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Abstract

Approximately one-third of advanced renal cell carcinoma (RCC) patients develop

osteolytic bone metastases, leading to skeletal complications. In this review, we first

provide a comprehensive perspective of seminal studies on bone metastasis of RCC

describing the main molecular modulators and growth factor signaling pathways most

important for the RCC-stimulated osteoclast-mediated bone destruction. We next

focus on newer developments revealing with in-depth details, the bidirectional inter-

play between renal cancer cells and the immune and stromal microenvironment that

can through epigenetic reprogramming, profoundly affect the behaviors of trans-

formed cells. Understanding their mechanistic interactions is of paramount impor-

tance for advancing both fundamental and translational research. These new

investigations into the landscape of RCC-bone metastasis offer novel insights and

identify potential avenues for future therapeutic interventions.

K E YWORD S
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1 | INTRODUCTION

Kidney cancer ranks as the seventh most common cancer worldwide,

representing 2.4% of adult cancer cases.1 Renal cell carcinoma (RCC) is its

predominant form, with a 5-year overall survival rate of �76%.2 It encom-

passes various histological subtypes, including clear cell RCC (ccRCC)

accounting for 70%–80% of patients and papillary RCC at 10%–15%.3,4

Initial treatment typically involves partial or total nephrectomy.5

Around 30% of RCC cases are diagnosed at a metastatic state,

with metastasis to distant organs such as lungs (70%), lymph nodes

(45%), bones (32%), liver (18%), and adrenal glands (10%) being com-

mon causes of RCC-related deaths.6 Although targeted treatments

and immunotherapy extend patient lifespans, metastatic bone disease

incidence in RCC remains high.7

RCC shows significant genomic transformation in advanced

metastatic stages,8 with bone metastases (BM) presenting a

particularly poor prognosis, with a median overall survival of

only 14.9 months.9 Skeletal-related events, including patho-

logical fractures and spinal cord compression, are frequent in RCC

bone metastasis (RCC-BM).10,11 Prognosis-predictive risk factors

for RCC-BM include sarcomatoid differentiation of the primary

tumor, spinal involvement, extraosseous metastasis, increased

alkaline phosphatase levels, and elevated C-reactive protein

levels.12

Palliative treatment options aiming to improve quality of life,

include surgery, radiotherapy, and pharmacological approaches.7

However, managing bone pain remains challenging and imposes an

economic and psychosocial burden.13
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This review aims to integrate background knowledge with recent

advancements in understanding the intricate interplay between RCC,

bone cells, immune and stromal cells that contribute to RCC-BM. By

elucidating these mechanisms, we can unveil potential new targets

and develop more effective treatments for RCC-BM.

2 | BONE METASTASIS

Bone, comprising 60% inorganic material like calcium and phosphate,

25% organic material primarily collagen type I and 5% water, serves

multiple functions like structural support and organ protection.14 It is

a complex tissue composed of four cell types: osteoblasts, bone lining

cells, osteocytes, and osteoclasts.

Osteoclasts, of hematopoietic origin, are multinucleated cells

involved in bone resorption in response to mechanical signals. Their

ability to resorb the mineral component relies on the production and

release of organic acids, creating a low pH at the bone surface that

dissolves the mineral component.15

Osteoblasts, of mesenchymal origin, synthesize the nonmineral

components of bones and contribute to the mineralization of the

bone matrix. Osteoblasts have three different fate: apoptosis, differ-

entiation into osteocytes, or transformation into bone lining cells.16

Bone lining cells are quiescent osteoblasts covering the bone, while

osteocytes, representing 90% of all bone cells, maintain the balance

between bone resorption and formation through their mechanosensi-

tive function.17

Bone maintains a delicate balance between formation and resorp-

tion under physiological conditions, orchestrated by the complex

interplay of cytokines and hormones secreted by resident cell types.

Bone remodeling begins with osteoclast-mediated bone resorption,

followed by a reversal period transitioning to formation, ultimately

leading to matrix mineralization.18

However, this balance is significantly disrupted in BM. According

to Paget's “seed and soil” hypothesis, the distribution of the meta-

static niches is not random, but determined through intricate modifi-

cations of the microenvironment at the metastatic tumor sites.19

Osteomimicry, which refers to the evolution of cancer cells to exhibit

bone-resident cell phenotypes, may selectively favor metastatic seeds

capable of surviving and thriving in the bone microenvironment.

