by means of eq. 6. The field is then
up-sampled to Rb initial resolution using scaling factor s. The
whole operation is summarized by:

FR⋆
b→Xb

= s×
(
FX⋆

b →Xb
∗ ϕσ1

)
↑s, (19)

where ↑s denotes a bicubic upsampling of factor s.
Then reference HR patches R can then be corrected from

estimated optical flow (and thus geometric distortion), by
means of:

∼
R = ω(R,FR⋆

b→Xb
). (20)

This process forms
∼
R, the geometrically corrected HR

patch.
2) Radiometric correction (step 3): In order to correct

for radiometric distortion, we propose to employ a strategy
similar to the residual correction which is usual in the thermal
sharpening literature [70].

∼
R is down-sampled back to the LR

resolution by mean of equation 25. A residual is formed by
its difference with the input LR patches X . This difference is
further low pass filtered with Gaussian kernel of width σ2, and
finally upsampled back to HR resolution. It is then added to
∼
R. Value of σ2 is experimentally set to a large width of σ2 =
fmtf→σ(1e

−5) by means of eq. 6, while value for σ0 is the
same as used in section IV-C (σ0 = fmtf→σ(0.4)). Intuitively,
this ensures that down-sampling the radiometrically corrected
HR patches would yield consistent radiometries with respect
to LR patches. The low pass filtering of the LR residual avoids
injecting back blurry details in the corrected HR patches. This
correction requires a good geometric alignment between HR
and LR patches, which is ensured by the geometric correction
of equation 20. This process is summarized as follows:

∼
R

⋆

=
∼
R+

((
(X −

∼
R ∗ ϕσ0

)
↓s

)
∗ ϕσ2

)
↑s . (21)

The analysis of the impact of the proposed training strategy
on the target image quality for each dataset can be found in
appendix C.
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X

LR patch
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b →Xb

Optical flow

Smoothing +
upsampling

(eq. 19)

Resampling
(eq. 20)

2⃝
∼
R

Geometrically
corrected

Difference
(eq. 21)

Downsampling
(eq. 21)
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(eq. 21)
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(eq. 21)

3⃝
∼
R

⋆

Radiometrically
corrected

Step 1: appendix B

Step 2: section IV.A.1

Step 3: section IV.A.2

Fig. 12. Overview of robust strategy workflow. Outputs of the three main steps are highlighted in green.

B. Experimental setup

This section presents the experimental setup used to demon-
strate the benefits of the proposed robust strategy. All ex-
periments adopt the general framework of ESRGAN [53],
which consists in training the SRResNet [54] architecture with
Residual in Residual Dense Blocks (RRDB) in a generative
adversarial training scheme, with the following modifications.
We employ 6 residual blocks of 64 latent features for all
experiments except for the Sen2Venµs 20 m → 5 m ex-
periment, for which only 5 blocks can be used at most in
order to get pixels with a full receptive field. While this
architecture may seem relatively shallow, it can be trained
in a reasonable amount of time and seems to perform well
enough for the purpose of assessing proposed metrics and
strategy in a cross-sensor remote sensing SISR setting. The
discriminator is a standard UNet with 32 features at the highest
level and four levels, using Spectral Normalization as in [54].
The GAN loss term LRa

G is given by the Relativistic Average
Discriminator formulation introduced in [53] (eq. 1 and 2).
Label smoothing of 0.1 is introduced on the real term in order
to prevent the discriminator to become overconfident [71]. The
total generator loss is given by:

LG = Llpips(P,R) + λLRa
G + ηL2(P,R), (22)

where LPIPS replaces the perceptual loss used in ESRGAN.
Parameters λ=0.005 and η=0.1 have been chosen experimen-
tally. Experiments are named using the following convention:

• baseline: R (no corrections),
• geom:

∼
R (geometric corrections only, given by equation

20),

• geom+rad:
∼
R

⋆

(geometric and radiometric corrections,
given by equation 21).

As already mentioned, corrected data are only used for loss
computation during training and not during testing: IQ metrics
are computed on raw data. This is important to avoid bringing
back domain gap issue, were performances are evaluated on
corrected data that are not representative of real world data.
Details of the training process can be found in appendix D.

C. Results

The first part of this section presents the ablation study
experiments, demonstrating the effectiveness of the proposed
strategy. In a second part, it demonstrates how the set of
metrics proposed in sections II-D and IV-C can be used to
compare different SISR models.

1) Effectiveness of the proposed strategy: This section
investigates the effects of geometric correction alone or ge-
ometric and radiometric corrections strategies with respect to
the baseline. Table VII shows the measured performances for
all experiments. Note that for the sake of readability, only one
band is analyzed, corresponding to the band used for optical
flow estimation. Remaining results are presented in appendix
E. Figure 13 shows the FAP

⋆ for each training set and each of
the 3 strategies. Figures 14 to 17 show input, target and SISR
prediction for models trained with each of the 3 strategies for
sample patches from testing sets, for all experiments.

In all cases, the geometric correction strategy (geom) allows
to reduce the measured geometric distortion of the predicted
image with respect to baseline. Gains range from 2 HR pixels
to 0.5 HR pixels in the case of the ws×4 training set, and from
0.247 HR pixels to 0.07 HR pixels for the s2v1×2 training
set. The smallest gain is obtained with s2v1×4, while still
halving the error. Figure 18 illustrates the effectiveness of the
proposed geometric correction strategy for models trained on
s2v1×2 training set, using patches from the Sen2Venµs 10 m
testing set. Distortion in predicted images is clearly visible
in baseline images and vanishes for both geometric correction
alone and geometric and radiometric correction. The geometric
correction also has a small impact on other IQ metrics. For
Sen2Venµs based training sets, AFR and FRR are lowered by
a small amount, and BRISQUE also increases slightly. This
is caused by the bicubic resampling with the optical flows,
which introduces a bit of blur and aliasing depending on the
strength of the local geometric correction. In figure 13, it can
be observed that this reduction of AFR is targeted on higher
spatial frequencies, which is consistent with blur introduced
by resampling. Note that this is hardly noticeable in predicted
patches of figures 14 and 15. Interestingly, RMSELR decreases,
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TABLE VII
PERFORMANCE COMPARISON OF THE BASELINE STRATEGY WITH RESPECT TO THE GEOMETRIC CORRECTION ALONE AND GEOMETRIC AND

RADIOMETRIC CORRECTION STRATEGIES, FOR ALL TRAINING SETS. PERFORMANCES ARE ESTIMATED ON SEN2VENµS AND WORLDSTRAT TESTING
SETS RESPECTIVELY, AS DESCRIBED IN SECTION III. HERE, THE ↑ (RESP. ↓) INDICATES THAT THE METRIC SHOULD BE MAXIMIZED (RESP. MINIMIZED).

BEST VALUES ARE IN BOLD.

TS Strategy AFR↑ FRR↑ FRU↑ FRO↓ BRISQUE↓ LPIPS↓ RMSELR↓ GD↓
s2v1×2 (B4) baseline 5.33 53.85 -0.45 0.00 46.90 0.081 5.39e-03 0.247

geom 5.28 53.37 -0.53 0.00 46.95 0.077 5.01e-03 0.088
geom+rad 4.88 49.37 -0.40 0.04 48.60 0.079 4.31e-03 0.070

s2v1×4 (B7) baseline 16.18 81.85 -0.08 0.00 37.98 0.296 7.90e-03 0.202
geom 15.73 79.60 -0.08 0.00 38.53 0.295 7.85e-03 0.134
geom+rad 14.94 75.61 -0.05 0.00 38.21 0.294 6.33e-03 0.099

ws×4 (B4) baseline 16.63 78.69 -0.13 0.00 42.29 0.351 8.61e-02 1.923
geom 18.25 86.35 -0.00 0.00 43.70 0.348 8.16e-02 0.493
geom+rad 14.32 67.77 -0.11 0.00 42.11 0.355 1.13e-02 0.288

ws×2 (B4) baseline 13.81 77.72 -0.29 0.00 34.43 0.245 8.64e-02 0.973
geom 15.47 87.09 -0.01 0.02 34.82 0.236 7.56e-02 0.217
geom+rad 12.95 72.88 -0.20 0.00 35.27 0.256 1.33e-02 0.117

which shows that with lower geometric distortion, the SISR
predicted image is more coherent with the input image. For
Worldstrat training sets, geometric correction improves FRR
by almost 10%, which suggests that larger geometric distortion
may impair proper training, even when using adversarial
training and perceptual losses. A closer look at the FAP

⋆ in
figure 13 shows that this improvement occurs on mid spatial
frequencies rather than higher frequencies, which points at a
better consistency between input and target images. FRU also
improves for Worldstrat training set, which again points out
at large spatial distortions effects on the ability to learn SISR.
Regarding FRO, there is no impact of the geometric correction
with any of the training sets.

