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Genetics Selection Evolution

Combined genomic evaluation of Merino 
and Dohne Merino Australian sheep 
populations
Marine Wicki1,2*  , Daniel J. Brown3, Phillip M. Gurman3, Jérôme Raoul1,2, Andrés Legarra4 and Andrew A. Swan3 

Abstract 

Background The Dohne Merino sheep was introduced to Australia from South Africa in the 1990s. It was primarily 
used in crosses with the Merino breed sheep to improve on attributes such as reproduction and carcass composition. 
Since then, this breed has continued to expand in Australia but the number of genotyped and phenotyped purebred 
individuals remains low, calling into question the accuracy of genomic selection. The Australian Merino, on the other 
hand, has a substantial reference population in a separate genomic evaluation (MERINOSELECT). Combining these 
resources could fast track the impact of genomic selection on the smaller breed, but the efficacy of this needs to be 
investigated. This study was based on a dataset of 53,663 genotypes and more than 2 million phenotypes. Its main 
objectives were (1) to characterize the genetic structure of Merino and Dohne Merino breeds, (2) to investigate 
the utility of combining their evaluations in terms of quality of predictions, and (3) to compare several methods 
of genetic grouping. We used the ‘LR-method’ (Linear Regression) for these assessments.

Results We found very low Fst values (below 0.048) between the different Merino lines and Dohne breed consid-
ered in our study, indicating very low genetic differentiation. Principal component analysis revealed three distinct 
groups, identified as purebred Merino, purebred Dohne, and crossbred animals. Considering the whole popula-
tion in the reference led to the best quality of predictions and the largest increase in accuracy (from ‘LR-method’) 
from pedigree to genomic-based evaluations: 0.18, 0.14 and 0.16 for yearling fibre diameter (YFD), yearling greasy 
fleece weight (YGFW) and yearling liveweight (YWT), respectively. Combined genomic evaluations showed higher 
accuracies than the evaluation based on the Dohne reference only (accuracies increased by 0.16, 0.06 and 0.07 
for YFD, YGFW, and YWT, respectively). For the combined genomic evaluations, metafounder models were more 
accurate than Unknown Parent Groups models (accuracies increased by 0.04, 0.04 and 0.06 for YFD, YGFW and YWT, 
respectively).

Conclusions We found promising results for the future transition of the Dohne breed from pedigree to genomic 
selection. A combined genomic evaluation, with the MERINOSELECT evaluation in addition to using metafounders, 
is expected to enhance the quality of genomic predictions for the Dohne Merino breed.

Background
Australia is home to one of the world’s largest sheep 
populations, consisting of many different breeds, some 
of which are themselves structured into several lines 
[1]. In addition, these different breeds and lines are 
highly interconnected, making this population even 
more diversified [2, 3]. Since 2005, Sheep Genetics has 
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provided Australian Sheep Breeding Values (ASBVs) 
for different breeds and flocks distributed across Aus-
tralia by performing three major large-scale analyses: 
the MERINOSELECT evaluation for Merino, and the 
LAMBPLAN maternal and terminal breed evaluations. 
Since the introduction of this evaluation system, and 
even more so with the advent of genomic selection, sig-
nificant increases in genetic gains have been observed 
in these populations [4]. However, only the main breeds 
benefit from a sufficiently large genomic reference pop-
ulation (such as the Merino, Poll Dorset, White Suffolk 
and Border Leicester). Across-breed evaluations are a 
challenge to expand the use of genomic information for 
these breeds or the crossbred animals [5].

In the 1990s, the Australian sheep industry was fac-
ing a changing market where wool was becoming less 
profitable than meat [6]. This situation was particularly 
challenging for Merino breeders who were observing 
lower fertility and carcass performance in their animals 
compared to the terminal or maternal sheep breeders. 
This was mainly the result of the long-term selection 
of their animals for wool traits that have unfavorable 
genetic correlations with growth and reproduction 
traits [7, 8]. In response, Australian breeders recog-
nized the potential of the Dohne Merino breed, a more 
meat-oriented breed that we will call “Dohne” herein, 
to balance the ability of their animals to adapt to new 
production and wool price conditions. Indeed, the 
Dohne breed was considered as a “complete” breed pre-
senting high carcass and reproduction performances, 
as well as high wool quality and production [9]. The 
year 1998 saw the first importation of Dohne from 
South Africa to Australia, followed 2 years later, by the 
creation of the Australian Dohne Breeders Association 
(ADBA). This breed has been largely used in crossing, 
mainly with Merino ewes. Since then, it has grown sig-
nificantly, with, for instance, “20% of the commercial 
breeding ewes likely to be Dohne or their crosses with 
Merino” in 2014 [10]. However, the Dohne breed still 
conducts a separate genetic evaluation involving only 
purebred Dohne animals, with an emphasis on growth, 
reproduction, and wool traits [11]. This evaluation is 
moreover pedigree only, since although new purebred 
individuals are genotyped and phenotyped each year, 
their number is considered still too small to lead to 
accurate genomic predictions. An increase in the num-
ber of genotyped individuals would be necessary to 
observe a useful gain in accuracy with the transition to 
genomic selection. However, a circular problem often 
encountered is that breeders may be reluctant to geno-
type their animals if these genotypes are not included 
in the analysis, meaning that they will not benefit until 
the genomic reference is large enough.

However, since its introduction, the level of connect-
edness between Dohne sheep with other major breeds, 
particularly with the Merino breed, has substantially 
increased, and studies have shown high genetic proxim-
ity between these breeds [12]. Therefore, we can consider 
whether the Merino reference population could support 
accurate genomic predictions for the Dohne breed.

Some studies have observed improved accuracy in 
combining genomic evaluations of genetically close pop-
ulations, which increased the reference population size 
[13, 14]. Conversely, genomic prediction accuracy may 
decrease when diverse populations are combined because 
of a lack of relatedness between the reference and valida-
tion populations [15]. Indeed, some studies have shown 
that the gain in accuracy increases with the level of relat-
edness between the populations [16, 17]. Overall, across-
breed predictions are challenging. However, sheep breeds 
are often closely related to each other and less structured 
than what we can observe in other species. In particu-
lar, the Dohne and Merino breeds have co-developed in 
Australia and have been selected under similar breed-
ing objectives to meet a common market. Therefore, we 
expect promising results for an across-breed prediction 
design for the Dohne and Merino breeds.

The main objectives of this study were (1) to character-
ize the genetic structure of Merino and Dohne Merino 
breeds and their current degree of connectedness, and 
(2) to investigate which reference population is the most 
informative for both Merino and Dohne Merino breeds 
and their crossbreds. This second objective also implies 
quantifying the benefit, in terms of accuracy, for the 
Dohne breed to move from pedigree to genomic evalu-
ation. A last objective will be (3) to test different meth-
ods of accounting for missing pedigree with a simplified 
genetic grouping on the quality of the predictions.