Bone-induced epigenomic reprogramming by tumor cells can dediffer-

entiate them, increasing their metastatic potential. Rather than a ter-

minal destination, bone can also serve as a “launch pad” for secondary
metastasis.20

Once in the bone, cancer cells take advantage of products of

bone remodeling, such as collagen type I, for growth. Preferential sites

for BM, like vertebrae, ribs, and pelvis, feature active bone marrow

environments containing crucial cells for metastatic progression.21

Upon entry into the bone, cancer cells stimulate bone cells to release

cytokines like the ligand of the receptor activator of nuclear factor-

kappa B (RANK-L) or epidermal growth factor (EGF).22 These signaling

molecules can remodel the bone and the bone marrow into a permis-

sive environment favoring the maturation of osteoclasts and tumor

cell expansion. This sets off a vicious cycle of tumor growth and bone

destruction.23

BM are classified as osteolytic, osteoblastic, or mixed lesions, with

active involvement of both osteoclasts and osteoblasts.

• Osteolytic metastases involve bone destruction primarily driven by

osteoclast activity. High levels of osteoclast-activating factors like

RANK-L are common in breast cancer, RCC, multiple myeloma,

melanoma, nonsmall cell lung cancer, and thyroid cancer.23

• Osteoblastic metastases enhance osteoblast function, reducing

osteoclast activity, resulting in new bone deposition, causing pain,

and restricted movement. Often seen in prostate cancer, small cell

lung cancer and medulloblastoma.23

• Mixed BM occur when patients have both osteolytic and osteo-

blastic lesions, found in breast, gastrointestinal, and squamous

cancers.23

In RCC, BM are primarily osteolytic, leading to skeletal complica-

tions.10 No current biomarker is used in clinic to evaluate the potential

formation of RCC-BM. However, preliminary studies suggest

potential markers associated with a risk of BM,24–26 but further inves-

tigations are needed to assess their utility in clinical practice.

3 | GENERAL OVERVIEW OF
CONTRIBUTING MOLECULAR COMPONENTS

Interactions between tumor cells and the bone microenvironment are

well understood in breast cancer but less in RCC (Figure 1).

3.1 | Osteolytic signaling

3.1.1 | RANK-L/RANK/osteoprotegerin

In bone, cancer cells stimulate osteoblasts to secrete RANK-L, inter-

acting with its receptor RANK on osteoclasts, promoting bone resorp-

tion.27 Osteoprotegerin (OPG) inhibits this interaction by binding with

a strong affinity to RANK-L. High RANK-L: OPG mRNA ratios in RCC

are associated with BM development. Furthermore, enhanced expres-

sion of RANK-L and RANK in primary RCCs served as significant pre-

dictors of RCC-BM.28,29 However, recent single-cell analysis suggests

that tumor-associated mesenchymal stromal cells (TA-MSCs) are a sig-

nificant source of RANK-L.30

3.1.2 | Calcium-sensing receptor

Upon bone matrix destruction by osteoclasts, high levels of extracellu-

lar calcium are released into the BM microenvironment.31 The

calcium-sensing receptor (CaSR), abundant in metastatic RCC, is acti-

vated by excess of soluble calcium, contributing to its chemotactic

attraction in bone, inducing cell proliferation.32,33
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3.2 | Growth factor signaling

The expression of growth factors and tyrosine kinase receptors in the

primary tumor cells is associated with unfavorable features of RCC.34

Additionally, bone is a rich source of numerous growth factors,

enabling the survival of metastatic tumor cells. Growth factor recep-

tors play a crucial role in the spread of cancer and in the interactions

between tumors and the bone environment.35 In the pathogenesis of

RCC-BM, a vicious cycle exists between tumor cells and bone. Osteo-

clast activation due to the presence of malignant cells lead to bone

destruction, with secretion of different bone-derived growth factors

and cytokines, which facilitate cancer cell proliferation and enhance

tumor growth.