For all training sets, the addition of radiometric correction
(geom+rad) allows to improve RMSELR with respect to the
geometric correction only. Interestingly, it also further reduces
the geometric distortion, which can be explained by the fact
that a part of the input data is injected into the reference
data. For Sen2Venµs training sets, RMSELR improves by
around 1e-3 reflectance, which is minor and barely visible on
figures 14 and 15. This is due to the good radiometric consis-
tency of the Sen2Venµs dataset. For the less radiometrically
consistent Worldstrat training sets, the radiometric correction
allows to divide RMSELR by 8, demonstrating its efficiency.
Looking at figures 16 and 17, this dramatic improvement is
clearly visible, and patches predicted from models trained with
geom+rad configuration are very consistent with input patches
in terms of radiometry. Regarding SISR frequency restoration
performances, radiometric correction has a higher impact than
geometric correction: AFR is lowered by 1 to 4%, which is
also visible on FRR, which diminishes by 4 to 10% with
respect to baseline depending on the case. Figure 13 shows
that for Sen2Venµs based training sets, this drop focuses on
mid spatial frequencies, with a further drop in higher spatial
frequencies with respect to the geometric correction alone. For
the Worldstrat derived training sets, introducing radiometric
corrections leads to a further drop in higher frequencies, which
suggests that residual LPF standard deviation σ2 in equation 21
could be adapted to prevent leakage of residuals higher spatial
frequencies. Last, FRU and FRO are almost unaffected by
radiometric correction. With respect to baseline, the BRISQUE

score is a bit higher (lower image quality) with geometric and
radiometric correction, with the notable exception of the ws×4
training set, which shows a slight improvement. LPIPS im-
proves slightly with respect to baseline for Sen2Venµs training
set, whereas it decreases slightly for Worldstrat dataset. LPIPS
values are also one order of magnitude larger for Worldstrat
when compared to Sen2Venµs, which may be caused by the
lower consistency of Worldstrat dataset.

The proposed experiments demonstrate the efficiency of
the proposed strategy: geometric correction reduces learned
geometric distortion, and the additional radiometric correction
reduces learned radiometric distortion. When the geometric
distortion level is high, such as in the Worldstrat datasets,
introducing geometric corrections facilitates the learning of the
SISR task, yielding higher AFR. However, the combination
with the radiometric correction always yields slightly lower
AFR than the baseline, underlining the effect of introducing a
part of the LR signal in the target HR patches. The very limited
impact on the BRISQUE score indicates that this lower AFR
value is not noticeable in terms of general IQ. Besides, the
significant gain in terms of geometric and radiometric consis-
tency will be paramount in most downstream applications.

2) Comparing SISR performances: This section investi-
gates how metrics proposed in section II-D allow to gain fine
grain insight on the comparison of different models. To that
aim, it compares models trained with geometric and radio-
metric robust strategy (geom+rad) on training sets s2v1×2,
s2v2×2 and ws×2. All 3 models provide the same up-sampling
factor of ×2 (10 m → 5 m) for the same spectral bands and can
thus be compared on both the Sen2Venµs (sv) and Worldstrat
(ws) testing sets. Yet, we know from the training set analysis
of section III that PFR is higher for s2v2×2 wrt. s2v2x1, and
for ws×2 wrt. s2v2×2. For those three models and for both sv
and ws testing sets, table VIII shows the main performance
metrics, while figure 19 shows the FAP

⋆. Figure 20 (resp. 21)
shows sample predicted patches on the sv (resp. ws) testing
set.

The AFR and FRR metrics follow the same trend as the
PFR measured on the dataset in section III: for both s2v
and ws testing sets, ws×2 has higher AFR and FRR than
s2v2×2, which has higher AFR and FRR than s2v1×2. A closer
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Fig. 13. Impact of proposed strategies on the FAP
⋆ for each of the training

set, for band B4 (except for training set s2v1×4, where band B7 is used).

Sentinel-2, 10m SISR, 5m, geom+rad SISR, 5m, geom SISR, 5m, baseline Venµs, 5m

Fig. 14. Examples of predicted patches (Color composition: B4, B3, B2)
from the testing set of Sen2Venµs, for SISR model trained on s2v1×2
training set, with baseline, geom and geom+rad strategies. Note that the input
image Sentinel-2 patches of first column have been up-sampled with bicubic
interpolation (a larger version of this figure can be found in the supplementary
materials).

Sentinel-2, 20m SISR, 5m, geom+rad SISR, 5m, geom SISR, 5m, baseline Venµs, 5m

Fig. 15. Examples of predicted patches (Color composition: B7, B6, B5)
from the testing set of Sen2Venµs, for SISR model trained on s2v1×2
training set, with baseline, geom and geom+rad strategies. Note that the input
image Sentinel-2 patches of first column have been up-sampled with bicubic
interpolation (a larger version of this figure can be found in the supplementary
materials).

Sentinel-2, 10m SISR, 2.5m, geom+rad SISR, 2.5m, geom SISR, 2.5m, baseline Spot 6/7, 2.5m

Fig. 16. Examples of predicted patches (Color composition: B4, B3, B2) from
the testing set of Worldstrat, for SISR model trained on ws×4 training set, with
baseline, geom and geom+rad strategies. Note that the input image Sentinel-2
patches of first column have been up-sampled with bicubic interpolation (a
larger version of this figure can be found in the supplementary materials).

Sentinel-2, 10m SISR, 5m, geom+rad SISR, 5m, geom SISR, 5m, baseline Spot 6/7, 5m

Fig. 17. Examples of predicted patches (Color composition: B4, B3, B2) from
the testing set of Worldstrat, for SISR model trained on ws×2 training set, with
baseline, geom and geom+rad strategies. Note that the input image Sentinel-2
patches of first column have been up-sampled with bicubic interpolation (a
larger version of this figure can be found in the supplementary materials).

s2v1x2, baseline s2v1x2, geom s2v1x2, geom+rad

Fig. 18. Color composition highlighting geometric discrepancies for SISR
models trained on the s2v1×2 training set with the different strategies (R: B4
from Sentinel-2, B, G: B4 SISR predicted image). Geometric discrepancies
appear in red or blue.
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TABLE VIII
PERFORMANCE COMPARISON OF MODELS TRAINED ON THE S2V1×2, S2V2×2 AND WS×2 TRAINING SETS, EVALUATED ON S2V TESTING SET (TOP) AND
WS TESTING SET (BOTTOM) USING BAND B4. HERE, THE ↑ (RESP. ↓) INDICATES THAT THE METRIC SHOULD BE MAXIMIZED (RESP. MINIMIZED). BEST

VALUES ARE IN BOLD.