Methods
Data
Data were extracted from two Sheep Genetics databases, 
the database for the Dohne Merino evaluation, and the 
MERINOSELECT database. The first database involves 
flocks registered to the Australian Dohne Breeders Asso-
ciation, which includes data on purebred Dohne animals 
only. The entire database was considered in our study. 
The MERINOSELECT database largely contains informa-
tion on Merino flocks but also includes other breeds and 
crossbred animals, including crosses involving the Dohne 
Merino and Merino breeds. These crosses are typically 
the result of the use of Dohne Merino sires, whether in 
flocks registered to the MERINOSELECT evaluation, the 
Australian Merino Sire Evaluation Association (AMSEA), 
or in the Meat and Livestock Australia (MLA) resource 
flock. Furthermore, this database also includes purebred 
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Dohne Merino animals that are part of flocks registered 
to the AMSEA evaluation, or flocks that were formerly 
members of the Australian Dohne Breeders Association 
that have moved to the MERINOSELECT evaluation. 
Dohne Merino genotypes are available in both databases 
but are not currently included in either the MERINOSE-
LECT or Dohne evaluations (the latter is a pedigree-
based evaluation only). The genotypes were selected from 
the Sheep Genetics genomic database for Dohne Merino 
animals and a subset of MERINOSELECT animals. As 
in de las Heras-Saldana et  al. [18], we used a subset of 
MERINOSELECT based on the core flocks within the 
evaluation, those flocks with the most complete data 
recording. This resulted in 26,031 Merino genotypes and 
a total genomic dataset of 53,663 genotypes across both 
breeds. The whole pedigree and phenotypes dataset of 
combined MERINOSELECT and Dohne Merino evalua-
tions were then pruned with renumf90 [19] to retain the 
deepest pedigree from the genotyped animals. Finally, 
the population that we studied was composed of pure-
bred Dohne (D), purebred Merino (M) and crossbred (C) 
animals between these two breeds. In turn, the Merino 
animals were structured in six populations [3] that we 
will call “lines” in the following.

Two wool traits were examined: yearling fibre diame-
ter (YFD, µm) and yearling greasy fleece weight (YGFW, 
kg), as well as one weight trait, yearling live weight 
(YWT, kg). All three traits were recorded from 1987 to 
2022 over 848 flocks. The heritabilities of these traits 
are respectively of 0.74, 0.57 and 0.38 [7]. The pedigree 
included 2,470,173 animals born between 1960 and 2022, 
including 2,178,952 animals recorded for at least one of 
these phenotypes (Table  1). It is important to note that 
the traits studied here are not sex limited, have been 
recorded in almost all individuals and are, moreover, 
moderately to highly heritable.

We studied 53,663 animals genotyped with a range 
of medium-density SNP chips obtained from the Sheep 
Genetics commercial genotyping pipeline from multi-
ple commercial genotyping companies. After applying a 
first round of quality control (minimum individual call 

rate of 0.90 and maximum heterozygosity of 0.50), these 
genotypes were imputed using Beagle 5 software [20] to 
fill in missing SNPs up to 60,410 marker density. Then a 
second quality control was performed with the software 
preGSf90 [19], rejecting SNPs with a minor allele fre-
quency of less than 0.05 and removal of Mendelian Con-
flicts. This resulted in genotype data with 57,428 effective 
SNPs and 52,387 animals.

Genetic structure of the population
We studied the genetic structure of the population by a 
Principal Components Analysis (PCA) of the genotypes, 
performed with the R package ‘irlba’, available at https:// 
CRAN.R- proje ct. org/ packa ge= irlba [21]; and by comput-
ing Wright’s fixation index  Fst [22, 23], which reflects dif-
ferentiation of populations. We computed  Fst for all pairs 
of populations, i.e. the Dohne breed and the six Merino 
genetic lines. We used the  Fst estimator [22, 23] as 

F̂st =

1
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)2)
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)
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)) where pbi  and pb
′

i  are 

allele frequencies for marker i respectively in population 
b and b′ , and n is the number of loci.

The results of the PCA were used to flag our genotyped 
animals as purebred Merino (M), purebred Dohne (D) 
and crossbred (C) animals. When we colored this PCA 
according to the pedigree-based expected proportion 
of either Merino breed or Dohne breed, we could dis-
tinguish, by visual inspection, three groups of animals. 
Thus, we decided to assign them to Merino, Dohne or 
crossbred (see Additional file 1 Figure S1) depending on 
the first and second Principal Component coordinates 
according to two equations:

All animals whose coordinates met the condition of 
Eq.  (1) were considered as Merino, while all animals 
meeting Eq.  (2) were considered as Dohne and animals 

(1)PC2− 0.40PC1+ 5 ≥ 0,

(2)PC2− 0.40PC1+ 42 ≤ 0,

Table 1 Number of animals with phenotypes and animals with phenotype and genotype by trait

YFD Yearling Fibre Diameter, YGFW Yearling Greasy Fleece Weight, YWT  Yearling Liveweight, Total Animals presenting at least one of these three phenotypes

Trait Animals with phenotypes 
born before 2021

Animals with phenotype and 
genotype born before 2021

Animals with phenotypes 
born in 2021 or after

Animals with phenotype and 
genotype born in 2021 or 
later

YFD 1,580,590 21,232 85,666 9843

YGFW 1,262,060 20,482 89,023 8812

YWT 1,666,933 32,615 114,998 11,591

Total 2,039,079 34,655 136,527 12,481

https://CRAN.R-project.org/package=irlba
https://CRAN.R-project.org/package=irlba
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fitting neither equation (in the middle) were considered 
as Crossbred.

Reference and validation populations
We aimed to compare the quality of predictions without 
vs. with performance, i.e. early prediction based on pedi-
gree or genomic prediction vs. late prediction including 
also own performance. In our study, we considered vali-
dation animals all genotyped and phenotyped animals 
born during or after 2021. Table 1 shows the number of 
animals phenotyped and genotyped or not; all animals 
were included in the ssGBLUP analyses, but phenotypes 
of validation animals were removed. The cut-off at 1st 
January 2021 removes the last 2  years of phenotypes, 
roughly one generation as usual [24, 25]. Table 2 shows 
the number of animals in the genomic reference popula-
tion (genotyped and phenotyped before 2021) and vali-
dation population (genotyped and phenotyped during or 
after 2021).

The scenarios explored mimic the situation in which a 
large database of Merino and crosses with Dohne exists, 
and Dohne breeders may join this database for genomic 
predictions. So, it is of interest to evaluate the extra accu-
racy (if any) and bias for Dohne and Merino pure breeds. 
Several scenarios were studied for which the composi-
tion of the reference population was altered. More spe-
cifically, we ran evaluations based on “single” reference 

populations (only one breed) and “joint” reference 
populations including both breeds and the crossbreds. 
For instance, in the scenario “All”, we included all the 
phenotypes and genotypes available. Conversely, in the 
scenario “D” only the phenotypes and genotypes of the 
Dohne animals were included in analyses. We were then 
able to compare the accuracy of the Dohne predicted by 
their own reference and the accuracy with the informa-
tion from the other breeds. For all the scenarios we did 
not alter the composition of the validation population 
in the evaluation although the validation was performed 
independently for each population Merino, Crossbred 
and Dohne. Thus, we were able to check the quality of 
“across-breed” evaluations. To determine the impact 
of genetic proximity between reference and validation 
populations on the quality of predictions, scenarios add-
ing only crossbred animals to the “single” reference sets 
were compared to the whole reference set (“All”). These 
included combining Crossbred and Dohne animals (sce-
nario “C+D”) and Merino and Crossbred animals (sce-
nario “M+C”). We did not consider the scenario M+D 
because the Australian breeders are heavy users of cross-
breeding, therefore there are crossbred animals and a ref-
erence composed of purebred Merino and Dohne merino 
would not exist in practice. The data structure of these 
scenarios is presented in Table 3.

