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1 Introduction

Narratives are sequences of events involving one or more characters, where the meaning
of each event is shaped by its relationship to others within the story. Unlike static col-
lections of information, narratives evolve over time, requiring the brain to continuously
integrate and update its understanding as the story progresses. Common examples of
narratives include spoken and written stories, as well as movies, all of which engage the
brain in dynamic processing. Studying narratives is crucial because they are central to
human communication and cognition. They reflect and simulate real-world experiences
and offer a rich context for understanding how the brain handles information that is
temporally and contextually dynamic, providing insights into cognitive processes [11].

We model the brain’s dynamic functional connectivity during narrative processing
recorded using functional Magnetic Resonance Imaging (fMRI) as temporal brain net-
works. In this representation, nodes correspond to brain regions, and the edges capture
the evolving correlations between these regions over time [8, 4]. This approach allows
us to capture how interactions among brain regions change over time as the narrative
unfolds.

In this work, we propose a machine learning model designed to classify this data in
a supervised setting. The model integrates a convolutional neural network (CNN) layer
with a multi-layer perceptron (MLP) to classify narratives based on modality (audio or
video) and content (airport or restaurant situations). Using Shapley values, we delve
into the model’s decision-making process and quantify the contributions of different
subnetworks in the Yeo 7-subnetwork parcellation. This approach enables us to iden-
tify the most involved subnetworks in narrative tasks. Our work is the first in applying
this method to the functional aspects of the brain, offering novel insights validated by
existing literature [1]. This combination of established techniques advances our under-
standing of how the brain processes complex, dynamic information and contributes to
a broader comprehension of narrative cognition.



2 Methods

Data The fMRI data used in our analysis was taken from the dataset by Nastase et al.
[3]. In this dataset, 31 participants were exposed to a total of 16 three-minute stories (4
per run over 4 runs). The stories can be categorized based on both content and modality.
In terms of content, there were 8 stories related to airports and 8 related to restaurants.
Regarding modality, 8 stories were presented in audio format, while the other 8 were
presented as movies. Within each run, participants experienced 2 movies and 2 audio
stories. The dataset is balanced across modalities and content. Preprocessing converted
BOLD signals into temporal graphs. We reduced motion artifacts through linear regres-
sion on movement parameters and applied a bandpass filter (0.01−0.08 Hz) to remove
respiratory and cardiac noise [10]. We used the Schaefer brain atlas to define 100 ROIs,
averaging BOLD time series within gray matter regions [5]. A sliding window approach
divided the data into time steps. Pearson correlations between ROI time series within
each window were computed, forming adjacency matrices that represent the temporal
brain networks.

Model Our model takes as input a temporal brain network, represented as a three-
dimensional tensor X ∈ [−1,1]R×R×T , where R is the number of brain regions (100)
and T is the number of time steps (8). The model architecture is composed by single-
layer 3D CNN, followed by a max pooling layer and a MLP for classification. The
CNN filter has size (R,R,τ) and captures temporal features by moving along the tem-
poral axis. Formally, the output of the CNN layer is defined as Yk,c = σ(X ∗W +
b)k,c = σ(∑R

i=1 ∑
R
j=1 ∑

τ
p=1 Xi, j,k+p−1 ·Wi, j,p,c +bk,c) where Y ∈ RK×C is the output ten-

sor, W ∈ RR×R×τ×C is the learnable filter tensor, b ∈ RK×C is the bias matrix and C
is the number of output channels. The operations ·,+ and σ , which represents the
ReLU(x) = max({0,x}) activation function, are applied component-wise. The output
tensor is then passed through a max pooling layer so that the output vector Z ∈ RC is
defined as Z = maxk Y [k,c]. Finally, the output passed through a MLP of three fully
connected layers with ReLU activation functions.

Shapley values Shapley values measure each player’s contribution in cooperative game
theory and are now adopted in machine learning to explain model predictions [6, 2]. We
use Shapley values to assess the impact of specific brain subnetworks on our model’s
predictions. Because of the limited number of brain subnetworks defined by the 7 Yeo
parcellation method [9], we can compute the exact Shapley values. The Shapley value
for a brain subnetwork i is given by:

φi(v) = ∑
S⊆N\{i}

|S|!(|N|− |S|−1)!
|N|!

(v(S∪{i})− v(S))

where N is the set of brain subnetworks, v is the accuracy of our model when consid-
ering the set S of brain subnetworks. To isolate the brain subnetworks in the temporal
brain network X we set the entries of the other subnetworks to zero. The Shapley value
φi(v) is the average marginal contribution of the brain subnetwork i over all possible
combinations of brain subnetworks, the higher the Shapley value, the more important
the brain subnetwork is for the prediction of the model.



3 Results

Experiments were performed to determine if the temporal brain networks can be used
to discriminate brain functional connectivity patterns in response to audio vs. movie
narratives (Modality classification) and airport vs. restaurant situations (Content classi-
fication).

The accuracy of our model excels in modality classification with a value of
96.32%±1.36%. Content classification accuracy is slightly lower at 80.9%±1.75%,
which reflects the greater difficulty of this task. To evaluate the importance of temporal
dynamics, we permuted the time steps of the brain networks and retrained the model.
The results reveal significant accuracy drops: 10% for modality classification arriving
to and accuracy of 86.60%± 3.36% and 17% for content classification reaching an
accuracy of 63.19%± 4.40% . These reductions highlight the critical role of temporal
dynamics in all classification tasks, with a more significant impact on content, which is
more dependent on temporal information due to their complexity.

(a) (b)

Fig. 1. Distribution of Shapley values for modality classification and content classification.

Figure 1 presents the contribution of Yeo 7 subnetworks computed with Shapley
values for classifying narrative using the presented machine learning model. The dis-
tribution of Shapley values for each subnetwork is displayed, reflecting the results of
retraining the model 15 times to ensure robustness against variations due to initial ini-
tialization. The red line represents the average of these 15 Shapley values. In the modal-
ity classification task, the visual subnetwork emerges as the most influential, followed
by the default mode subnetwork (see Figure 1 (a)). This aligns with the intuitive notion
that visual processing is essential for distinguishing between movies and audio stories.
For the content classification task, the high value of the default mode subnetwork sug-
gests its influence in understanding the meaning and content of the stimuli as suggested
by previous studies that has highlighted the default mode subnetwork’s involvement in
higher-order cognitive functions, such as narrative comprehension [1, 7] (see Figure 1
(b)).
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