Training Test AFR↑ FRR↑ FRU↑ FRO↓ BRISQUE↓ LPIPS↓ RMSELR↓ GD↓
s2v1×2 s2v 4.88 49.37 -0.40 0.04 48.60 0.079 4.31e-03 0.070
s2v2×2 s2v 6.58 66.51 -0.11 0.06 45.40 0.073 4.02e-03 0.059
ws×2 s2v 9.34 94.43 -0.45 2.77 50.38 0.103 5.55e-03 0.085
s2v1×2 ws 3.24 18.25 -0.91 0.00 43.69 0.271 1.31e-02 0.074
s2v2×2 ws 4.66 26.26 -0.50 0.00 40.94 0.267 1.32e-02 0.085
ws×2 ws 12.95 72.88 -0.20 0.00 35.27 0.256 1.33e-02 0.117

look at the FAP
⋆ of figure 19 highlight that ws×2 is almost

4dB higher than both s2v1×2 and s2v2×2 for higher spatial
frequencies, which explain its FRR of almost 95% on the sv
testing set. On this testing set, it can be observed that the
ws×2 FAP

⋆ right end is actually higher than the reference
HR profile, which explains its FRO of 2.77%. On the contrary,
s2v1×2 and s2v2×2 have a slight restoration undershoot on the
ws testing set, which is again visible on the right end of figure
19. This is confirmed by visual inspection of figures 20 and 21
where ws×2 patches always appear sharper than the s2v1×2
and s2v2×2 patches. Patches from s2v2×2 also appear sharper
than those from s2v1×2, to a lesser extent.

For any given training set, the BRISQUE score is lower on
ws testing set than on sv testing set. A possible explanation is
that urban patches with sharp edges, which BRISQUE may
favor, are more prominent in patches from the ws testing
set. For this testing set, the BRISQUE score models ordering
follows FRR models ordering, which is the expected behavior.
However, on the sv testing set, ws×2 has the worst BRISQUE
score and the higher FRR. One possible explanation is that
due to the limited Worldstrat training set of ws×2, the model
over-fits and fails to generalize to the more natural landscapes
of sv testing set. The same trend also affects LPIPS.

RMSELR and GD show that all models are free of geometric
and radiometric distortions, though ws×2 has higher RMSELR
on the sv testing set and higher GD on the ws testing set. This
is confirmed by visual inspection of figures 20 and 21.

This section shows that the proposed metrics allows to
cross-compare the three models on two independent testing
sets, using the raw HR images, and provide a good insight
of the model relative strengths and weaknesses: the ws×2
model provides higher spatial frequency restoration but seems
to over-fit the Worldstrat dataset, while s2v2×2 provides lower
spatial frequency restoration but offers better generalization.
Another important finding is that the a priori filtering of
patches based on their PFR that yielded the s2v1×2 and
s2v2×2 training sets allowed to consistently obtain higher FRR
through SISR training. This opens interesting perspectives
when dealing with large SISR datasets. Finally, the proposed
radiometric and geometric distortions robust strategy performs
consistently well across all experiments.

D. Discussion

1) Alternative strategy: The robust strategy proposed in
section IV-A can be seen as a way of fixing the target patches
for discrepancies, though this fix only occurs during training.
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Fig. 19. FAP
⋆ of SISR model trained on s2v1×2, s2v2×2, and ws×2 training

sets, with the geom+rad strategy, computed on B4 of Sen2Venµs testing set
(left) and Worldstrat testing set (right).

Sentinel-2, 10m SISR, 5m, s2v1x2 SISR, 5m, s2v2x2 SISR, 5m, wsx2 Venµs, 5m

Fig. 20. Comparison of models s2v1×2, s2v2×2, and ws×2 trained with
the geom+rad strategy, on patches from the Sen2Venµs testing set (a larger
version of this figure can be found in the supplementary materials).

Sentinel-2, 10m SISR, 5m, s2v1x2 SISR, 5m, s2v2x2 SISR, 5m, wsx2 SPOT6, 5m

Fig. 21. Comparison of models s2v1×2, s2v2×2, and ws×2 trained with the
geom+rad strategy, on patches from the Worldstrat testing set (a larger version
of this figure can be found in the supplementary materials).
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Experiments have demonstrated that, while this strategy is
efficient in preventing the model to learn geometric and
radiometric discrepancies, it comes at the price of slightly
lowering PFR and AFR, and also impacts the BRISQUE
score to a lesser extent. A possible alternative strategy could
be to take advantage of the fully convolutional optical flow
estimation network that is able to back-propagate gradients,
and trade the spatial resampling of the target HR patches
for an additional loss term aiming at minimizing GD of
predicted patches directly. Additionally, the L2 term of the
loss given by equation 22 could be replaced by RMSELR, as
it essentially plays the same role of constraining the network
toward radiometric faithfulness. The full generator loss of
equation 22 would then become:

LG(P,R,X) =LLPIPS(P,R) + λLRa
G + ηRMSELR(P,X)

+ νGD(P,X),
(23)

where ν is an additional weighting parameter.
Though beyond the scope of this manuscript, this alternative

loss completely avoids modifying the HR target patches and
thus may yield better performances.

2) Limitations of FDA: Though the experiments of section
IV-C2 have demonstrate that FDA can be reliably used to
assess and compare the frequency restoration performances of
SISR models. Section III also demonstrated its dependency to
the content of the patches used for its computation. Moreover,
noise or periodic patterns may cause an artificial bump in
higher spatial frequencies restoration which does not relate
directly to sharper images. Evidence of the impact of noise
can be observed for instance in figure 19 on the Sentinel-2
FAP

⋆ profile. The monotonic decreasing trend of frequency
in the range [0, 0.8] suddenly changes for a plateau in the
range [0.8,1.], which is better explain by noise in the B4 band
rather than by an abrupt bump in sharpness. It is therefore
very important to combine FDA with other metrics such as
BRISQUE, LPIPS or PieAPP which allow to disambiguate
such cases by providing different insights on image quality.
Still, those perceptual metrics also exhibit a tropism toward
noise or periodic patterns, as demonstrated in section II-B.

A final limitation of proposed FDA metrics is that their
computation depends on a target reference image and therefore
prevents a true No Reference assesment of spatial frequency
restoration. However, equation 13 could easily be simplified
in order to avoid clamping to and normalizing by the target
FAP

⋆, thus creating a No Reference AFR that does not no
longer depend on the target HR patches:

NRAFR(Pb, Xb) =
∑

FAP
⋆[Pb]−FAP

⋆[Xb]. (24)

3) About perceptual metrics: BRISQUE, LPIPS, PieAPP
and other perceptual metrics are obtained by training machine
learning algorithms on natural images, sometimes with human
supervision. As such, they usually assume RGB bands, a
limited data range and are tailored for images that are very far
from the manifold of remote sensing images. Existing works
as well as this paper show that these limitations can be solved

by simple solutions such as data range rescaling and greyscale
RGB composition with any given spectral band from remote
sensing data. However, it would be interesting for the remote
sensing community to build and maintain perceptual metrics
tailored for remote sensing data. This may include for instance
training for specific bands or range of sensors. Such ad hoc
metrics could then avoid the bias toward noise and periodic
patterns observed in section II-B2 and II-B3 and drive models
toward better SISR prediction when used as loss terms.

4) Is ×4 model better than ×2 ?: An everlasting question
about remote sensing SISR is how far can we go in terms of
up-sampling factor. Though many works have demonstrated
impressive performances for factors far beyond ×4, it is also
quite reasonable to think that the higher the up-sampling
factor, the more SISR relies on generative capabilities of
the network and learning probabilistic relationships between
the input LR and the target HR manifolds, as opposed to
restoring information that can actually be found in LR images.
The proposed FDA gives a frequency domain perspective
of this restoration, but can not determine if the restored
higher frequencies correspond to any ground truth or are plain
hallucination of the model. It is again of paramount importance
to combine FDA with other metrics such as LPIPS, but this
may not be enough to characterize the behavior of trained
model on out of distribution samples.

Figure 22 shows bicubic up-sampling, 5 m up-sampling with
the model trained on s2v2×2 and 2.5 m up-sampling with the
model trained on ws×4, for a Sentinel-2 image which is not
part of any of the datasets used in this paper, where words are
painted on a track of the Le Bourget airport, France. From the
analysis conducted in section IV-C2 with the proposed metrics,
we know that the s2v2×2 model is better than bicubic up-
sampling, since it has non null AFR and generalizes well. We
also know that the ws×4 model evaluated in section IV-C1
has much higher AFR, and that it probably slightly overfits
the training set as its sibling model ws×2. When fed with the
painted words on the airport track, the s2v2×2 model acts like
a signal restoration model: letters become more visible and can
almost be deciphered, contrary to the bicubic up-sampling. On
the other hand, while the ws×4 model provides a better overall
sharpness of the image, its prediction of the painted words
yields letters that are completely scrambled and are actually
more difficult to decipher than the bicubic up-sampling. Of
course, this poor performance may be caused by over-fitting
the ws×4 training set but it also highlights that larger up-
sampling factors by lead to poorer generalization.