3.2.1 | TGF-α/EGF-R signaling pathway

Autocrine secretion of transforming growth factor-α (TGF-α), a ligand

for EGF receptor (EGFR), has been observed in RCC.36 The TGF-

α/EGF-R signaling pathway plays a pivotal role in RCC-BM, impacting

tumor proliferation and bone resorption.37 Inhibiting these pathways

has shown promise in reducing RCC growth in bone and mitigating

bone destruction.38

3.2.2 | Transforming growth factor-β

TGF-β1, a potent and multifunctional cytokine, regulates microRNAs

expression involved in RCC progression. It is released from the bone

matrix during osteoclast-mediated bone destruction, promoting tumor

growth and subsequent osteolysis in vivo.39,40

3.2.3 | Hepatocyte growth factor/c-MET signaling
pathway

c-MET receptor tyrosine kinase and its hepatocyte growth factor

(HGF) ligand are often overexpressed in RCC. The HGF/c-MET path-

way plays an important role in RCC-BM by promoting tumor cell

survival and proliferation.41,42 HGF is activated by matriptase and

is predominantly expressed in osteoclasts at BM site.41 Both

HGF/c-MET and CaSR signaling activation are interconnected and

enhanced by Von Hippel Lindau mutations and hypoxia.32 Thus,

growth factor signaling pathways play a vital role in RCC-activated

osteoclast bone resorption and inhibition of these pathways

decreases RCC bone metastasis.36

3.3 | Cytokine signaling

3.3.1 | Chemokines

The primary tumor secretes several soluble factors into the blood-

stream to create a premetastatic bone niche. CXCL12, also known

as SDF-1, interacts with the CXCR4 or CXCR7 receptors on RCC

cells, shaping their metastatic potential and defining the support-

ing niches in secondary organs.43 High levels of CXCR4, CXCR7,

and SDF-1 correlate with poor outcomes in RCC patients. More-

over, HIF2α and nuclear factor-kappa B (NF-κB) activate distant

DNA enhancers, controlling CXCR4 expression in renal cancer

cells.44,45

High serum levels of CX3CL1, also called fractalkine, are observed

in patients with spinal metastases from kidney cancer.46 Similarly, high

expression in RCC of CX3CR1, the specific chemokine receptor of

F IGURE 1 Identified
molecular mediators in the
intricate interplay between renal
cell carcinoma and bone bells. The
cross talk between renal cancer
cells (in pink) and bone cells
(osteoblasts in orange or
osteoclasts in purple) is mediated
by factors or secreted molecules

(full arrows for activation and
dashed arrows for secretion). This
cross talk favors osteolysis to
create a niche for renal cancer
metastasis. Created with
BioRender.com.
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fractalkine, is associated with migration, metastasis, and poor