Validation
We compared the different models and scenarios using 
the LR method [26]. For each scenario, we removed 
the phenotypic and genotypic information of animals 
not relevant to the comparisons in the reference. For 
instance, for the scenario “M”, we removed phenotypes 
and genotypes for Dohne and Crossbred animals born 
before 2021, so they would not influence validation 
metrics. Note, however, that records of animals born 
before 2021 that were phenotyped but not genotyped 
were retained in all the scenarios, since these animals 

Table 2 Number of animals in the genomic reference and 
validation population split by breed

Reference population Animals with genotype and phenotype born before 2021, 
Validation population Animals with genotype and phenotype born in 2021 
or after, YFD Yearling Fibre Diameter, YGFW Yearling Greasy Fleece Weight, 
YWT  Yearling Liveweight, Total Animals presenting at least one of these three 
phenotypes

Breed Animals in reference 
population

Animals in 
the validation 
population

Merino

 YFD 19,467 8542

 YGFW 18,647 7557

 YWT 29, 450 9729

 Total 31, 309 10,549

Crossbred

 YFD 712 392

 YGFW 791 355

 YWT 1870 477

 Total 2009 537

Dohne

 YFD 1053 909

 YGFW 1044 900

 YWT 1295 1385

 Total 1337 1395

Table 3 Composition of phenotyped genomic reference 
population in each studied scenario

M Merino, C Crossbred, D Dohne

Scenario Genomic reference 
population (number of 
animals)

Validation 
population (number 
of animals)

All M+C+D (34,665) M+C+D (12,481)

M M (31,309) M+C+D (12,481)

C C (2009) M+C+D (12,481)

D D (1337) M+C+D (12,481)

M+C M+C (33,318) M+C+D (12,481)

C+D C+D (3346) M+C+D (12,481)
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were not included in the PCA and we were there-
fore unable to identify them as Merino, Crossbred or 
Dohne. After removing these data, we ran a first evalu-
ation called ‘Partial’, followed by a second evaluation, 
called ‘Whole’, in which phenotypes of validation ani-
mals were included. The evaluation ‘Partial’ mimics 
the first genomic evaluation performed on the focal 
individuals i.e. individuals with phenotypes and geno-
type born in 2021 or later (e.g. as shown in Tables 1 and 
2), when no phenotypic information was available for 
them. Therefore, for this ‘Partial’ evaluation, all phe-
notypes of animals in columns 4 and 5 of Table 1 were 
removed, but their genotypes were retained. The data 
sets used for “Whole” included also validation pheno-
types of the respective scenario population, i.e. for “M” 
the phenotypes of the Merino validation population 
were added. As an example, the detail for a given trait 
(YWT) and scenario (M+C) is shown in Table 4.

From these two evaluations we extracted ‘whole’ and 
‘partial’ (respectively ûw and ûp ) EBVs and GEBVs of 
focal individuals. Finally, from these ‘whole’ and ‘par-
tial’ values we computed the following LR metrics [26]:

• The difference of means �̂p =

(
ûp

)
−

(
ûw

)
 which is 

an indicator of the bias of the ‘partial’ values
• The slope of regression of ‘whole’ on ‘partial’ values, 

bp , which is an indicator of the dispersion
• The correlation between ‘whole’ and ‘partial’ values 

which is an estimator of the ratio of partial to whole 
accuracies, i.e. accpaccw

• The accuracy as: acc =
√

Cov(ûp,ûw)(
1−F+diag

(
QQ

′
)
−QQ

′

)
σ 2

a,∞

 

for the UPG models; and acc =
√

Cov(ûp,ûw)
(1−F)σ 2

a,∞
 for 

metafounder models. Both models are detailed 
below. F  is the average pedigree inbreeding of the 
focal individuals and Q is the matrix of expected 
fractions of group proportions [27] and σ 2

α,∞ is the 
genetic variance of the validation individuals. For 
simplicity, it was assumed that σ 2

α,∞ = σ 2
α . Because of 

selection,σ 2
α,∞ is expected to be lower thanσ 2

α , 
although not greatly as we did not use highly selected 
animals, which is the case for example with dairy 
bulls. Consequently, we slightly underestimate the 
accuracy. Because this assumption is made consist-
ently across all comparisons, it should only change 
the overall magnitude of the accuracies for all traits 
but not their ranking. The different denominator for 
the UPG models is because UPGs are assumed as 
random with covarianceIσ 2

a  , whereas in metafounder 
models (as detailed in the following section), algebra 
cancels internally with the scale factor 
1+

diag(Ŵ)
2

− Ŵ [28].

For bias �p and slope of regression bp, we obtained 95% 
confidence intervals from the output of the linear regres-
sion. This is an approximation, as it considers that all 
EBVs of focal animals have the same accuracy, and also 
that they are unrelated. The assumption is reasonable 
because they all have similar amount of information (i.e. 

Table 4 Description of data included in the scenario “M+C” for yearling liveweight

Subset of animals Partial Whole Number of animals, for YWT 

Phenotype 
included

Evaluated (included 
in pedigree [and in 
genotypes])

Phenotype 
included

Evaluated (included in 
pedigree [and optionally in 
genotypes])

Phenotyped, non genotyped, 
< 2021

Yes Yes Yes Yes 1,666,933–32,615 = 1,634,318

Phenotyped, genotyped, 
< 2021, Merino

Yes Yes Yes Yes 29,450

Phenotyped, genotyped, 
< 2021, Crossbred

Yes Yes Yes Yes 1870

Phenotyped, genotyped, 
< 2021, Dohne

No Yes Yes Yes 1295

Phenotyped, genotyped, 
≥ 2021, Merino

No Yes Yes Yes 9729

Phenotyped, genotyped, 
≥  2021, Crossbred

No Yes Yes Yes 477

Phenotyped, genotyped, 
≥  2021, Dohne

No Yes Yes Yes 1385
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own phenotype) and because the focal individual groups 
are large, and mostly unrelated.

Consideration of missing pedigree
In this work, we compared the Unknown Parent Groups 
(UPG) method [27], which is the method currently used 
in the MERINOSELECT and Dohne evaluations to con-
sider missing pedigree, and the metafounders method 
[28]. Both UPGs and metafounders effects were consid-
ered as random. UPGs assume unrelated and non-inbred 
base populations whereas the metafounders method con-
siders relatedness between and within founders [29], e.g. 
missing parents from period t are assumed to be related 
to missing parents from period t + 1. The assumption 
of unrelated base populations in UPGs is equivalent to 
assuming that the individuals in the base populations 
come from very large, different ancestral populations. 
However, this lack of prior structure makes estimation of 
UPGs effects harder in comparison to the random, cor-
related nature of metafounders [30]. Furthermore, the 
metafounder method better models changes in genetic 
variance due to crosses between populations [31], and 
is assumed to provide better compatibility for ssGBLUP 
methods between genomic and pedigree information [32, 
33]. For these reasons, comparing the metafounder and 
UPG methods for the combined evaluation of Merino 
and Dohne breeds was of interest.

The current MERINOSELECT evaluation defines 
UPGs by flock and year of birth time periods of approxi-
mately 5  years. This manner of defining UPGs was 
adopted in the mid 2000s to account for (at the time) 
large differences in genetic merit between flocks, and 
high levels of unknown pedigree, particularly on the 
dam side. This definition led to many UPGs, around 620 
in the data used for this study. However, the addition of 
genomic information to the evaluation has resulted in 
a much larger proportion of known pedigree in recent 
years. Before, extensive breeding conditions led to a big 
proportion of unknown dams. Genomic information 
in recent years enabled to identify these missing dams. 
Moreover, the metafounder framework requires the con-
struction of a Γ matrix of relatedness between and within 
metafounders. The estimation of Ŵ elements requires 
that each metafounder is represented well enough with 
genomic data. For this reason, the assignment of UPGs 
and metafounders was redefined in this study, with the 
aim of reducing the number of groups and therefore, 
increasing the genomic information linked to each of 
them. Thus, the flock-level UPGs were condensed down 
to 6 Merino strains, and the Dohne breed. These groups 
were then subdivided depending on the year of birth of 
the animals, according to intervals of 5 years. One of the 
Merino lines (line “SAMM” from “South African Mutton 

Merino” https:// www. samm. net. au/ about/) spanned only 
a few years and hence there was no need to split into fur-
ther groups. This resulted in 31 UPGs or metafounders.