V. CONCLUSION

In this paper, we address the overlooked impact of geometric
and radiometric discrepancies found in cross-sensor datasets
for remote sensing SISR. Through a dedicated benchmark of
common SISR IQ metrics, we demonstrate that widely used
local metrics such as PSNR or SSIM are not adapted for
cross-sensor SISR evaluation. Instead, we identify perceptual
metrics such as LPIPS as robust to discrepancies, and com-
plement them with new FDA metrics tailored to assess spatial
frequency restoration performances. In addition, RMSE with
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Sentinel-2, 5m, bicubic upsampled

Sentinel-2, 5m, SISR upsampled (s2v2x2)

Sentinel-2, 2.5m, SISR upsampled (wsx4)

Fig. 22. Can you read it ? Sentinel-2 image of Le Bourget airport, France.
From top to bottom, Sentinel-2 up-sampled to 5 m with bicubic, Sentinel-2
up-sampled to 5 m with SISR model trained on s2v2×2, and Sentinel-2 up-
sampled to 2.5 m with SISR model trained on ws×4 (a larger version of this
figure can be found in the supplementary materials).

respect to the input image can be used to measure the level
of learned radiometric distortion, and we demonstrate that a
dedicated UNet estimating optical flows can be used to assess
the level of learned geometric distortion. We then propose
a robust strategy for cross-sensor SISR DL model learning,
including spatial registration of HR target with optical flows
estimated by the pre-trained UNet to compensate for spatial
distortion and LR residual injections to compensate for radio-
metric distortion. This strategy is only applied during training,
as performance evaluation is carried out on uncorrected refer-
ence data by means of the proposed metric set. Experiments
demonstrate the effectiveness of the proposed robust strategy,
but also the ability of the proposed metric set to provide a
fair, in depth comparison of SISR models that is independent
of the testing set and unaffected by its discrepancies.

A detailed comparison between the Worldstrat and the
Sen2Venµs datasets is also proposed, which highlights that the
former has higher potential for spatial frequency restoration
while the latter has a strong geometric and radiometric consis-
tency. Finally, this work highlights the paramount importance

of dataset consistency for SISR, and we hope it paves the
way to a better understanding and attention in future remote
sensing SISR works and beyond: for instance, registration is
probably a crucial but overlooked aspect of spatio-temporal
fusion.
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[28] B. Vajsová, D. Fasbender, C. Wirnhardt, S. Lemajic, and W. Devos,
“Assessing spatial limits of Sentinel-2 data on arable crops in the context
of checks by monitoring,” Remote Sensing, vol. 12, no. 14, p. 2195,
2020.

[29] U. Bhangale, S. More, T. Shaikh, S. Patil, and N. More, “Analysis of
surface water resources using Sentinel-2 imagery,” Procedia Computer
Science, vol. 171, pp. 2645–2654, 2020.

[30] D. Chen, Z. Zhang, J. Liang, and L. Zhang, “SSL: A Self-similarity
Loss for Improving Generative Image Super-resolution,” 2024.

[31] M. Galar, R. Sesma, C. Ayala, L. Albizua, and C. Aranda, “Super-
resolution of Sentinel-2 images using convolutional neural networks and
real ground truth data,” Remote Sensing, vol. 12, no. 18, p. 2941, 2020.

[32] F. Pineda, V. Ayma, and C. Beltran, “A generative adversarial network
approach for super-resolution of Sentinel-2 satellite images,” The In-
ternational Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 43, pp. 9–14, 2020.

[33] L. Salgueiro Romero, J. Marcello, and V. Vilaplana, “Super-resolution
of Sentinel-2 imagery using generative adversarial networks,” Remote
Sensing, vol. 12, no. 15, p. 2424, 2020.

[34] J. Cornebise, I. Oršolić, and F. Kalaitzis, “Open High-Resolution
Satellite Imagery: The WorldStrat Dataset –With Application to Super-
Resolution,” in Advances in Neural Information Processing Systems
(S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
eds.), vol. 35, pp. 25979–25991, Curran Associates, Inc., 2022.

[35] A. Okabayashi, N. Audebert, S. Donike, and C. Pelletier, “Cross-
sensor super-resolution of irregularly sampled Sentinel-2 time series,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, pp. 502–511, June 2024.

[36] P. Kowaleczko, T. Tarasiewicz, M. Ziaja, D. Kostrzewa, J. Nalepa,
P. Rokita, and M. Kawulok, “A real-world benchmark for Sentinel-2
multi-image super-resolution,” Scientific Data, vol. 10, no. 1, p. 644,
2023.

[37] J. Michel, J. Vinasco-Salinas, J. Inglada, and O. Hagolle, “Sen2venµs, a
dataset for the training of Sentinel-2 super-resolution algorithms,” Data,
vol. 7, no. 7, p. 96, 2022.

[38] C. Aybar, D. Montero, J. Contreras, S. Donike, F. Kalaitzis, and
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APPENDIX A
ADDITIONAL RESULTS FROM METRICS BENCHMARK
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Fig. 23. Benchmarking of RMSE (lower is better) with respect to geometric
distortion, radiometric distortion, noise level and chessboard pattern level, for
different level of blur, ranging from mtf =None (no blur applied) or mtf =0.4
(very sharp images) to mtf =0.001 (very blurry images)

Figure 23 shows the benchmark results for RMSE, also
known as L2 norm. Unsurprisingly, the same trends can be
observed as for PSNR regarding spatial distortion : for values
higher than 1 pixel, both metrics increasingly favor blur over
sharpness. Moreover, the incentive to reduce spatial distortion
seems to be higher than the incentive to promote sharpness.
Hence, in presence of geometric distortion, those metrics,
when used as loss functions, will drive the network toward
the reduction of this distortion, and not toward sharpness. The
same conclusion applies to spectral distortion : those metrics
used as loss functions will prioritize learning those distortions
over promoting sharper results.

Figure 24 shows how the PieAPP metric behaves in the ex-
periments. Response to radiometric and geometric distortions
is rather good, especially since the gaps between curves of
different levels of blur are more important than the slope of
those curves in response to the level of spatial distortion. The
response to radiometric distortion is also consistent across all
levels of blur. A slightly disadvantage is that PieAPP becomes
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Fig. 24. Benchmarking of PieAPP (lower is better) with respect to geometric
distortion, radiometric distortion, noise level and chessboard pattern level, for
different level of blur, ranging from mtf =None (no blur applied) or mtf =0.4
(very sharp images) to mtf =0.001 (very blurry images)

blind to blur for higher levels of noise. However, such levels
should rarely be met in the evaluation of well trained SISR
networks. It can however prevent the use of this metric during
training for e.g. best models selection for instance: chances are
that pattern contaminated models would be favored by PieAPP.
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Fig. 25. Benchmarking of CLIP-IQA (lower is better) with respect to
geometric distortion, radiometric distortion, noise level and chessboard pattern
level, for different level of blur, ranging from mtf =None (no blur applied) or
mtf =0.4 (very sharp images) to mtf =0.001 (very blurry images)

Figure 25 shows the same charts for the CLIP-IQA metric.
This metric seems to be useless for the purpose of evaluating
cross-sensor SISR: its variability with respect to blur is limited,

and despite being a NRIQ metric, it will consistently favor
images with more spectral distortion, suggesting that it is
adapted to color distributions that do not correspond to remote
sensing. Besides, its response to chessboard patterns is erratic.

