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 Abstract: Some straightforward improvements designed to make more efficient and fast the grid-

based quantum chemical topology are presented.  The strategy focuses on both the evaluation 

of the scalar function over three-dimensional discrete grids  and the algorithms aimed to 

follow and integrate gradient trajectories over the basin volumes together. Beyond the density 

analysis, we show that the scheme is quite suitable for the electron localization function (ELF) 

and its complex topology.  With the speeding-up of the parellelized process used to generate 

3d-grids, the proposed scheme makes several orders of magnitude faster than the computing 

grid-based method previously implemented in our laboratory [Computers & Chemistry 1999, 23, 

(6), 597-604]. The efficiency of our implementation was also compared with well-known grid-

based algorithms designed to assign the grid points to basins. The performances, speed vs. 

accuracy have been discussed on the basis of results obtained from selected illustrative 

examples. 
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1. Introduction 

The quantum chemical topology (QCT) has gained popularity as a bonding analysis 

method in  molecules or solids since the seminal papers published about the quantum 

theory of atoms-in-molecules (QTAIM) and the topological analysis of the electron 

localization function (ELF). [1-5] In a QCT analysis, a   partitioning   of   the   molecular   

space   into volumes (so-called basins)  is  carried out according to the theory  of  

dynamical  gradient  systems  through an assignment of a scalar function of the 

molecular space. More precisely, the process splits the space into regions associated to 

maxima of the function by studying the gradient trajectories (or integral lines). Note that 

the term of topology is used in its broad sense related to the existence of the stationnary 

points of the scalar field and their connectivity insured by the gradient trajectories. The 

most important QCT algorithm is the one that performs this assignment to basins 

localized around the maxima of the considered scalar function. Beforehand, in a grid-

based approach, the function values have to be computed at each grid point. The basin 

volumes are separated by surfaces (so-called separatrices) according to a algorithm 

typically combining an analytical and a numerical methodology.  In the  QTAIM 

framework, the function  considered  is  the  one  electron  density and  these  basins  are  

associated  with  each  of the  interacting atoms  in  the  molecule. In contrast, the ELF 

topology exhibits non-atomic valence basins (bonding and non-bonding regions) in 

addition to core basins surrounding nuclei with atomic number Z > 2. The valence basins 

are characterized by the number of core basins with which they share a common 

boundary. This number is called the synaptic order [6] and are usually defined as 

following : monosynaptic basins (labeled V(A)) usually correspond to lone pair regions, 

while disynaptic and polysynaptic basins (labeled V(A, B, C, ..)) characterize the 

covalent bonds.  
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 Since the pionner works of Bader and its coworkers until today, large efforts have 

been made to propound a large variety of efficient algorithms designed to the QTAIM 

analysis whether for molecular or condensed-matter systems.[7-21] Some works using an 

appropriate vectorization and parallelization[21] have been proposed, even for a GPU 

(graphics procession unit) implementation.[22] The X-ray crystallography community has 

also proposed some innovative methods.[23,24]  

 Although it is not always feasible to apply grid-based algorithms to large systems 

where a very large computational cost can be required, the grid-based methods were 

employed from the early days.[9,13,15,17,25-27]. The key of such strategy is to prevent some 

numerical difficulties during the grid points assigment with an easy implementation. 

Thus, the grid-based methods have evoked a renewed interest for uniform as well as for 

non-uniform grids.[8,11,21,28]. Since that time, much effort has been devoted to QTAIM 

developments, a rather small number of works were devoted to the ELF topological 

analysis which is more complex than QTAIM since typically non-atomic basins need to 

be characterized and possible degenerated attractors can be also found. [15,27-29]  

 In this article, we focus on an improved implementation of the off-grid-based 

algorithm which historically is the choice of both the QTAIM and ELF implementation 

in the own TopMod09 package. Our choice is to highlight the topological analysis of the 

ELF function because of its complex topology. We have especially focus the 

improvements of the methodology on the two following points : 

 (i) Efficiency to make 3d-grid in order to decrease the computational effort without 

 comprimising the accuracy of the integrations processing. 

 (ii) Vectorization and parallelization of algorithms using OpenMP technology in 

 order to follow the steepest ascent gradient paths of the scalar function. 

The diagram flows of used grid-based algorithms and the new developpements are 

presented in sections 3 and 4. The overall organization of our programs is built in the 

same spirit as the TopMod09 package.[27] The QCT grid method is organized according 

to the three following steps : 

 

1. Evaluation of the density function over a rectangular parallelepipedic 

uniform grid of dimension N = Nx x Ny x Nz where each grid point has a 

constant spacing with its neighbours. 