Two different methods for building the Γ matrix were 
compared. The first method estimated the 31 × 31 Γ by 
generalized least squares (GLS) as described in [34]. How-
ever, this method implies that each metafounder has suffi-
cient genomic information to accurately estimate the base 
allele frequencies. Some time-based groups may be linked 
to large numbers of genotypes while others may be linked 
to very few. For example, most genotyping has occurred in 
recent years. Thus, a second Γ was constructed in a simi-
lar way to the Γ estimated by the “Trend” method of Wicki 
et  al. [50]. If we assume a linear increase in relationship 
within a closed population [35], Γ by trend has the follow-
ing form:

where Ŵ0 =
2
n

(∑
i=1,n(2pi − 1)2

)
 [36] is the relationship 

of the ancestral metafounder (the earliest population in 
the breed), obtained using ancestral allele frequencies at 
each of the n markers, �F(γ ) is the average increase in 
metafounder-based inbreeding per year (which corre-
sponds to half the increase in relationship in the previous 
generation; hence the factor of 2), and n is the number of 
years between two consecutive metafounders. In fact, 
�F(γ ) = �F

(
1− Ŵ0

2

)
 . The equation can be adapted to 

unequal time intervals, but we did not need that.
First, we estimated the base allele frequencies for the six 

lines and the Dohne breed, but because the population was 
not uniformly split, we used the following Least Squares 
estimator including Q, which is the matrix of pedigree line 
contributions for each animal. For instance, for marker i 
with genotype calls in vector mi:

where p̂i contains 7 allele frequencies (6 Merino 
lines + Dohne) for marker i. Then, we estimated the 
average increase in pedigree inbreeding within each of 
the seven populations (six Merino lines plus the Dohne 
breed, considering individuals with both parents known 
only, using the software ASReml 4.2 [37], available 
at http:// www. vsni. co. uk. We used a linear model for 
inbreeding, that considered a baseline inbreeding per line 
b, a “baseline” increase with year of birth that is the same 
across lines ( c) and an increase per year of birth within 
each of the seven populations ( dj ). This was fit with the 
model:

Ŵ =




Ŵ0 Ŵ0 Ŵ0 . . .

Ŵ0 Ŵ0 + n2�F(γ ) Ŵ0 + n2�F(γ ) . . .

Ŵ0 Ŵ0 + n2�F(γ ) Ŵ0 + (2n)2�F(γ ) . . .

. . . . . . . . . . . .


,

2p̂i =
(
Q′Q

)−1
Q′mi,

https://www.samm.net.au/about/
http://www.vsni.co.uk
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where fi is total pedigree inbreeding for individual i , qi,j 
is the fraction of origin j in individual i , bj is the baseline 
inbreeding of the population and ti is the year of birth. 
On output, the estimate of c was very close to 0 (actually 
10−4) and it was ignored, whereas the estimates of dj var-
ied between − 0.001 and 0.016. Then, �F  per population 
was assigned the estimate for dj , and negative values of 
�F  (biologically impossible in closed populations) were 
set to the average of positive values.

A new metafounder was used every 5  years (except 
for the Merino line 48 for which only one metafounder 
was specified). Therefore, from one metafounder to 
another within the same line, the relatedness increase 
was five times 2�F  . Finally, we made the simplifying 
assumption that the relatedness between the different 
populations was constant over time and equal to the 
starting values e.g. for populations k and l, γk ,l , with value 
γk ,l =

2
n

∑
i=1,n

(
2pi(k) − 1

)(
2pi(l) − 1

)
 . Our final Γ had 

the following form, plugging in the different estimates, 
for each population or pair of populations, estimates of 
Ŵ0 , �F  and γk ,l:

fi =
∑

j=1,7

qi,jbj + tic +
∑

j=1,7

tiqi,jdj + ei,

Ŵ =




Ŵ0(k) Ŵ0(k) Ŵ0(k) . . . γk ,l γk ,l γk ,l . . .

Ŵ0(k) Ŵ0(k) + n2�F(k ,γ ) Ŵ0(k) + n2�F(k ,γ ) . . . γk ,l γk ,l γk ,l . . .

Ŵ0(k) Ŵ0(k) + n2�F(k ,γ ) Ŵ0(k) + 2n2�F(k ,γ ) . . . γk ,l γk ,l γk ,l . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Ŵ0(l) Ŵ0(l) Ŵ0(l) . . .

symmetric Ŵ0(l) Ŵ0(l) + n2�F(l,γ ) Ŵ0(l) + n2�F(l,γ ) . . .

Ŵ0(l) Ŵ0(l) + n2�F(l,γ ) Ŵ0(l) + 2n2�F(l,γ ) . . .

. . .




,

The estimated Ŵ matrix of this form was used in the 
construction of the H−Ŵ matrix used in ssGBLUP as 
detailed below.

Models
We ran multitrait evaluations. For YFD we applied the 
following model:

while for YGFW and YWT, we applied the following 
model:

where y is the vector of phenotypes, β is the vector of 
fixed effects, u is the vector of animal genetic effects, um 
is the vector of random maternal genetic effects (corre-
lated to a ), mpe is the vector of maternal permanent 

(3)y = Xβ+ Zau + Zsfysfy + e,

(4)
y = Xβ+ Zau + Zmum + Zmpempe+ Zsfysfy + e,

environmental effects, sfy is the vector of random sire by 
flock-year effects, and e is the vector of residual effects. 
Maternal effects (genetic and permanent environmental) 
were considered for YGFW and YWT only. In fact, ani-
mal and maternal effects included UPG or metafounder 
effects. For UPGs g , the variance–covariance matrix of 
animal genetic and maternal genetic effects is 

Var

(
u∗

um

)
= G0 ⊗ A with u = Qg + u∗ and similarly 

for um , where Q is the matrix of expected fractions of 
genes coming from each group and g is the vector of 
UPG effects modelled as random, Var

(
g
)
= G0 ⊗ I. For 

metafounders, Var

(
u∗

um

)
= G0 ⊗HŴ , where HŴ 

includes the metafounder effects. Matrix G0 is a 5 × 5 
matrix where the 3 × 3 upper left block contains the 
genetic covariances for the 3 traits across the direct 
effect, the 2 × 2 lower right block contains the genetic 
covariances for the 2 traits across the maternal effect, and 
the 3 × 2 off diagonal blocks contain the covariances 
across direct and maternal effects for all traits. The vari-
ance–covariance matrix of maternal permanent environ-
mental effects is Var(mpe) = M0 ⊗ I,where M0 is a 

diagonal 2 × 2 matrix that contains the maternal perma-
nent environmental variances for the YGFW and YWT 
traits. The variance–covariance matrix of sire by flock-
year effects is Var

(
sfy

)
= S0 ⊗ I, where S0 is a 2 × 2 diag-

onal matrix that contains the sire by flock-year variances 
for the YGFW and YWT traits. The variance–covariance 
matrix of residual effects is Var(e) = R0 ⊗ I, where R0 
contains the residual covariances across the three traits.