APPENDIX B
MEASURING CROSS-SENSOR GEOMETRIC DISTORTION

The idea of providing pixel wise registration in SISR
datasets has been explored in [41], where they use the
AROSICS algorithm [72] for the task. In this section, we pro-
pose to use an auxiliary optical flow estimation network similar
to the Cross Spectral Registration network proposed in [23].
Optical flow is the 2-dimensional pixel-wise displacement field
yielded by a moving imaging device over a 3-dimensional
field, and its estimation from image pairs or sequences has
been widely studied since the seminal work of Horn and
Shunck [73] and Lucas and Kanade [74]. Since geometric
discrepancies in cross-sensor SISR datasets are mainly caused
by differences in viewing angles, it seems natural to address
this issue with the tools from the stereo-vision field. Recent
literature reviews [75], [76] show that UNet [77], which is also
used in [23], is the most widely adopted solution for estimating
optical flow, and will therefore be used in this work. It must
be stressed that proposed usages of optical flow estimation
in this paper are not specific of the UNet architecture and
training procedure, and other solutions might be used while
retaining their benefits. However, using a fully convolutional
neural network comes with the benefit of being differentiable,
and can thus be used in end-to-end training.

A. Optical flow estimation for cross-sensor datasets

Figure 26 shows the overview of the proposed UNet based
estimation of the optical flow in a cross-sensor SISR context.
Though [23] suggest that the so-called Cross Registration
Network can learn to estimate optical flow from different input
bands. Here, corresponding spectral bands between LR and
HR sensors will be used, since there are corresponding bands
in all considered datasets.

The HR reference image Rb is first low-pass filtered and
downsampled to LR resolution by means of:

X⋆
b =

(
Rb ∗ ϕσ0

)
↓s, (25)

where ↓s denotes the decimation operator by a stride of s and
ϕσ0

is a Gaussian kernel as introduced in equation 7. LR input
patches Xb are concatenated to X⋆

b patches along the channel
dimension and fed to the UNet with parameters ΘUNet. The
output of the UNet goes through a last 2D convolution layer
forming a 2-channel output, which in turns goes through a
hyperbolic tangent activation layer, bringing the channel data
range to [−1, 1]. The resulting channels are scaled the with
optical field range parameter r. It is worth noting that the
actual maximum optical flow amplitude will be r

√
2. The

whole process is described in the following equation, where
FX⋆

b
∈ [−r, r]N×WLR×HLR×2 denotes the estimated optical

flow:
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UNet
conv2d + tanh

+ scaling
(eq. 18)

Concatenate

X⋆
b

Downsampling
(eq. 17)

Rb

HR patches,
band b

Xb

LR patches, band b
FXb→X⋆

b

Optical Flow

Fig. 26. Workflow of the proposed UNet based optical flow estimation, where b stands for a common spectral band between LR and HR sensors.

FX⋆
b →Xb

= r · tanh
(
conv2d

(
UNet([X⋆

b , Xb],ΘUNet)
))

.

(26)
Using the estimated flow FX⋆

b →Xb
, X⋆

b can be resampled
by means of the grid-based bicubic interpolation ω:

∼
X

⋆

= ω(X⋆, FX⋆
b →Xb

). (27)

Flows can be composed by means of the resampling oper-
ator of equation 27. Let F1→2 and F2→3 denote two optical
flows, the following equation gives the composition rule:

F2→3 ◦ F1→2 = F1→2 + ω(F2→3, F1→2). (28)

B. Training losses

The optical flow estimation network is pretrained with the
same cross-sensor datasets used for the SISR task. Instead of
using the Anchor Consistency Loss [23], the pretraining is
achieved by optimizing the following loss function:

Lflow(X
⋆
b , Xb, Frand) =Lreal(X

⋆
b , Xb)︸ ︷︷ ︸

real term

+Lsim(Frand, X
⋆
b , Xb)︸ ︷︷ ︸

simulated term

+ Lsym(X⋆
b , Xb) + Lself (X

⋆
b )︸ ︷︷ ︸

consistency terms

,

(29)

where Frand is a simulated random optical flow. The real term,
simulated term, and consistency terms as well as the generation
of Frand are described in details in the following subsections.
The two first terms have similar order of magnitude, while
the two last terms are meant to enforce consistency and thus
will have values close to zero throughout the training: there is
therefore no need to include weighting factors.

All loss terms make use of the Huber loss, also known as
Huber loss, introduced in [78] given by:

Lsmooth
1 (x) =

{
0.5x2, if |x| < 1

|x| − 0.5, otherwise.
(30)

The Lsmooth
1 loss behaves like the L1 loss when differences

between predicted and target values are large, which limits
the impact of outliers, and like the L2 when differences are
small, which is better for optimization. In the experiments,
it has proven to be beneficial over the standard MSE (L2),
especially in early stages of training.

It should also be noted that the remaining of this paper
does not rely on this particular method for training, and other
methods that reach convergence could be used as well.

1) Real loss term: The real loss term enforces that
FX⋆

b →Xb
, the flow estimated from X⋆

b to Xb should allow
to resample the former onto the latter:

Lreal(X
⋆
b , Xb) = Lsmooth

1

(
Xb − ω(X⋆

b , FX⋆
b →Xb

)
)
. (31)

2) Simulated loss term: Because the deformation between
HR and LR includes the unobserved variation of elevation
across the patch, the true optical flow may exhibit strong and
abrupt variations that the real loss term is not likely to capture.
Inspired by the Anchor Consistency Loss proposed in [23], this
loss compares the simulated flow Frand to an indirect estimate
using Xb as a pivot image. This allows to use the simulated
flow for supervision while still involving the real data.

Lsim(Frand, X
⋆
b , Xb) = Lsmooth

1

(
FXb→ω(X⋆

b ,Frand)

−Frand ◦ FXb→X⋆
b

)
.

(32)

The random flow Frand is obtained by combining random
sinusoidal deformations and directional sigmoid deformations,
as given by:

Frand(x, y) =

(
αx cos

(
2π(ηxx+ ϕx)

)
+ βx tanh

(d(x,y,a,b)
γ

)
αy cos

(
2π(ηyy + ϕy)

)
+ βy tanh

(d(x,y,a,b)
γ

)),
(33)

where a, b, γ, ηx, ηy, ϕx, ϕy, αx, αy, βx and βy are random
simulation parameters drawn for each sample according to the
distributions listed in table IX, and d(x, y, a, b) represents the
signed distance between point (x, y) and sigmoid direction
y = ax+ b as given by:

d(x, y, a, b) =
y − ax− b√

1 + a2
. (34)

The sinusoidal part of the random flow aims at simulating
hills and smooth terrain changes, whereas the directional sig-
moid term aims at simulating sharp pinches related to terrain
abrupt changes. Those changes might be under-represented in
the dataset, and using the simulated term also help ensuring
that such changes are correctly learned by the model. Exam-
ples of simulated flows are displayed in figure 27.

While simulating such an optical flow brings back the
domain gap issue, the experiments show its benefit for training,
because it allows to express a loss term that is directly tied to
the flow estimation instead of only indirectly measuring it by
comparing resampled images.
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TABLE IX
SIMULATION PARAMETERS AND THEIR DISTRIBUTION. w IS THE WIDTH

OF THE PATCH AND m IS THE MAXIMUM DEFORMATION VALUE

Parameter Distribution Role
a U(−10, 10) Slope of sigmoid direction
b U(−a ∗ w, 0) Offset of sigmoid direction
γ U(1, 10) Width of sigmoid
ηx, ηy U(1/w, 1/(0.9w)) Sinusoidal period
ϕx, ϕy U(0, w) Sinusoidal phase
αx, αy U(0,m) Strength of sinusoidal component
βx, βy U(0,m) Strength of sigmoid component

4

3

2

1

0

1

2

3

4

de
fo

rm
at

io
n 

in
 p

ixe
ls

Fig. 27. Examples of simulated flows (x component)

3) Consistency loss terms: In addition, two consistency
terms are introduced. The first term constrains F to be a
symmetrical operator:

Lsym(X⋆
b , Xb) = Lsmooth

1 (FXb→X⋆
b
◦ FX⋆

b →Xb
). (35)

The second term forces the self flow to be null:

Lself (X
⋆
b ) = Lsmooth

1 (FX⋆
b →X⋆

b
). (36)

C. Results

The UNet used in these experiments has 4 levels and 64
features at the first level. The skip connections of the two
top levels are removed to favor smoother optical flows. It
is trained for 130 epochs with the Adam optimizer [79]. It
uses cosine annealing with warm restarts [80], with an initial
learning rate of 5e-5 and an initial restart period of 4000 steps.
The maximum range parameter r in equation 26 is set to 10
pixels. Value of σ0 is experimentally set to σ0 = σ(0.4) by
means of eq. 6. The same datasets as in experiments from
section IV are used (see table VI for datasets description).
The red band is usually used in registration studies because it
offers the best trade-off between signal to noise ratio and blur.
Therefore, the Sentinel-2 red band (B4) is used as parameter
b in equation 26, except for dataset s2v1×4, where B7 is used
instead, since B4 is not available. A mtf value of 0.4 is used
to generate values for σ0 in equation 25.