 

2. Assignment of each grid point to basins. 

 

3. Integration of the electron charge density over the basins, and calculation of 

related integrated properties, the most commonly being the basin 

populations. 

The last section contains some comparative tests speed vs. accuracy of our 

implementation with well known algorithms used for the QTAIM analysis, the Bader 

Charge near-grid algorithm of the Henkelman’s group[13,25,26] and the Keith's promega 

algorithm implemented in the AIMALL package[12,30] applied to two selected molecular 

systems. Some tests have been also performed from the popular Multiwfn [31]. Note that 

the Yu and Trinkle weighted-grid algorithm[9] was also implemented in the code Bader 

charge analysis of Henkelman’s group. Theses latter hinted programs are typical 

examples of well-maintained codes which perform the QCT analysis from gaussian 

(slater) molecular wavefunction data. These data are gathered in a wfn file or grid cube 

file format. The wfn format, intially introduced in the Bader’s program AIMPAC, is 

currently supported by numerous quantum chemistry softwares, such as Gaussian, 

GAMESS-US, Q-Chem or NWChem. 



 

2. Computational details. 

Geometry optimizations have been performed at the hybrid density functional 

B3LYP level with the Gaussian 2009  software.[32] The standard all-electron basis set 6-

31+G(d,p) was employed for all atoms. To illustrate the applicability of our 

implementation, we present a set of results using a standard uniform 3d-grid for both 

electron density and ELF. The grid step varying between 0.075 bohr and 0.1 bohr was 

used. This range is known as a standard quality step and already gives fine grids, 

tailored to semi-numerical based partitions algorithms. The grid-based corrected 

algorithms have been implemented within an OpenMP technology parallelisation 

scheme where a shared-memory parallel model is used. The grid-based parallelization 

scheme and its implementation used in this work is similar to that described by 

Rodriguez et al.[8] Briefly, it relies on the fact that the assignement for a set of grid points 

remains independent of the assignement of any other set. Thus, sets of grid points to be 

automatically assigned to a basin are distributed to several processors using the 

OpenMP technology.  

The implementation was carried out in the TopChem2 program package, written in 

Fortran 90 compiled by the open-source GNU Fortran compiler.[15] TopChem2 was 

optimized for GNU Fortran compilers and capable of using all available CPU cores, 

which can significantly reduce the computational time. A MPI implementation, termed 

TopModMPI, is also currently under developments. 

3. Theory and Computational Strategy 

 

3.1. The 3d- grid acceleration process  

A scalar function ℝ3  → ℝ can be numerically represented by its values distributed on a 

suitable uniform grid of N points with a constant spacing between the point which 

preserves the function properties in the neighborhood of a given point. The complexity 

of grid-based algorithms to assign points to basin volumes stronlgy depends on the total 

number of grid points (grid size) N but also the number of involved primitives functions 

M. The number of operations is roughly proportional to N x M x M. The challenge is 

always then to decrease as much as possible, the computational effort in the innermost 

loops. Among the pionnering works, the Silvi’s group has proposed to take advantage of 

the factorization of the Cartesian Gaussian functions in external short loops which has 

enabled to decrease the heavy CPU-consuming.[27] Another improvement was to 

parallelise the loops within an OpenMP or MPI environments. However, the 

computational effort remains rather expensive and strongly depends to the total number 

of primitives M. Prior to a detailed examination of our method, we first recall how the 

electron density and ELF are typically related to M and are computed at a given grid 

point r. 

 Using the variational principle under the only constraints of the single or double 

occupation for each spatial orbital i(r) (Hartree-Fock or Kohn-Sham formalism), we 

recall that the electron density is computed at each grid point as: 
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          where i(r) are expanded using M atom-centered gaussian basis functions, µ(r)(GTO), 
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ni is the occupation of the i(r) orbital and ciµ and ciν are the real expansion coefficients. 

ELF was expressed in the framework of the DFT theory by Savin et al and rationalized in 

terms of the local excess kinetic energy due to the Pauli repulsion. ELF can be computed 

at each grid point as follows: 
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is the kinetic energy density. 𝑇𝑤(𝒓) =
1

8

|𝛻𝜌(𝒓)|2

𝜌(𝒓)
 is the von Weizsäcker kinetic energy 

density. Note that from a rigorous point of view, this expression of ELF is only valid for 

closed-shell systems described by a single determinant.  