The variance components used here are those used in 
the official genetic evaluations (the same components 
are used in the Dohne Merino and MERINOSELECT 
evaluations) and have been recently re-estimated [18]. 
X, Za , Zm , Zmpe and Zsfy are the incidence matrices 
for fixed effects and random effects of animal breed-
ing value, dam, maternal permanent environment and 
sire by flock-year respectively. Phenotypes were pre-
adjusted for known fixed effects including age at meas-
urement, birth-rearing type, and age of dam, so that the 
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only fixed effect fitted was the contemporary group for 
each trait as done in the official evaluation [37–41].

In order to quantify the interest for the Dohne breed to 
move from a pedigree-base evaluation to a genomic eval-
uation we performed BLUP and SSGBLUP evaluations 
applying the two models described previously. In the case 

of BLUP, 
(

u
um

)
∼ N

(
0

0
,G0 ⊗ A

)
, where A is the rela-

tionship matrix based on pedigree information. In the 

case of SSGBLUP, u and um are following N(0,G0 ⊗HŴ) 
where HŴ is the relationship matrix based on both 
genomic and pedigree information, but which differ for 
UPGs [42], where it was called “QP Model”

or metafounders [42],

where G05 is the genomic relationship matrix calcu-
lated by VanRaden [43] from genotypes (using observed 
allele frequencies for UPG and 0.5 for metafounders) 
and blending the genomic and pedigree matrices with 
weights 0.95 and 0.05 on G and A22 (or A22(Ŵ) ), respec-
tively for invertability.

In summary, we compared 6 models:

• BLUP-UPG (BLUP with UPG)
• ssGBLUP-UPG (ssGBLUP with UPG)
• BLUP-MetaGLS (BLUP with metafounders and with 

Γ matrix estimated by GLS)
• ssGBLUP-MetaGLS (ssGBLUP with metafounders 

and with Γ matrix estimated by GLS)

H∗
Q� = A∗

� +




0 0 0

0 G−1 − A−1
22 −

�
G−1 − A−1

22

�
Q2

0 −Q′
2

�
G−1 − A−1

22

�
Q′

2

�
G−1 − A−1

22

�
Q2


,

H−1
Ŵ = A−1

Ŵ +




0 0 0

0 G−1
05 − A−1

Ŵ22 0

0 0 0



,

• BLUP-MetaTrend (BLUP with metafounders and 
with Γ matrix estimated “by trend”)

• ssGBLUP-MetaTrend (ssGBLUP with metafounders 
and with Γ matrix estimated “by trend”)

We used the software ‘BLUP90IOD3’ [44] to perform 
all these evaluations.

Results
Genetic structure of the population
We found quite low Fst values across the seven popula-
tions (Table  5) with the highest values being 0.037 to 
0.048 between the line SAMM (South African Meat 
Merino) and the other populations. The closer the Fst val-
ues are to 0, the less differentiated the populations so we 
can see here that the populations are very similar to each 
other. Furthermore, aside from line SAMM, the highest 
values did not include the Dohne breed, and there were 
greater differences within the Merino lines than between 
Dohne and Merino lines. We can even see that the two 
populations closest to each other were the Merino line 
“MerinoS”, selected particularly for body size, and the 
Dohne breed (Fst value of 0.002).

The results of the PCA of the genotypes reveal three 
different groups of animals, mainly split on the second 
Principal Component (PC2), but not clearly separated 
(Fig.  1). When we colored the individuals according to 
their respective Merino breed genomic contribution (as 
inferred from pedigree), we observed that the large group 
with highest coordinates on PC2 have a strong Merino 
breed contribution whereas the breed contribution 
decreases with lower PC2 coordinates (Fig. 1). When we 
colored this PCA according to the Dohne breed contri-
bution (not shown here), we observed the opposite pat-
tern. Thus, we considered the group on the upper part of 
the graph as purebred Merino animals (M), the group on 
the lower part as purebred Dohne animals and the group 
in the middle part as crossbred animals. The fact that 
these groups are mainly separated on PC2 (explaining 

Table 5 Fst estimates between lines

RF research flocks, SAMM South-African Meat Merino, MerinoFM Merino Fine Medium, MerinoS Merino Strong, MerinoUF Merino Ultrafine, DM Dohne Merino breed. RF, 
SAMM, Merino, MerinoFM, MerinoS and Merino UF are merino lines

Line RF SAMM Merino MerinoFM MerinoS MerinoUF DM

RF 0.043 0.005 0.007 0.021 0.009 0.017

SAMM 0.037 0.040 0.048 0.041 0.046

Merino 0.003 0.013 0.004 0.010

MerinoFM 0.009 0.003 0.006

MerinoS 0.006 0.002

MerinoUF 0.004

DM
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17% of the variance), and not on PC1 (22.1% of the 
variance) shows that most of the difference is observed 
within the Merino breed and not between Merino and 
Dohne breeds, consistent with the Fst values. This is a 
byproduct of the PCA trying to maximize explained dif-
ferences across the whole data set, which includes many 
more Merino than Dohne animals.

Metafounder relationship matrices
The Ŵ0 values between the 6 Merino lines and the Dohne 
breed, used to build the Ŵ matrix by the “Trend” method, 
are presented in Table 6.

The relatedness estimates between the different 
ancestral metafounders were very similar to each 
other (off-diagonal elements): on average 0.481 with 

a variance very close to 0. The relatedness estimates 
within ancestral metafounders (diagonal elements) 
were slightly higher, on average 0.504, but still very 
similar to each other (variance of 0.001). The average 
increase in pedigree inbreeding within each line was 
equal to 0 or very close to 0 (Table 6). When the value 
of �F  was 0, we replaced it with the average of non-
zero values.

Finally, when we compared the two final Ŵ matri-
ces used in the models BLUP-MetaGLS and 
ssGBLUP-MetaGLS and BLUP-MetaTrend and ssGB-
LUP-MetaTrend respectively, we obtained differences 
ranging from − 0.068 to 1.302. Globally, all values were 
very similar between the two Ŵ matrices except for 
three groups: the group relative to the SAMM line and 

Fig. 1 Principal Components Analysis (PCA) of the genotypes colored by Merino breed genomic contribution. PC Principal component

Table 6 Ŵ0 estimates between lines and average increase in pedigree inbreeding for each line and per year (from 1960 to 2022)

RF research flocks, SAMM South-African Meat Merino, MerinoFM Merino Fine Medium, MerinoS Merino Strong, MerinoUF Merino Ultrafine, DM Dohne Merino breed. RF, 
SAMM, Merino, MerinoFM, MerinoS and Merino UF are Merino lines

Line RF SAMM Merino MerinoFM MerinoS MerinoUF DM �F

RF 0.498 0.481 0.482 0.480 0.473 0.480 0.474 0.0000

SAMM 0.481 0.595 0.481 0.479 0.480 0.478 0.478 0.0018

Merino 0.482 0.481 0.481 0.477 0.476 0.477 0.475 0.0000

MerinoFM 0.480 0.479 0.477 0.484 0.483 0.480 0.483 0.0017

MerinoS 0.473 0.480 0.476 0.483 0.511 0.489 0.503 0.0001

MerinoUF 0.480 0.478 0.477 0.480 0.489 0.487 0.489 0.0003

DM 0.474 0.478 0.475 0.483 0.503 0.489 0.502 0.0002
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two groups relative to the Dohne breed, for which the 
values with the GLS method were clearly higher than 
the rest of the matrix.