Table X shows the different loss terms evaluated on the
testing set after convergence, for each model. The simulated
flows are reconstructed with high accuracy, below 0.05 pixels
in all cases. The real loss terms also exhibit very small values,
the higher values for Worldstrat dataset being explained by
the lower radiometric consistency. The consistency terms have
very small values as expected, the higher values of the Lsym

term on Worldstrat datasets being explained again by the

TABLE X
LOSS VALUES ACHIEVED BY BEST MODELS OF EACH DATASET († THE

WS×2 RESULTS USE THE WS×4 MODEL).

Dataset Lreal Lsim Lsym Lself Total loss
s2v1×2 0.0029 0.0025 0.0003 2.5553e-06 0.0057
s2v1×4 0.0028 0.0025 0.0001 4.9388e-06 0.0055
ws×4 0.1043 0.0462 0.0171 6.8638e-05 0.169
ws×2† 0.1046 0.0417 0.0126 7.4847e-05 0.159

low radiometric consistency, making it more difficult for the
network to ensure the symmetric property.
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Fig. 28. Reconstruction of simulated flows presented in figure 27 using the
trained UNet, on the testing set
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Fig. 29. Estimated flow on patches from figure 1, with x flow in the two
leftmost columns and y flow in the two rightmost columns.

Figure 29 shows the two components of the flow estimated
for patches of figure 1, where strong geometric distortion
could be observed. The estimated flow correlates well with
the content of the images and underlying variation of relief.

Sen2Venµs Sen2Venµs Worldstrat Worldstrat

Sen2Venµs Sen2Venµs Worldstrat Worldstrat

Fig. 30. Same patches and color composition as presented in figure 1, with
Venµs and Worldstrat bands corrected with the optical flow estimated by UNet.

Figure 30 shows the same patches as in figure 1, where the
Venµs band (resp. Spot 6/7) has been resampled according
to the estimated flow. One can observe that the geometric
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TABLE XI
IMPACT OF THE PROPOSED STRATEGY ON THE QUALITY OF THE DATASET IN TERMS OF PFR, LR RADIOMETRIC BIAS AND RMSE, AND BRISQUE

SCORE, MEASURED ON BAND B4 (EXCEPT FOR THE S2V1×4 AND S2V2×4 5 M CASES, WHERE BAND B7 IS USED), ESTIMATED ON 1600 PATCHES FROM
THE TRAINING SETS. SCORES FOR CORRECTED PATCHES ARE DISPLAYED FIRST, AND VARIATION IS DISPLAYED BETWEEN BRACKETS. VARIATION IS

EXPRESSED AS A PLAIN DIFFERENCE, EXCEPT FOR BIAS AND RMSE, WHERE VARIATION IS EXPRESSED IN PERCENT OF THE UNCORRECTED ABSOLUTE
VALUE.HERE, THE ↑ (RESP. ↓) INDICATES THAT THE METRIC SHOULD BE MAXIMIZED (RESP. MINIMIZED).

Dataset Band PFR (%) ↑ Bias (1e-3) rmse (1e-3)↓ BRISQUE ↓
ws×4 B4 17.09% (-4.95) -37.619 (-98.21%) 16.644 (-80.15%) 40.49 (+0.53)
ws×2 B4 12.27% (-6.13) -32.457 (-97.98%) 16.993 (-79.84%) 31.69 (+3.04)
s2v2×2 B4 7.85% (-0.85) -0.050 (-100.00%) 5.264 (-37.77%) 49.80 (+1.14)
s2v1×2 B4 5.50% (-0.38) 0.034 (-91.18%) 6.089 (-37.58%) 45.60 (+1.00)
s2v2×4 B7 17.35% (-1.29) 0.111 (-95.50%) 7.910 (-41.15%) 38.26 (+0.30)
s2v1×4 B7 14.10% (-0.85) 0.763 (-95.81%) 8.801 (-43.46%) 36.64 (+0.28)

discrepancies have been greatly reduced. Residual smooth
discrepancies correspond to uncorrected radiometric discrep-
ancies. This demonstrates that the proposed UNet trained
with the proposed strategy is an efficient tool to estimate
the optical flow on a SISR dataset, which can be used to
measure radiometric discrepancies as well as to try to mitigate
them. Note that the overall redness of the Worldstrat patches
is caused by radiometric bias.

APPENDIX C
IMPACT OF PROPOSED STRATEGY ON DATASET QUALITY

TABLE XII
IMPACT OF THE PROPOSED STRATEGY ON THE QUALITY OF THE DATASET

IN TERMS OF GEOMETRIC DISTORTION, MEASURED ON BAND B4
(EXCEPT FOR THE S2V1×4 AND S2V2×4 CASES, WHERE BAND B7 IS

USED), ESTIMATED ON 1600 PATCHES FROM THE TRAINING SETS. SCORES
FOR CORRECTED PATCHES ARE DISPLAYED FIRST, AND VARIATION IS

DISPLAYED BETWEEN BRACKETS. VARIATION IS EXPRESSED AS PERCENT
OF THE UNCORRECTED VALUE.

Dataset Band Mean (hr pix.) Std. dev. (hr pix.)
ws×4 B4 0.197 (-96.86%) 0.426 (-91.10%)
ws×2 B4 0.102 (-96.77%) 0.226 (-90.54%)
s2v2×2 B4 0.073 (-89.34%) 0.077 (-88.46%)
s2v1×2 B4 0.107 (-82.77%) 0.071 (-89.16%)
s2v2×4 B7 0.075 (-87.02%) 0.092 (-84.64%)
s2v1×4 B7 0.123 (-79.60%) 0.107 (-82.26%)

Though only used during training, the proposed strategy
has an impact on the target image quality. Table XI shows
the PFR, LR radiometric bias and RMSE, and HR BRISQUE

score of corrected sample training patches
∼
R

⋆

, for band B4
(and B7 for 20 m bands), whereas table XII shows Geometric
Distortion of the same data. The radiometric correction is very
effective especially for WorldStrat derived training sets, where
there is almost no bias remaining and LR RMSE has been
reduced respectively by 80%. Gains for Sen2Venµs training
sets are less important, which is expected because of the
higher radiometric consistency of the dataset. Nevertheless,
LR RMSE is consistently lower by around 40% in all cases.
Geometric correction is also very effective, allowing to reduce
the measured average distortion to approximately 0.1 pixel,
with correspond to a decrease 80% for Sen2Venµs datasets and
96% for WorldStrat datasets. It should be reminded that raw
Worldstrat data exhibited several pixels of average distortion.
Standard deviation of measured distortion is reduced by at
least 80% in all cases, which indicates that the network effec-
tively correct for local geometric distortions. Those corrections

come at the price of a decrease of the PFR of around 1 to 6%
depending on the case, Worldstrat datasets being the worst
case. However, this decrease seems to have very limited effect
on the HR BRISQUE score, which suggests that corrected
target images remain of high quality. A decrease of the PFR
is expected and is mainly caused by the radiometric correction
of equation 21, which consist of partially re-introducing the
spatial frequency content of the input data into the reference
data. The Low Pass Filtering performed by ϕσ2 limits this
effect but cannot completely eliminate it.