prognosis.47

3.3.2 | Interleukins

Interleukins (ILs) are key players in RCC-BM development. IL-6,

expressed by RCC cells, stimulates cytotoxic T-cells and induces oste-

oclast differentiation, leading to bone resorption.48,49 IL-17 induces

angiogenesis and increases the production of IL-6 in fibroblasts, creat-

ing a chronic inflammatory state that supports tumor growth and

metastasis.50,51

3.4 | Potential biomarkers in RCC-BM

3.4.1 | Cadherin-11

The calcium-dependent cell–cell adhesion molecule, Cadherin-11,

exhibits a substantial increase on the cell surface of RCC-BM cells. Its

enhanced expression promotes cell motility and leads to increased

BM, facilitated by its strong affinity for homotypic interactions with

native osteoblasts.52

3.4.2 | Insulin-like growth factor mRNA-binding
protein-3

The insulin-like growth factor mRNA-binding protein-3 (IMP3) binds

to a variety of mRNAs influencing gene expression linked with cell

migration and proliferation.53 IMP3 has been detected in several

malignancies, including RCC, and is correlated with poor prognosis

and metastasis.54–56 Immunohistochemical staining has confirmed its

presence in RCC-BM, suggesting its role in the metastatic

process.53,54

3.4.3 | Glycoprotein nonmetastatic protein-B

Glycoprotein nonmetastatic protein-B (GPNMB), known as Osteoacti-

vin, is expressed in various cell types, including osteoclasts, osteo-

blasts, macrophages, and dendritic cells. GPNMB is a positive

mediator of tumor progression in solid cancers,57 associated with

osteolytic BM development.58 In RCC, high GPNMB expression is

associated with both the number and the extent of BM, correlating

with a poor prognosis.57,59

3.4.4 | Integrins

Integrins, key transmembrane glycoproteins mediate cell interactions

with the extracellular matrix (ECM) and facilitate metastasis by guiding

tumor cells to specific niches. The α5-β1 integrin is a receptor for

fibronectin. In RCC patients, higher levels of integrin α5 correlate with

tumor grade and the onset of RCC-BM.60,61 Furthermore, Integrin α5

promotes c-MET activation, promoting tumor invasion, metastasis and

reducing survival.60

3.4.5 | Stress-induced-phosphoprotein 1

Stress-induced-phosphoprotein 1 (STIP1), also known as HSP70/

HSP90 organizing protein (HOP), plays a significant role in tumor pro-

gression. The STIP1-ALK2-SMAD1/5 pathway contributes to tumor

cell survival through an autocrine mechanism and amplifies osteolysis

via a paracrine mechanism. RCC cells with an affinity for bone exhibit

intrinsic high levels of STIP1 expression and secretion, fostering tumor

cell proliferation and promoting osteoclast maturation.62

3.4.6 | Bone TRAP-5b

Tartrate-resistant acid phosphatase (bone TRAP-5b), also called ACP5,

is secreted by osteoclasts and thus, is a relevant marker of bone

resorption. TRAP-5b levels are higher in RCC-BM patients and ele-

vated serum levels are associated with increased bone resorption.

However, its levels may not correlate directly with the number of

metastases.26 Moreover, the sensitivity and specificity of TRAP-5b

remain uncertain, suggesting caution in relying solely on it for

diagnosis.63

4 | MOLECULAR MEDIATORS IN OTHER
OSTEOLYTIC CANCERS

The existing literature highlights in different solid tumors, particularly

in breast cancer, numerous molecules whose high expression is asso-

ciated with osteolytic BM.

4.1 | Bone morphogenetic protein 2

Bone morphogenetic protein 2 (BMP-2) is an osteo-inductive growth

factor responsible for inducing osteoblastic differentiation and bone

formation.64

Inhibition of BMP-2 by Noggin has shown promise in preventing

bone lesion in lung-derived BM.65 Studies also show that BMP-2

might induce RCC cells to express an osteoblastic phenotype, poten-

tially explaining why bone is one of the preferential niche for RCC.66

4.2 | RunX1 and RunX2

Runt homology domain transcription factor (RunX2) is particularly cru-

cial for osteoblast differentiation and bone formation. Its overexpres-

sion is observed in several metastatic cancers, including

4 CESANA ET AL.
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osteosarcoma, breast, prostate, gastric, and colorectal cancers67 and is

correlated with activation of tumor-associated factors including vas-

cular endothelial growth factor (VEGF), metallo-proteases (MMPs),

and IL-6.68 High expression of RunX2 is also found in RCC, suggesting

potential osteomimetic features.69,70 Similarly, RunX1, associated with

poor prognosis in breast cancer and RCC, impacts bone homeostasis

through the WNT/β-Catenin pathway.70–73 Targeting the RunX family

holds promise for new therapeutic approaches.67

4.3 | CD44

CD44, an adhesion molecule expressed on various metastatic cancer cells,

favors migration during BM, facilitated by stemness acquired during the

epithelial–mesenchymal transition (EMT). CD44 may induce an osteomi-

mic phenotype of cancer cells, promoting survival in bone.74,75 In breast

and prostate cancer, activated CD44 on bone marrow endothelium aligns

with tumor cell CD44, stimulating osteoclast activity and osteolytic

BM.76,77 Elevated CD44 expression in RCC correlates with poor

prognosis,78 and metastasis.79 While direct links to RCC-BM are lacking,

CD44's potential importance warrants further investigation.