Quality of genomic predictions
Overall, in terms of genomic predictions quality, all the 
scenarios that included Merino animals in the refer-
ence (i.e. scenarios “All”, “M” and “M+C”) obtained very 
similar results, which is why we only present the results 
of the "All" reference here. In the same way, the three 
BLUP models obtained very similar results, as did the 
two ssGBLUP models with metafounders. Thus, we pre-
sent the results of models BLUP-UPG, ssGBLUP-UPG 
and ssGBLUP-MetaGLS only. In the following we will use 
the notation “validation-reference” to refer to the differ-
ent scenarios. For example, the “D-All” scenario refers to 
the results of the Dohne validation evaluated by the “All” 
reference.

Accuracy
Genomic prediction accuracies for YFD, YGFW and 
YWT are presented in Tables 7, 8 and 9, respectively.

For the trait YFD, the accuracies were slightly greater 
for the validation “M” than for “C” or “D” validations. On 
average 0.42, 0.33 and 0.35 for the validation “M”, “C” and 
“D” respectively for the BLUP models; and 0.60, 0.51 and 
0.45 for the ssGBLUP models. For the BLUP models and 
within each validation, we observe very similar accuracies 
between the different references. However, we observed 

a stronger effect of the reference for the ssGBLUP mod-
els. The highest accuracies were observed for the scenar-
ios “All” for the three validations. Similarly, the greatest 
gains in accuracy between the BLUP and ssGBLUP mod-
els were observed with the reference “All”. Specifically, 
we observe a gain in accuracy of 0.13 from BLUP-UPG 
to ssGBLUP-UPG for the scenario D-All whereas this 
gain is only of 0.06 in the scenario D-D. For this trait, the 
models with metafounders were more accurate than the 

Table 7 Genomic prediction accuracy based on LR method, 
observed across reference populations, validation populations 
and models for yearling fibre diameter

All Merino + Crossbred + Dohne Merino reference, M Merino, C Crossbred, D 
Dohne Merino, BLUP-UPG Blup model with UPG, ssGBLUP-UPG ssGBLUP model 
with UPG, ssGBLUP-MetaGLS ssGBLUP model with metafouders and gamma 
matrix built by Generalized Least Squares

Reference Validation Model

BLUP-UPG ssGBLUP-UPG ssGBLUP-
MetaGLS

All M 0.45 0.60 0.64

C 0.34 0.57 0.62

D 0.35 0.48 0.51

C M 0.41 0.51 0.54

C 0.33 0.47 0.51

D 0.34 0.43 0.46

D M 0.41 0.48 0.51

C 0.32 0.44 0.47

D 0.35 0.41 0.44

C+D M 0.41 0.49 0.52

C 0.34 0.46 0.51

D 0.35 0.42 0.45

Table 8 Genomic prediction accuracy based on LR method, 
observed across reference populations, validation populations 
and models for yearling greasy fleece weight

See Table 7 for abbreviations

Reference Validation Model

BLUP-UPG ssGBLUP-UPG ssGBLUP-
MetaGLS

All M 0.48 0.65 0.71

C 0.36 0.51 0.58

D 0.38 0.52 0.55

C M 0.45 0.51 0.54

C 0.36 0.42 0.48

D 0.35 0.43 0.47

D M 0.45 0.51 0.56

C 0.35 0.40 0.46

D 0.38 0.46 0.50

C+D M 0.45 0.60 0.56

C 0.37 0.42 0.47

D 0.38 0.51 0.51

Table 9 Genomic prediction accuracy based on LR method, 
observed across reference populations, validation populations 
and models for yearling liveweight

See Table 7 for abbreviations

Reference Validation Model

BLUP-UPG ssGBLUP-UPG ssGBLUP-
MetaGLS

All M 0.43 0.62 0.68

C 0.47 0.74 0.66

D 0.37 0.57 0.53

C M 0.42 0.53 0.59

C 0.45 0.67 0.56

D 0.31 0.52 0.43

D M 0.42 0.49 0.56

C 0.45 0.54 0.56

D 0.38 0.48 0.47

C+D M 0.42 0.46 0.56

C 0.46 0.58 0.56

D 0.38 0.41 0.48
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UPG models: on average 0.48 for the ss-GBLUP-UPG 
against 0.52 for the ssGBLUP-MetaGLS.

Globally, in terms of accuracy, the results for the trait 
YGFW were very similar to the results for the trait 
YFD. We did not observe a major effect of the reference 
population on the accuracy in the case of BLUP mod-
els. The highest gain in accuracies with the addition 
of genomic information was observed in the scenario 
“All”: increase of 0.14 from BLUP-UPG to ssGBLUP-
UPG for the scenario D-All against 0.08 for the scenario 
D-D. For this trait as well, the metafounders model was 
more accurate than UPG one: on average 0.50 against 
0.53 for the scenario ssGBLUP-UPG and ssGBLUP-
MetaGLS respectively (except for the validation “M” in 
the scenario “C+D” for which the UPG model was 0.04 
more accurate than the metafounders models).

For the trait YWT, we typically observed the same pat-
terns as for the two previous traits but with more vari-
ations between references or models. Still, the largest 
change in accuracies from BLUP to ssGBLUP models 
were seen in the scenario “All”: increase of 0.20 from 
BLUP-UPG to ssGBLUP-UPG for the scenario D-All and 
0.10 for the scenario D-D. Finally, for the validation “M”, 
metafounders models was more accurate than the UPG 
models: on average 0.53 against 0.60 for the models ssG-
BLUP-UPG and ssGBLUP-MetaGLS respectively. How-
ever, the comparison of metafounder versus UPG models 

was less clear for the two other validations which, some-
times, showed higher accuracies with UPG than with 
metafounders.

Dispersion
The regression slope ( ̂bp ) and associated 95% confi-
dence intervals of “whole” GEBVs on “partial” GEBVs for 
YFD, YGFW and YWT are presented in Figs. 2, 3 and 4, 
respectively. An estimated slope less than one implies 
that GEBVs of candidates with genomic information only 
are overestimated compared to their GEBVs with phe-
notypes included. For the trait YFD, we observed slopes 
non-significantly different from one for the BLUP models 
and slopes slightly lower than one for the models includ-
ing genomic information with confidence intervals rang-
ing from 0.65 to 1.13. Globally, the reference “All” gave 
the closest slopes from one: slopes ranging from 0.95 to 
1.02 for the scenario “M-All” and from 0.85 to 1.12 for 
the scenario “D-All”.

For the trait YGFW, we observed slopes not signifi-
cantly different from one or very close to one with the 
references “All” and “C”. Particularly for the scenario 
“M-All” the confidence intervals ranged from 0.99 to 
1.03 and from 1.04 to 1.31 for the scenario “D-All”. For 
the scenarios with references “C+D” and “D” the slopes 
were further from one especially for the model ssGBLUP-
UPG: between 0.58 and 1.31 with the reference “C+D”.