  

The quantum chemistry programs often employ cartesian atomic orbitals in the 

algorithms for computational reasons.[33] The gaussian molecular wavefunction data are 

typically provided as a set of unnormalized cartesian primitives, 𝜒𝜇 . A normalized 

cartesian GTO  𝜒𝜇
𝑁 can be easily defined from its unnormalized form as : 

 

⟨𝜒𝜇
𝑁|𝜒𝜇
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2𝛼

𝜋
)

3/2

[
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where the GTO is defined as 𝜒𝜇  = (𝑥 − 𝑋𝜇)𝑖  (𝑦 − 𝑌𝜇)𝑗(𝑧 − 𝑍𝜇)𝑘  𝑒−𝛼 |𝒓−𝑹𝜇|2
 with (x,y,z) is 

the relative cartesian position of the electron to the atom-centered origin of the GTO 

𝑹𝜇 = (𝑋𝜇 , 𝑌𝜇 , 𝑍𝜇). Now, we look for the minimal radius rµ of a β-sphere centered at the 𝑹𝜇 

location. As a reminder, a β-sphere is expressed as a spherical volume that is enclosed 

within the basin volume at whose attractor it is centered.[34] By analogy, the β-sphere 

with a radius rµ is here defined as the lowest spherical volume at whose the primitive  

𝜒𝜇
𝑁 it is centered such as:   

∫ |𝜒𝜇
𝑁|

2
 

𝑟𝜇

0

𝑑𝒓 > 1 − 𝜀                    (3) 

Where  is an arbitrary threshold. Practically, a value of 0.001 has been used in this 

work. As shown by both equations (1) and (2), the computational effort depends of the 

number of primitives locally involved at a given grid point for the computing of density 

functions ρ(r) or η(r). We notice that the contribution of a given primitive varies 

according to the distance between the grid point and the location of its atom center. For 

the distances upper than rµ, the contribution of the primitive becomes negligible and can 

be smoothly negleted from the calculation of one-density functions. The efficiency and 

the robustness of this straightforward method is briefly illustrated in Table 1. Table 1 

shows that more often than not a large number of primitives can be disregarded in order 

to compute the density functions at most of grid points. For example, that is the case of 

the benzene molecule where we found that only a maximum of 50 primitives are needed 

at 80% of grid points. Some tests, speed vs. accuracy, of our implementation are 

discussed below in the Results and Discussion section. 

 

Number of primitives kept per grid point 0-50 50-100 100-150 > 150 

C6H6 (M=234 total primitives) 78.8% 18.9% 2.3% 0.0% 

CG complex (M=678 total primitives) 44.6% 33.6% 15.8% 6.0% 

Table 1. Purcentage of grid points where the number of retained primitives is lower than the total 

number of primitives. These numbers corresponds to a grid built for the benzene molecule and for 



 

the guanine (G) –cytosine (C) complex optimized at the B3LYP/6-31+G(d,p) level of theory. An 

intermediate grid step of 0.1 bohr was used. 

3.2. The numerical grid-based strategy for the basin analysis 

 

3.2.1. The improved off-grid algorithm of the Silvi’s group. Within quantum chemical 

topology, basins with any shapes need to be determined in the molecular space. In the 

grid-based methods, the integration of trajectories is carried-out without any explicit 

build of the zero-flux surfaces (separatrices) and the algorithm looks for the assignment 

of a given grid point belong the steepest gradient paths leading to the corresponding 

attractor. Interestingly, the process can be easily vectorized and parallelized. [8] In this 

paper, we use a parallellized and revisited version of the historically grid-based Silvi’s 

algorithm initially implemented in the TopMod09 package.[27] This algorithm will 

termed as off-grid algorithm throughout the paper.  

The algorithm starts with an initial part designed to strongly reduce the length of the 

followed trajectories and also the number of gradients calculations. Most of grid points 

near to attractors or points so far from the atoms can be assigned using the nearest 

neighbors points if it encountered a previously assigned grid point (wandering point). 

The trajectory integration is then making this approach scales linearly with the system 

size. Therefater, the off-grid gradient ascent needs only to be performed around 

separatices (border points).  Here, we improve the convergence using a well-known 

adaptative gradient ascent (AdaGrad) widely documented in the litterature.[35] The 

scheme 1 details the implemented gradient ascent. The computational cost also has been 

reduced because the assigment of the current point (x, y, z) is only evaluated after a 

small empirical jump (termed Dcomp and holded to 0.4 bohr) from the starting position 

(x0, y0, z0). Each assigment of the new point (x, y, z) along the trajectory is then evaluated 

by looking at the nearest neighbors. If all of these latter are already assigned to a same 

basin, the initial grid point (x0, y0, z0) is then assigned to this basin.  