4.4 | Osteopontin

Osteopontin (OPN), or Secreted PhosphoProtein 1 (SPP1), is a multi-

functional protein involved in cancer progression and bone remodel-

ing. Released by osteoblasts and osteoclasts, it influences osteoclast

function, matrix mineralization, and cell adherence through integrin

and CD44 receptors.80

During cancer progression, OPN regulates cell signaling, promot-

ing affinity for bone,81,82 and contributing to bone resorption.83 Upre-

gulation of OPN in RCC correlates with poor prognosis and shorter

metastasis time,84–87 and its role in invasion is linked to MMPs activa-

tion.88 However, OPN's impact on RCC-BM remains unexplored.

4.5 | The Jagged1-Notch pathway

In breast cancer, tumor-derived Jagged1 activates Notch pathway in

osteoblasts and osteoclasts, promoting the release of TGF-β and the

development of osteolytic BM.89–91 The inhibition of the γ-secretase,

the enzymatic complex mediating the final cleavage of the Notch

receptor, reduces Jagged1-Notch-mediated metastasis.89

Similarly, in RCC, high TGF-β levels are linked to poor prognosis

and BM.39 Notch inhibition reduces RCC cell migration, suggesting a

therapeutic potential for RCC-BM.92

4.6 | CENP family

Aneuploidy resulting from dysregulated oncogenes may contribute to

tumorigenesis and metastasis.93 Dysfunction of the Centromere

protein family (CENPA and CENPF) leads to aneuploidy, chromosomal

mismatches, or disruption of genomic integrity.94 CENPA promotes

ccRCC progression and metastasis via Wnt/β-catenin signaling path-

way.95 Elevated CENPF expression is observed in breast cancer BM

models, with computational analysis showing the involvement of the

PI3K–AKT–mTORC1 pathway.96 This could be relevant to RCC-BM,

as mTOR pathway inhibition disrupts its development in vitro.97

4.7 | Parathyroid hormone-related peptide

Breast and prostate cancer cells secrete parathyroid hormone-related

peptide (PTHrP), triggering osteoblasts to secrete RANK-L, thereby

inhibiting OPG expression and increasing osteoclast activity. This

establishes a vicious cycle, promoting osteolytic BM and tumor

growth.98–103 While PTHrP is vital for RCC proliferation, its role in

RCC-BM remains unclear. Blocking PTHrP reduces RCC expansion

in vitro,104,105 but its impact on bone cells and RCC-BM is

inconclusive.38,52,106

4.8 | Dickkopf 1

Wnt/β-catenin signaling maintains bone homeostasis while aberrant

expression of the Wnt inhibitor, Dickkopf 1 (DKK-1), impairs osteo-

blast activity influencing the balance between bone formation and

resorption.107–109 Elevated DKK-1 serum levels are found in breast

cancer osteolytic cell lines but not in osteoblastic models.109–111 In

RCC, DKK-1 expression appears to induce apoptosis and inhibits can-

cer proliferation, but it is epigenetically silenced in advanced stages of

kidney cancers.112 DKK-1 serum levels were significantly lower in

RCC patients, correlating with invasiveness and high-grade tumors.113

Thus, a link between DKK-1 and RCC-BM remains unexplored and

warrants further investigations.

5 | COOPERATION BETWEEN RCC AND
THE BONE METASTATIC ENVIRONMENT

5.1 | Recruitment of specific immune cells

Cancer cell migration to the bone marrow disrupt its homeostasis,

leading to an immunosuppressive tumor microenvironment (TME),

featuring tumor-associated macrophages (TAM) and different T-cells

such as exhausted (T-ex), cytotoxic (CTL-3), and regulatory (T-reg)

(Figure 2). RCC-BM progression is intensified by the interaction

between TAM and T-cells, mediated by various ligand/receptors,

notably SIRPA/CD47, CCL4L2/VSIR, CCL18/CCR8, CD68/CTLA4,

and IL-10/IL10RB30,114 (Figure 2).