Fig. 2 Estimates and confidence intervals of slope of regression ( ̂bp ) of regression of GEBVw on GEBVp, observed across scenarios, validation 
populations and models for Yearling Fibre Diameter. C Crossbred, D Dohne, M Merino, BlupUPG Blup model with UPG, ssGBlupUPG ssGBlup model 
with UPG, ssGBlupMetaGLS ssGBlup model with metafounders and gamma matrix built by Generalized Least Squares, ssGBlupMetaTrend ssGBlup 
model with metafounders and gamma matrix built by trend



Page 12 of 18Wicki et al. Genetics Selection Evolution           (2024) 56:69 

Finally, for the trait YWT, as for YGFW, slopes were 
very close to the expected value of one with references 
“Mer” and “C”: confidence intervals between 0.92 and 
0.96 for the scenario “M-All” and between 0.86 and 1.10 

for the scenario “D-All”. The references “C+D” and “D” 
showed more variable slopes particularly the model ssG-
BLUP-UPG the slopes could be as low as 0.46 in the sce-
nario “C-D”.

Fig. 3 Estimates and confidence intervals of slope of regression ( ̂bp ) of regression of GEBVw on GEBVp, observed across scenarios, validation 
populations and models for Yearling Greasy Fleece Weight. See Fig. 2 for abbreviations

Fig. 4 Estimates and confidence intervals of slope of regression ( ̂bp ) of regression of GEBVw on GEBVp, observed across scenarios, validation 
populations and models for Yearling Liveweight. See Fig. 2 for abbreviations
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Bias
The bias estimates ( ̂�p) and their associated 95% confi-
dence intervals scaled by the genetic standard deviation 
for YFD, YGFW and YWT are presented in Figs. 5, 6 and 
7, respectively. As a reminder, negative bias implies that 

GEBVs of candidates (with genomic information only) 
are underestimated compared to their GEBVs estimated 
with phenotypes. For the trait YFD, we observed very 
small bias with confidence intervals ranging from − 0.23 
to 0.29 genetic standard deviation. Bias for the models 

Fig. 5 Estimates and confidence interval of bias ( ̂�p ) between whole and partial GEBV, observed across scenarios, validation populations 
and models for Yearling Fibre Diameter expressed in genetic standard deviation. See Fig. 2 for abbreviations

Fig. 6 Estimates and confidence intervals of bias ( ̂�p ) between whole and partial GEBV, observed across scenarios, validation populations 
and models for Yearling Greasy Fleece Weight expressed in genetic standard deviation. See Fig. 2 for abbreviations
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BLUP-UPG and ssGBLUP-UPG were, in most of the 
cases not significantly different from zero whereas the 
model ssGBLUP-MetaGLS showed small bias.

For the traits YGFW and YWT, we saw very small bias 
or bias not significantly different from zero for the two 
references “All” and “C” with confidence intervals rang-
ing from − 0.11 and 0.21genetic standard deviation for 
YGFW and − 0.12 and 0.19 for YWT. With the references 
“D” and “C+D” we saw higher biases. Especially, for the 
trait YGFW the model ssGBLUP-UPG reached very high 
biases of around 3 and 4 genetic standard deviation in 
scenarios “C−C+D” and “M−C+D” respectively. Simi-
larly, for YWT, biases were around 2, 2.5 and 1 genetic 
standard deviation for the scenarios “C−C+D”, “D−C+D” 
and “M−C+D” respectively with ssGBLUP-UPG model.

Discussion
Genetic structure of the population
The low Fst values obtained between the Merino and 
Dohne breeds were in agreement with a previous study 
[12], which also found low genetic differentiation 
between these breeds. However, in this previous study, 
the Fst values were higher than ours: 0.06 (between the 
Australian Merino and Dohne breeds) compared to val-
ues ranging from 0.002 to 0.046 in our study depend-
ing on the Merino line being considered. The previous 
study [12] considered only 918 Merino genotypes and 30 
Dohne genotypes, which was much less than the num-
ber of animals we used, and may have led to less accurate 

estimates. We can also speculate that recent genetic links 
may have contributed to increase the proximity of these 
breeds as well.

In the same study [12], the genetic differentiation 
between some Merino lines was greater than between 
breeds, which is also in agreement with our observations. 
The greatest genetic distance was between the “Strong” 
and “Fine-Medium” Merino lines, corresponding to the 
MerinoS and MerinoFM lines in Table  5. In our study, 
the largest distance also involved the “Strong” Merino 
lines but with the line “SAMM”. This can be explained by 
the fact that this line corresponded to the South African 
Meat Merino breed, originating from animals imported 
to South Africa from Europe in the 1930s, long after the 
formation of the Australian Merino in the 1800s. Never-
theless, the Fst of 0.04 between the “MerinoS” (“Strong”) 
line and the “MerinoFM” (“Fine-Medium”) line was one 
of the highest values.

Our PCA results suggested three groups of animals, 
one of them indicating a crossbred population, with 
none of the groups clearly separated from each other. 
This result is consistent with previous PCAs [12, 45] per-
formed between different Australian and South African 
sheep breeds, which showed that the Dohne breed was 
the closest to the Merino breed with overlap between the 
two. Finally, the percentage of variance explained by the 
two first components (22.1 and 17%) was higher than in 
these previous studies [12, 45] which is consistent with 
greater homogeneity in our sample.

Fig. 7 Estimates and confidence intervals of bias ( ̂�p ) between whole and partial GEBV, observed across scenarios, validation populations 
and models for Yearling Liveweight expressed in genetic standard deviation. See Fig. 2 for abbreviations
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Metafounder relationship matrices
The ancestral relatedness within each line ( Ŵi,i ), used 
in the “Trend” method, showed slightly variable values 
between 0.481 and 0.595. These values, different from 
zero, do not match the assumption of unrelated pedigree 
founders. Similarly, the ancestral relatedness between 
lines ( Ŵi,j with i ≠ j), greater than 0, indicates similar-
ity of base populations. There were no large differences 
between the different lines, which indicates that they are 
quite similar genetically, consistent with the Fst findings.

For the trend in increasing metafounders group relat-
edness with time, we obtained values ranging from 0 to 
0.0018. These very low values are consistent with the high 
level of crossing and the high diversity known in these 
lines [3, 46]. They also result in shrinkage of the meta-
founder solutions toward each other, within line.

Finally, for the comparison between the matrix Gam-
maGLS (used in the models BLUP-MetaGLS and ssGB-
LUP-MetaGLS) and the matrix GammaTrend (used in 
the models BLUP-MetaTrend and ssGBLUP-MetaTrend), 
we note that the two groups showing the largest differ-
ence corresponded to the groups represented by the 
smallest number of animals. Moreover, in all the esti-
mates obtained from the “Trend” method, all values were 
within the same order of magnitude, whereas with the 
“GLS” method these two groups clearly stand out from 
the rest. We can therefore assume more realistic esti-
mates for the “Trend” method, which divided genomic 
information into 7 lines instead of 31 groups for the GLS 
method, which potentially resulted in estimation difficul-
ties. Overall, the use of metafounders enables consider-
ing relatedness between base populations, even if the Ŵ 
structure is not perfect. Kudinov et  al. [32] found that 
increasing the number of metafounders improved the 
Ŵ estimate, but we doubt that in our case, unlike theirs, 
the information linked to each group would have been 
sufficient.