APPENDIX D
TRAINING HYPER-PARAMETERS FOR EXPERIMENTS

Both the generator and the discriminator are trained with the
Adam optimizer [79]. The initial learning rate is set to 2e-4
for the generator, and the cosine annealing with warm restarts
[80] strategy is used, with a initial period of 1500 steps and
a multiplicative factor of 2. The initial learning rate of dis-
criminator is set to 1e-4, and the cosine annealing with warm
restarts [80] strategy is used, with an initial period of 6000
steps and a multiplicative factor of 2. Batch size is set to 16
in all experiments. It should be noted that adversarial training
only starts after one epoch. This allows for the generator to
already yield plausible results when the discriminator enters
the optimization process, and favor stability in the early stages
of training. The training runs for 125 epochs of 1340 steps
each for the Sen2Venµs datasets, and 500 epochs of 130 steps
each for Worldstrat datasets. This lower number of steps is
explained by the smaller size of the Worldstrat datasets, which
starts to overfit earlier than Sen2Venµs. In all experiments, the
model parameters of the last training step is used, since the use
of GAN loss makes model selection based the total loss value
hazardous: a weak discriminator may lead to local minima
with poor generator quality. Moreover, section II demonstrated
that a single metric can not account for all aspects of IQ, and
thus selecting the best model according to a single metric may
bias the study toward this metric. Nevertheless, both LPIPS
and L2 are monitored to ensure that training does not diverge.
All codes use Pytorch [81] and runs on NDVIA GPU A100.
Training times range between 12 and 20 hours depending on
the experiment.
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TABLE XIII
PERFORMANCE ASSESMENT OF BASELINE AND PROPOSED ROBUST STRATEGY, FOR TRAINING SET S2V1×2 AND TRAINING SET S2V2×2 ESTIMATED ON

THE SEN2VENµS AND WORLDTSTRAT TESTING SETS. HERE, THE ↑ (RESP. ↓) INDICATES THAT THE METRIC SHOULD BE MAXIMIZED (RESP. MINIMIZED).

Train Test Strategy AFR↑ FRR↑ FRU↑ FRO↓ BRISQUE↓ LPIPS↓ RMSELR↓ GD↓
B2 s2v1×2 s2v baseline 5.93 68.97 -0.78 0.00 55.86 0.070 3.81e-03

s2v2×2 s2v baseline 7.17 83.41 -0.50 0.00 53.45 0.064 3.64e-03
s2v2×2 ws baseline 2.66 15.38 -1.55 0.00 46.01 0.247 1.64e-02
s2v1×2 s2v geom 5.54 64.45 -0.67 0.00 56.01 0.068 3.63e-03
s2v2×2 s2v geom 6.77 78.77 -0.42 0.00 53.54 0.063 3.56e-03
s2v2×2 ws geom 2.08 12.00 -2.01 0.00 47.15 0.246 1.85e-02
s2v1×2 s2v geom+rad 5.17 60.15 -0.52 0.07 58.05 0.066 2.96e-03
s2v2×2 s2v geom+rad 6.52 75.92 -0.25 0.15 54.22 0.060 2.77e-03
s2v1×2 ws geom+rad 1.67 9.65 -1.54 0.00 49.55 0.255 1.28e-02
s2v2×2 ws geom+rad 3.10 17.92 -1.48 0.00 47.14 0.249 1.26e-02

B3 s2v1×2 s2v baseline 5.43 62.12 -0.64 0.00 50.98 0.082 4.39e-03
s2v2×2 s2v baseline 7.13 81.55 -0.36 0.00 48.06 0.070 4.01e-03
s2v2×2 ws baseline 3.02 17.15 -1.18 0.00 41.97 0.274 1.68e-02
s2v1×2 s2v geom 5.06 57.87 -0.53 0.00 51.58 0.079 4.19e-03
s2v2×2 s2v geom 6.67 76.33 -0.32 0.00 48.23 0.070 3.94e-03
s2v2×2 ws geom 2.67 15.13 -1.58 0.00 42.82 0.274 1.90e-02
s2v1×2 s2v geom+rad 4.07 46.49 -0.48 0.03 53.70 0.080 3.59e-03
s2v2×2 s2v geom+rad 6.29 71.92 -0.19 0.07 49.06 0.068 3.32e-03
s2v1×2 ws geom+rad 2.11 11.99 -1.31 0.00 45.22 0.281 1.25e-02
s2v2×2 ws geom+rad 3.61 20.50 -0.97 0.00 43.04 0.277 1.25e-02

B4 s2v1×2 s2v baseline 5.33 53.85 -0.45 0.00 46.90 0.081 5.39e-03 0.247
s2v2×2 s2v baseline 7.13 72.04 -0.24 0.00 44.08 0.076 5.21e-03 0.246
s2v2×2 ws baseline 4.29 24.12 -0.65 0.00 40.56 0.267 1.79e-02 0.256
s2v1×2 s2v geom 5.28 53.37 -0.53 0.00 46.95 0.077 5.01e-03 0.088
s2v2×2 s2v geom 6.95 70.22 -0.20 0.00 44.35 0.074 4.77e-03 0.077
s2v2×2 ws geom 3.89 21.88 -0.93 0.00 41.49 0.267 2.14e-02 0.110
s2v1×2 s2v geom+rad 4.88 49.37 -0.40 0.04 48.60 0.079 4.31e-03 0.070
s2v2×2 s2v geom+rad 6.58 66.51 -0.11 0.06 45.40 0.073 4.02e-03 0.059
s2v1×2 ws geom+rad 3.24 18.25 -0.91 0.00 43.69 0.271 1.31e-02 0.074
s2v2×2 ws geom+rad 4.66 26.26 -0.50 0.00 40.94 0.267 1.32e-02 0.085

B8 s2v1×2 s2v baseline 6.23 53.44 -0.49 0.00 40.62 0.160 1.33e-02
s2v2×2 s2v baseline 8.45 72.51 -0.17 0.00 38.02 0.144 1.11e-02
s2v2×2 ws baseline 6.32 29.32 -0.26 0.00 34.26 0.389 2.04e-02
s2v1×2 s2v geom 6.09 52.20 -0.63 0.00 40.95 0.153 1.27e-02
s2v2×2 s2v geom 8.03 68.90 -0.18 0.00 38.68 0.141 1.06e-02
s2v2×2 ws geom 5.65 26.21 -0.23 0.00 35.82 0.389 2.04e-02
s2v1×2 s2v geom+rad 5.34 45.78 -0.67 0.00 42.32 0.154 1.04e-02
s2v2×2 s2v geom+rad 7.34 62.96 -0.20 0.00 39.64 0.138 8.88e-03
s2v1×2 ws geom+rad 4.24 19.68 -0.29 0.00 37.29 0.391 1.36e-02
s2v2×2 ws geom+rad 6.07 28.15 -0.10 0.00 34.83 0.389 1.37e-02

APPENDIX E
COMPLETE RESULTS OF EXPERIMENTS

Table XIII to XVI show the complete quantitive evaluation,
for all bands, from the experiments of section IV-C. Figures
31 to 34 show the FAP

⋆ for all bands and all experiments.
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TABLE XIV
PERFORMANCE ASSESMENT OF BASELINE AND PROPOSED ROBUST STRATEGY FOR TRAINING SET S2V1×4 AND TRAINING SET S2V2×4, ESTIMATED ON

THE SEN2VENµS TESTING SET. HERE, THE ↑ (RESP. ↓) INDICATES THAT THE METRIC SHOULD BE MAXIMIZED (RESP. MINIMIZED).