Recently, single-cell transcriptome profiling identified the pres-

ence of several populations of TAM within the TME of metastatic

RCC. Metastasis-infiltrating TAMs in RCC-BM exhibit a hybrid pheno-

type, displaying characteristics of both M1 (pro-inflammatory) and M2

CESANA ET AL. 5
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(pro-tumorigenic) macrophages, and leading to an immunosuppressive

microenvironment.30,114 Interestingly, the differentiation path of

M2-TAMs primarily originates from myeloid-derived suppressor cells

in RCC-BM.114 M2 TAM showed high expression of SPP1, CXCL5,

CCL2, CCL7, and CCL18.115 They are involved in bone formation,

osteoclast anchoring, and premetastatic niche formation in various

cancers.80,116–119

Overall, these findings underscore the coordinated interplay

between tumor cells and bone-recruited immune cells in facilitating

metastasis.

5.2 | Distinct stroma cell populations are enriched
in RCC-BM

Single-cell transcriptome profiling of RCC-BM revealed the involve-

ment of specific cancer-associated fibroblasts (CAFs) and TA-MSCs in

bone remodeling, with their abundance correlating with poor survival

(Figure 2).

Changes in TA-MSC abundance within the BM site are corre-

lated with the bone environment remodeling and promotion of

EMT in tumor cells. In addition, dysregulation of RANK/RANK-L/

OPG signaling drives bone remodeling and osteoclast

maturation,120,121 supported by increased expression of mediators

like Oncostatin M (OSM) and its receptor OSMR, and VEGF-R2.30

Moreover, RCC-BM demonstrated a pro-angiogenic signature,

being enriched in blood vessel development and VEGFA-VEGFR2

signaling pathway.114

As the predominant cell type of the TME, CAFs play important

roles in promoting tumorigenesis.122 Several subpopulations of CAFs

(mCAF_1 and mCAF_2) have been identified in primary RCC and

RCC-BM. Elevated mCAF_2 presence, associated with elevated EMT

markers, correlates with poor prognosis in RCC patients.114 Moreover,

differential gene expression analysis revealed enrichment of EMT pro-

grams in RCC-BM, characterized by upregulation of actin cytoskeleton

and ECM organization.30

Collectively, these studies identified key stromal cell subsets and

molecular features enriched in the environment of RCC-BM.

5.3 | Tumor-derived extracellular vesicles

Extracellular vesicles (EVs) are nanometer-sized lipid membrane-

bound vesicles carrying RNA, DNA, proteins, and lipids. They play a

crucial role in mediating communication between tumor cells and dis-

tant microenvironments, including the bone marrow. Tumor-derived

EVs contribute to vascular leakiness, ECM remodeling, immune sup-

pression, and tumor progression.123 Several studies have explored

EVs, particularly their microRNA content, as potential RCC

biomarkers.124–126 Additionally, RCC-EVs induce EMT, angiogenesis,

vascular permeability, and therapeutic resistance, modifying both local

and distant microenvironments to establish premetastatic

niches.127–129 For instance, EVs from renal cancer stem cells trans-

form healthy lungs into receptive niches able to support metastatic

RCC growth.125,130 Additionally, RCC-EVs containing a novel circular-

RNA termed EHD2, promote RCC lung metastasis by converting

fibroblasts into CAFs.131 A recent proteomic analysis unveiled the

presence in BM-EVs of aminopeptidase N, which enhances angiogen-

esis in the bone marrow.132 Furthermore, injecting RCC-EVs into mice

increases cancer cell invasiveness, upregulating pro-angiogenic fac-

tors, such as VEGF, MMPs, while also activating angiogenic pheno-

types in endothelial cells.130

F IGURE 2 Interplay among
stromal cells, immune cells and
bone matrix in renal cell
carcinoma bone metastasis.
metastatic renal cancer cells
(in pink) arriving in the bone niche
communicate with the bone niche
microenvironment composed of
immune cells (in green),

macrophages in (blue), Cancer
associated fibroblasts (in gray)
and tumor-associated
mesenchymal stromal cells
(in dark pink) to foster
micrometastasis formation (full
arrows for activation, tight dashed
arrows for movement and large
dashed arrows for secretion).
Created with BioRender.com.
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5.4 | Epigenetic rewiring in RCC-BM