Quality of genomic predictions
We observed gains in accuracy from BLUP to ssGB-
LUP evaluations for all the scenarios, traits and models 
which was expected. Particularly, for the evaluation of 
the Dohne breed based on its own reference (scenario 
“D-D”), we observed relative gains in accuracy of 19% 
(from 0.36 to 0.43), 26% (from 0.39 to 0.49), and 21% 
(from 0.39 to 0.47), respectively for YFD, YGFW and 
YWT. These accuracy gains from BLUP to ssGBLUP 
were similar to the results of van der Werf et  al. [47], 
who reported absolute gains in accuracy in meat and 
wool sheep between 5 and 15%. More recently, Gurman 
et  al. [46] found accuracies of GEBVs for body weight 
traits of 0.55 in Australian Merino sheep with a relative 
increase of 0.16 from pedigree BLUP to ssGBLUP. Nel 

et al. [48], found ssGBLUP accuracies of 0.67 and 0.45 for 
fibre diameter and yearling liveweight in South-African 
Merino sheep, with a gain in accuracy of 8% and 22%. 
For YFD, we observed similar genomic prediction accu-
racy (0.69) for the Merino validation evaluated by them-
selves but higher gain (35%), meaning that our BLUP 
models were less accurate. For YWT, we found higher 
genomic prediction accuracy and gain from BLUP to 
ssGBLUP evaluations (0.66 and 47%), which could also be 
an effect of reference population size, which was smaller 
in their study (around 2000 animals with genotypes and 
phenotypes).

We also saw that the quality of predictions (bias, dis-
persion, accuracy) was more impacted across scenarios 
for the traits YGFW and YWT than for YFD. This can be 
explained by the difference in heritability between these 
traits, with YFD being highly heritable and the two other 
traits moderately heritable [7]. Indeed, studies have con-
firmed that for highly heritable traits, if direct pheno-
types are available, additional information (genotypic or 
phenotypic information of the animal or related individu-
als) had very low influence on the prediction. Conversely, 
for traits with low or moderate heritability, additional 
information was more likely to improve the accuracy of 
predictions [30, 47, 49].

Regardless of the different models, the reference “All” 
yielded the best predictions: we did not observe signifi-
cant biases, slopes were all close to one, and we observed 
the highest accuracies. More particularly, between 
the scenarios “D-D” and “D-All”, the GEBV accuracies 
increased of 0.07, 0.06 and 0.08 for YFD, YGFW and 
YWT, respectively. The combined evaluation was, there-
fore, beneficial, which was also observed for combined 
evaluations in dairy cattle [13, 16, 17] or dairy sheep 
[50]. Moreover, no deterioration of the quality of predic-
tions of Merino validation animals was observed with the 
inclusion of Dohne and crossbred animals in the refer-
ence, whereas [15] found a negative effect of the inclusion 
of crossbred or other breeds in a purebred Merino evalu-
ation. Oliveira et al. [51], working with meat sheep, found 
small gains in accuracy from separate to combined evalu-
ation, and in some cases high bias.

Selecting animals more related to the Dohne, as in the 
scenario “C+D” (see Tables 1 and 2), was not beneficial. 
This is contrary to the findings of van den Berg et al. [16] 
in a combined genomic evaluation of several Australian 
dairy cattle breeds. The increase in reference popula-
tion size, in the scenario “C+D”, was probably too small 
in comparison with the scenarios including the Merino 
reference population. Moreover, for this scenario the 
model “ssGBLUP-UPG” presented variable results for 
the traits YGFW and YWT, for all validation metrics. We 
can hypothesize that the Dohne crossbred individuals 
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presented a high degree of diversity among them, which 
would have contributed to the variability of results 
observed from these models. We can assume that in the 
case of the “M+C” scenario, the very large Merino refer-
ence dominated the Crossbred, which is why we do not 
find these results inconsistent.

In terms of across-breed predictions, our study showed 
quite consistent results compared to the within breed 
predictions, even in the most “unfavorable” scenario 
(evaluation of Merino based on Dohne reference). This 
result differed from [50], who found that “across-[sub]
populations” predictions in Lacaune dairy sheep breed 
were of low accuracy. This difference can be explained by 
the more distant genetic links between the [sub]popula-
tions studied in [50]. Similarly, across-flocks predictions 
can lead to highly variable accuracies depending on the 
level of relatedness between the reference and validation 
flocks in Merino breed; more specifically, it led to lower 
accuracies when the relatedness between reference and 
validations flocks was low [48]. This shows the impor-
tant contribution of genetic links between the Australian 
Dohne and Merino breeds and the feasibility of a com-
bined evaluation. In our study, a large proportion of the 
phenotypes were not associated with genotypes and were 
not identified as M, C or D phenotypes. Indeed, with the 
high level of linkage existing between Dohne Merino and 
Merino breeds, it is hard to differentiate them without 
genomic information. The phenotypes of non-genotyped 
individuals were therefore included in all our scenarios 
and most likely contributed to improving the quality of 
genomic predictions. Particularly in the scenarios involv-
ing the “D” reference, we can assume that the quality of 
the predictions would have been lower without these 
phenotypes.

When comparing UPG and metafounder models, we 
observed variable results for ssGBLUP-UPG models in 
some scenarios in comparison with metafounder models. 
For instance, we observed bias up to 4 genetic standard 
deviations for YGFW. We also found accuracies higher 
for crossbred or Dohne validation individuals than for 
Merino validations, in the case of references including 
Merino animals, which does not seem realistic. UPG 
models therefore appeared more unstable than meta-
founders in the case of ssGBLUP evaluations. This can 
be due to a lack of phenotypic information across time to 
estimate some UPGs, which can potentially be addressed 
in metafounder models through the a priori definition of 
covariances between groups. The importance of adapt-
ing the UPG definition to each trait according to the dis-
tribution of information as well as the heritability of the 
trait has already been highlighted by previous works that 
obtained very unstable results using ssGBLUP models 

with UPG [30]. Furthermore, in our study we redefined, 
compared to the MERINOSELECT evaluation, the way 
genetic groups were assigned, in order to improve Ŵ 
estimation. It is possible that this redefinition may have 
negatively affected the estimation of some UPGs by 
introducing greater heterogeneity within groups, though 
this question is outside the scope of this study.

Overall, in the scenarios “All”, validation accuracies 
favored metafounder models, which was consistent with 
the conclusions of other studies [32, 33, 52, 53]. However, 
we observed slightly higher bias with metafounders in 
comparison to UPGs, in contrast with other studies [31, 
34, 52]. Nevertheless, these biases were relatively low and 
we think that such bias would not hamper genetic gain. 
A further advantage of metafounder models is that they 
provide a more natural transition from pedigree-based to 
genomic evaluation [53], which is the expected pathway 
for the Dohne breed. Finally, we did not find significant 
differences between the metafounder method “GLS” or 
metafounder “Trend”. However, the “Trend” method esti-
mates had the advantage of being less sensitive to lack of 
information for small groups, and is therefore the more 
robust method for practical application.

In practice, when a breed is transitioning from pedi-
gree to genomic evaluation, even if the predictive ben-
efits of the inclusion of genomics might be low initially, 
once genotypes are included, this often creates an incen-
tive for breeders to genotype at a greater rate. This leads 
to an increase in the reference population size which 
will improve predictions for that breed. We can there-
fore expect an improvement in the efficiency of genomic 
selection a few generations after implementation.

Overall, our study suggests that the introduction of 
genomic information from the Dohne Merino breed into 
the MERINOSELECT evaluation, using metafounders to 
model missing pedigrees, is feasible and accurate.

Conclusions
We found worthwhile genomic accuracies for Dohne 
genomic predictions, suggesting there is value in transi-
tioning the Australian Dohne breed from pedigree-based 
to genomic selection. Our study also demonstrates that 
combining genomic evaluation of Dohne breed with the 
MERINOSELECT evaluation can enhance predictions 
accuracy for the breed, without impacting negatively on 
Merino predictions, resulting in a simpler, combined 
genomic prediction. Finally, metafounders may be a way 
to simplify and improve the genetic grouping in a com-
bined evaluation, leading to enhanced predictions of 
breeding values.
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