 

Input : starting from an unassigned grid point (i0, j0, k0) 

Output : attractor code, grid assignement code (integer) of grid point (i0, j0, k0) 

 

Compute cartesian coordinates (x0,y0,z0) of the starting grid point (i0, j0, k0) 

step  0.1 bohr             # initial step 

( x, y, z)  (x0,y0, z0)        

 ascent  True 

 While ascent :  

 compute gradient gk components of the scalar function 

(x ,y ,z)  (x, y ,z)  +  
step . gk

√e + ∑ 𝑔𝑘
2

𝑘

 

# update (x ,y ,z) coordinates along the path. The gk² are the squared gradient 

components and e is a smoothing term (10-8) that avoids division by zero  

 D  distance(x0, y0, z0, x, y ,z) 

# distance between the current point (x,y,z) and (x0, y0, z0) 

 If D > Dcomp :   

     (i, j, k)  near-grid check (x, y, z) 

     if rho_attr(i ,j, k) > 0 : # 0 means an unassigned point 

          attr  rho_attr(i, j, k) 

          ascent  False 

Scheme 1. Flow diagram of the off-grid gradient ascent part : ascent rho silvi (i0, j0, k0, attractor 

code). Example for QTAIM. 

 



 

As mentioned at the beginning of this section, the length of the followed gradient path 

can be strongly reduced when the grid points are firstly considered in the decreasing 

order of the scalar function (electron density or ELF), since the trajectory crosses an 

already attributed point. Now, consider the set of all neighboring grid points (ii, jj, kk) 

from a given grid point (i, j, k) having a value of the density or ELF higher than the fisrt 

one at (i, j, k), the ascent path will follow necessarily though or near one of its (ii, jj, ,kk) 

grid points. Therefore, if all of these neighbors are already assigned to the same maxima, 

then we are assured that the point (i, j, k) can be directly assigned without considering 

any gradient ascent process, focusing the computational effort on grid points close to the 

basin boundaries. This improvement avoid many gradient calculations. The overall 

scheme including the gradient ascent part can be summarized in the following flow, 

which is the one implemented :  

 

Compute electron density ρ(i, j, k) on the grid point (i, j, k) 

L   heap sort ρ(i, j, k) in decreasing order  

for all points (i, j, k) in L : 

         consider neighbors (ii, jj, kk) with ρ(ii, jj, kk) > ρ(i, j, k) 

if all are attributed to the same attractor then  

rho attr(i ,j ,k)   attractor code  

else  

ascent rho silvi (i ,j ,k, attractor code) # off-grid gradient ascent part 

rho attr(i,j,k)   attractor code  

end  

end 

Scheme 2. Overall flow diagram of the Silvi’s algorithm: example for QTAIM 

3.2.2 The on-grid and the corrected near-grid algorithms of the Henkelmam’s group. A 

relevant grid-based method was proposed by Henkelman and its coworkers.[13,25]. In this 

approach, the ascent on-grid projected gradient works by integrating gradient-ascent 

trajectories from every grid point. Thereafter, Tang et al [26] have improved the original 

algorithm with a near-grid method which reduce the on-grid lattice bias, a correction 

vector between the off-grid trajectory and the on-grid trajectory being propagated. The 

process finds all basins with a very fast computational time. However, this algorithm 

rather depends on the grid spacing and it requires, in principle, a finely sampled grid 

which could limit, in principle, the application to large systems but our acceleration 

process described above enabled a such applications. It was implemented is several 

package owing to its ease of implementation and relatively good performances.[15,31]. In 

the next section, its performances are compared with those of the Silvi’s algorihtm. Note 

that the Yu and Trinkle algorithm [9] was implemented in the code Bader charge 

analysis[25] The method introduced a subgrid accuracy in the computation of QTAIM 

volumes. They implemented a weighting scheme to handle the fraction of an elementary 

grid volume to be connected with a neighboring grid point. The Henkelman and Tang 

algorithms will respectively termed as on-grid and near-grid throughout the paper.  