Recent studies emphasize the importance of nongenetic factors in tumor

initiation and metastasis.133 In this context, epigenetic, as a nongenetic

regulation of heritable traits, plays a pivotal role through mechanisms such

as DNA methylation, histone modifications, non-coding RNAs, chromatin

accessibility, and enhancer reprogramming.134 RCC tumors display a rela-

tively low tumor mutational burden but an elevated epigenetic heteroge-

neity compared to healthy kidney.135,136 Mutations in genes encoding

epigenome modifiers and chromatin remodelers like PBRM1, SETD2,

KDM5C, KDM6, and BAP1 are evident in RCC.137–140 Experimental anal-

ysis have showed that HIF1α signaling activation in RCC promotes mito-

chondrial DNA hypermethylation, contributing significantly to BM

progression.141,142 Given that these alterations may be reversible with

small molecules or inhibitors targeting epi-modifiers, the prospect of novel

epigenetic therapies is promising.143,144

6 | CURRENT RESEARCH/CLINICAL
TRENDS FOR RCC-BM

The identification of biomarkers is vital for delivering accurate diagno-

ses and enhancing the prognosis of RCC-BM patients. Hence, this

section aims to discuss the latest research on the clinical application

of several important developments in this field.

6.1 | Local therapies

Treatment objectives for RCC-BM patients involve palliative surgery

alongside non-surgical interventions to maintain neurological function and

manage pain. Surgical intervention may include resections, internal fixa-

tion, and neural decompression, often preceded by preoperative emboli-

zation in RCC metastasis to reduce bleeding.145 Conventional radiation

therapy typically yields limited response in RCC; however, higher doses

per fraction and techniques like stereotactic ablative radiotherapy show

promise.146 Radiofrequency ablation or cryoablation can effectively target

and destroy metastatic tumor tissue, alleviating pain.147,148 There are

increasing trend for metastasis-directed resections and slightly declining

numbers for radiation therapy for RCC-BM.149

6.2 | Targeted therapies and bone targeting agents

Metastatic RCC is commonly treated with tyrosine-kinase inhibitors

(TKIs), approved especially in cases with bone involvement. Preclinical

evidence suggests that TKI can inhibit osteoclastic activity and bone

resorption activity. Cabozantinib, that targets both c-MET and

VEGFR2, was related to a significant improvement of overall survival

and progression-free survival in RCC-BM patients.150

Bone-targeting agents (BTAs) include bisphosphonates, zoledronic

acid, and anti-RANK ligand antibody (denosumab). By interrupting the

“vicious cycle” of bone metastasis, RANKL inhibition and

bisphosphonates have been successfully approved for the treatment of

patients with BM from various solid tumors, including prostate and breast

cancers. Zoledronic acid inhibits osteoclast activity and reduce skeletal

lesions in RCC-BM.151 Denosumab targets RANK-L to reduce bone

resorption.152 However, the extent to which patients benefit from BTAs

treatment depends on the origin and stage of BM. In comparison to other

solid tumors, patients with RCC-BM are particularly resistant to bone

modifying agents, reflecting unique cellular and molecular mechanisms in

the bone microenvironment that promote progression via inhibition of

the bone anabolic reparative response.45 Recent evidence indicates that

in earlier steps, RCC inhibits the bone anabolic reparative response via a

paracrine mechanism mediated by BIGH3/TGFβ1 thereby impairing oste-

oblast differentiation and inducing osteocyte apoptosis.153 To enhance

synergistic anticancer activity and improve treatment outcomes, TKIs are

often combined with BTAs. Combining TKIs with BTAs has shown favor-

able results in managing RCC-BM, however further data is required to

validate this therapeutic strategy/theses therapeutic molecules.154

6.3 | Enhancing endogenous antitumor immunity

TAM enrichment showed its contribution to resistance to chemother-

apy or immunotherapy.155 Targeting TAMs shows promise in treating

RCC-BM. Approaches include TAM removal, which reduces BM

growth in breast and prostate cancer.156,157 TAM depletion from the

TME with bisphosphonates demonstrated the ability to inhibit macro-

phage proliferation and induce apoptosis in vitro.158 Alternatively, repro-