Set Strategy AFR↑ FRR↑ FRU↑ FRO↓ BRISQUE↓ LPIPS↓ RMSELR↓ GD↓
B5 s2v1×4 baseline 18.80 99.08 -0.06 1.99 40.91 0.248 4.30e-03

s2v2×4 baseline 18.93 99.76 -0.04 4.73 39.31 0.260 4.62e-03
s2v1×4 geom 18.85 99.33 -0.08 2.64 39.21 0.248 5.64e-03
s2v2×4 geom 18.91 99.68 -0.06 3.22 43.21 0.255 4.41e-03
s2v1×4 geom+rad 18.72 98.67 -0.03 1.21 39.67 0.246 3.72e-03
s2v2×4 geom+rad 18.86 99.41 -0.03 3.44 36.86 0.262 3.50e-03

B6 s2v1×4 baseline 17.06 87.20 -0.11 0.00 38.65 0.285 7.24e-03
s2v2×4 baseline 19.25 98.41 -0.06 0.20 38.55 0.295 7.34e-03
s2v1×4 geom 16.45 84.10 -0.10 0.00 38.55 0.283 7.16e-03
s2v2×4 geom 19.19 98.12 -0.10 0.22 37.41 0.294 7.21e-03
s2v1×4 geom+rad 15.55 79.48 -0.06 0.00 39.07 0.282 5.68e-03
s2v2×4 geom+rad 18.62 95.19 -0.04 0.08 37.53 0.294 5.45e-03

B7 s2v1×4 baseline 16.18 81.85 -0.08 0.00 37.98 0.296 7.90e-03 0.202
s2v2×4 baseline 18.65 94.35 -0.04 0.06 37.67 0.306 7.88e-03 0.317
s2v1×4 geom 15.73 79.60 -0.08 0.00 38.53 0.295 7.85e-03 0.134
s2v2×4 geom 18.76 94.92 -0.08 0.12 36.40 0.307 7.55e-03 0.118
s2v1×4 geom+rad 14.94 75.61 -0.05 0.00 38.21 0.294 6.33e-03 0.099
s2v2×4 geom+rad 18.29 92.54 -0.03 0.10 36.44 0.307 6.06e-03 0.098

B8A s2v1×4 baseline 16.84 80.17 -0.03 0.00 38.09 0.304 8.10e-03
s2v2×4 baseline 18.88 89.89 -0.01 0.03 38.68 0.315 8.28e-03
s2v1×4 geom 16.33 77.72 -0.03 0.00 39.03 0.303 7.83e-03
s2v2×4 geom 19.06 90.72 -0.03 0.02 37.57 0.314 8.22e-03
s2v1×4 geom+rad 15.14 72.06 -0.03 0.00 38.07 0.303 6.33e-03
s2v2×4 geom+rad 18.15 86.41 -0.00 0.03 37.30 0.315 6.28e-03

TABLE XV
PERFORMANCE ASSESMENT OF BASELINE AND PROPOSED ROBUST STRATEGY, ESTIMATED ON THE TESTING SET, FOR THE WS×4 TRAINING SET. HERE,

THE ↑ (RESP. ↓) INDICATES THAT THE METRIC SHOULD BE MAXIMIZED (RESP. MINIMIZED).

Strategy AFR↑ FRR↑ FRU↑ FRO↓ BRISQUE↓ LPIPS↓ RMSELR↓ GD↓
B2 baseline 16.45 76.52 -0.29 0.01 47.95 0.314 8.39e-02

geom 18.41 85.64 -0.01 0.00 48.11 0.308 7.97e-02
geom+rad 13.28 61.78 -0.25 -0.00 48.15 0.317 1.15e-02

B3 baseline 17.71 82.53 -0.19 0.01 41.38 0.345 8.45e-02
geom 19.15 89.21 0.00 0.01 42.45 0.340 7.90e-02
geom+rad 14.77 68.80 -0.13 0.00 42.24 0.352 1.02e-02

B4 baseline 16.63 78.69 -0.13 0.00 42.29 0.351 8.61e-02 1.923
geom 18.25 86.35 -0.00 0.00 43.70 0.348 8.16e-02 0.493
geom+rad 14.32 67.77 -0.11 -0.00 42.11 0.355 1.13e-02 0.288

B8 baseline 21.96 89.11 -0.08 0.00 30.04 0.422 1.17e-01
geom 23.58 95.66 0.00 0.02 32.43 0.417 1.14e-01
geom+rad 16.79 68.13 -0.26 0.00 32.84 0.434 1.76e-02
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TABLE XVI
PERFORMANCE ASSESMENT OF BASELINE AND PROPOSED ROBUST STRATEGY FOR THE WS×2 TRAINING SET, ESTIMATED ON THE SEN2VENµS AND

WORLDSTRAT TESTING SETS. HERE, THE ↑ (RESP. ↓) INDICATES THAT THE METRIC SHOULD BE MAXIMIZED (RESP. MINIMIZED).

Test Strategy AFR↑ FRR↑ FRU↑ FRO↓ BRISQUE↓ LPIPS↓ RMSELR↓ GD↓
B2 ws baseline 12.21 70.60 -0.72 0.00 39.89 0.217 8.42e-02

geom 13.38 77.37 -0.12 0.00 39.79 0.207 7.33e-02
geom+rad 11.28 65.18 -0.53 0.00 40.28 0.226 1.34e-02

s2v baseline 8.59 99.95 -0.74 4.18 53.97 0.125 7.71e-03
geom 8.59 100.00 -0.33 5.78 54.03 0.105 6.62e-03
geom+rad 8.59 100.00 -0.33 5.68 56.66 0.084 3.49e-03

B3 ws baseline 13.93 79.04 -0.38 0.00 33.51 0.239 8.53e-02
geom 14.93 84.70 -0.03 0.00 34.43 0.229 7.43e-02
geom+rad 12.94 73.43 -0.26 0.00 34.95 0.252 1.28e-02

s2v baseline 8.74 100.00 -0.29 5.62 46.00 0.153 1.83e-02
geom 8.74 100.00 -0.06 7.38 46.74 0.131 1.67e-02
geom+rad 8.74 100.00 -0.25 5.77 48.68 0.102 4.10e-03

B4 ws baseline 13.81 77.72 -0.29 0.00 34.43 0.245 8.64e-02 0.973
geom 15.47 87.09 -0.01 0.02 34.82 0.236 7.56e-02 0.217
geom+rad 12.95 72.88 -0.20 0.00 35.27 0.256 1.33e-02 0.117

s2v baseline 9.89 100.00 -0.20 4.31 46.75 0.134 1.51e-02 0.594
geom 9.89 100.00 -0.03 5.79 47.64 0.115 1.48e-02 0.114
geom+rad 9.34 94.43 -0.45 2.77 50.38 0.103 5.55e-03 0.085

B8 ws baseline 19.39 89.96 -0.14 0.00 19.64 0.314 1.19e-01
geom 20.51 95.13 -0.01 0.24 21.64 0.302 1.12e-01
geom+rad 15.30 70.97 -0.55 0.00 22.14 0.341 1.84e-02

s2v baseline 11.60 99.52 -0.11 8.08 28.50 0.311 1.01e-01
geom 11.62 99.65 -0.01 9.44 29.85 0.304 1.03e-01
geom+rad 9.86 84.58 -1.95 1.08 31.96 0.273 1.76e-02
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Fig. 31. Frequency Domain Analysis for baseline and robust strategy of the
Sen2Venµs, 10 m → 5 m experiment with s2v1x1 and s2v1×2 training sets,
evaluated on the Sen2Venµs testing set.
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Fig. 32. Frequency Domain Analysis for baseline and proposed robust strategy
of the Sen2Venµs, 20 m → 5 m experiment with s2v1×4 and s2v2×4 training
sets, evaluated on the Sen2Venµs testing set.
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Fig. 33. Frequency Domain Analysis for baseline and proposed robust strategy
of the Sen2Venµs, 20 m → 5 m experiment with ws×4 training set, evaluated
on the Worldstrat testing set.
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Fig. 34. Frequency Domain Analysis for baseline and proposed robust strategy
of the Sen2Venµs, 20 m → 5 m experiment with ws×2 training set, evaluated
on the Worldstrat testing set.
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