gramming TAMs from a pro-tumorigenic to antitumorigenic phenotype

can be achieved using CD40 monoclonal agonist antibodies or Toll-like

receptor agonists.159,160 Additionally, immune checkpoint ligand blockade

like PD-1, PD-L1, and CTLA-4 offer alternative strategies for TAM target-

ing, and has shown benefit in RCC.161–163 Recent research demonstrated

that ID3 expression in macrophages enhances their antitumor activity,

restricting the growth of various tumors.164 There have been few studies

on the therapeutic effect of immunotherapeutic modalities such as

immune checkpoint inhibitors (ICIs) in RCC-BM. However, a case of com-

plete remission of bone metastasis was reported after ICIs treatment.165

Furthermore, the introduction of novel combination therapies involving

TKIs and ICIs have resulted in improved oncological outcomes compared

to traditional TKI monotherapy.166

Cell-based immunotherapies, like tumor-infiltrating lymphocyte,

are still emerging for solid tumor metastasis treatment, with cases of

complete remission in RCC lung metastasis showcasing their poten-

tial.167,168 Advancing immunotherapeutic interventions in RCC-BM

requires a deeper understanding of this specific immune landscape.

6.4 | Targeting metastasis-associated fibroblasts

In RCC-BM, CAFs originating from TA-MSCs, contribute to bone

lesion.169,170 Targeting CAFs, particularly through FAP protein-directed

therapy, shows promise in various metastatic cancers, with ongoing clini-

cal trials exploring this approach.171 In RCC, CAFs promote tumor
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metastasis by upregulating angiogenic factors like HGF and facilitating

MMP-9 accumulation.172 Targeting CAFs through immunotherapies holds

promise for treating RCC-BM. Notably, recent single-cell RNA profiling by

Ma et al.114 has identified a subcluster of FAP+ CAFs associated with

RCC-BM and poor patient prognosis, further emphasizing the importance

of targeting CAFs in RCC treatment.

6.5 | Microbiome-oriented strategies

Emerging evidence suggests that complex microbial communities,

within primary tumors, influence responses to anticancer therapies.173

Genomics and transcriptomic profiling have revealed the presence of

a rich microbiome in metastatic tumor biopsies, with certain microbes

linked to resistance to checkpoint blockade.174,175 Interestingly, renal

metastases show a higher fraction of bacterial-derived reads com-

pared to other metastatic cancers.176 Moreover, research highlights

the interplay between the gut microbiome and the bone microenvi-

ronment, indicating altered microbial compositions in patients with

BM.177 Future studies targeting the intra-tumor microbiome may lead

to bacteria-focused strategies to improve cancer therapies.

7 | CONCLUSION

The bidirectional interplays involving metastatic tumor cells, bone cells,

the mineralized bone matrix, osteoclasts and osteoblasts, immune cells,

and CAFs are governed by complex molecular mechanisms that pro-

foundly influence metastatic progression and treatment responses. This

complexity greatly hinders progress in drug development, reflecting the

high failure rate of drugs developed for this disease. Although less well

known than breast cancer BM, RCC-BM also pose significant challenges

that can lead to skeletal complications and reduced quality of life for

patients. Therefore, better understanding of inherent features underlying

the dynamic heterogeneity within this tumor ecosystem and the applica-

tion of this knowledge are essential for future development of effective

and durable therapeutic strategies for RCC patients with bone metastasis.

Treatment strategies for RCC-BM encompass a multidisciplinary

approach, including surgical interventions, radiotherapy, targeted ther-

apies, BTAs, and now emerging immunotherapeutic modalities.

Overall, continued collaboration between clinicians, researchers,

and pharmaceutical companies is crucial for translating scientific dis-

coveries into clinical applications for precision medicine and addres-

sing the evolving challenges associated with metastatic RCC,

particularly in the context of bone involvement. The aforementioned

findings could lead to innovative therapeutic strategies, thereby creat-

ing optimism for advancing the management of RCC-BM and ulti-

mately improving patient survival and quality of life.
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