 

3.2.3 Mixing the initial part of the Silvi’s algorithm and the near-grid algorithm. The  

near-grid algorithm of Tang [26] is very fast owing to the use of on-grid projected 

gradients. However, the process typically requires a fine grid spacing for a full relevant 

connection between near grid points. While noting that the initial part of the Silvi’s 

algorithm is very efficiency and fast, we can suggest to combine this latter process with 

the near-grid algorithm namely we consider that the wandering points can be firstly 

attributed without considering any gradient path, focusing the computational effort on 

border grid points close to the basin boundaries. This algorithm will be termed as the 

mixed-near-grid algorithm throughout our paper. Practically,  this mixed-near-grid lead us 



 

to only replace in Scheme 2, the line ‘ascent rho silvi (i ,j ,k, attractor code)’ by ‘ascent near-

grid (i ,j, k, attractor code )’. We expect the basins populations might be slightly different 

with respect to the near-grid algorithm while maintening a rather fast assignment of grid 

points to basins. These grid-based methods detailed above have been evaluated and their 

time efficiency as well as their robustness. All these results are presented in the next 

section. 

4. Results and Discussion 

4.1 The 3d- grid acceleration process  

Figures 1 and 2 depict the comparative performances to make the 3d-grid without or 

with the accelerated process applied to two selected systems, namely the benzene (18 

atoms) and the guanine (G) –cytosine (C) complex (30 atoms). The electron density and 

ELF values have been distributed on an uniform grid of N  points with an intermediate 

spacing of 0.1 bohr between the point. Here, N = 5229015 for the benzene and N = 

10515021 for CG complex. As shown in Figures 1 and 2,  an obvious reduction of the 

computational effort is clearly observed owing to the introduction of our acceleration 

process for both QTAIM and ELF. For example on Figure 2, the accelerated process 

(green curves) using a single core approximatively makes four times faster the build of 

the entire grid than without it (red curves). The average efficiency of the combined 

acceleration process and a modest parallelization (16 processors) becomes 

approximatively 60 times faster than the single core calculation without the acceleration. 

For example, the calculation ELF grid approximatively requires 1800 seconds using a 

single core (red curve) whereas this latter calculation only requires 30 seconds using the 

acceleration process combined with 16 CPU cores. Note that TopMod09 (the blue square 

on Figures 1 and 2), only implemented for a single core calculation, remains very efficient 

in this context. Although the calculation of the 3d-grid remains a rate-limiting step of a 

QCT analysis, the reduction of the computational cost obtained with our acceleration 

process makes this possible for applications to enough large systems where large grids 

need to be produced. 

    

Figure 1. Total time, in s, elapsed for the 3d-grid computing of the electron density (left) and ELF 

(right) applied to the benzene molecule computed at the B3LYP/6-31+G(d,p) level of theory. In this 

case, the β-radius rµ was compeled to be lower than 7.5 bohr. Color Code: Green: using grid 

acceleration process; Red: without the acceleration process. Blue : TopMod09 program (single 

core). The used grid step is 0.1 bohr. 

 



 

 

Figure 2. Total time, in s, elapsed for the 3d-grid computing of ELF applied to the guanine (G) –

cytosine (C) complex computed at the B3LYP/6-31+G(d,p) level of theory. In this case, the β-radius 

rµ was compeled to be lower than 7.5 bohr. Color Code: Green: using grid acceleration process; 

Red: without the acceleration process. Blue : TopMod09 program (single core). The used grid step 

is 0.1 bohr. 

 

Figure 3 shows the computed ELF profiles for C2H2 along its molecular axis when all 

primitives are kept (black curve) and when some primitives are disregarded (red curve) 

according to the computational scheme used for the acceleration grid process. The both 

profiles being fully overlapped, this clearly illustrates the sustainability of the accuracy of 

the acceleration scheme. 

 

 

Figure 3. ELF profiles for the C2H2 molecule computed along the z axis (bohr) at the B3LYP/6-

31+G(d,p) level of theory. Color code : red, using the radii acceleration process and black, without 

the acceleration process (black). 

4.2 The basin analysis.  

 To illustrate the applicability of our analysis, we have evaluated the performance of 

the basin analysis using the grid-based algorithms discussed in this paper.  

Figure 4 (left) reports the comparative parallel speeds of the assignment process as a 

function of the number of CPU-cores plotted for the three disctinct algorithms namely 

the off-grid, the near-grid and the mixed-near-grid. For this example, the selected ELF 

grid is the one already used in the previous section 4.1 for the CG complex where an 



 

intermediate grid constant spacing of 0.1 bohr was used. It was well-known that the 

computational effort of theses algorithms scales approximatively linearly with the 

number of grid points (system size) with a fixed computational effort per grid point. [15,27]  

So, the goal of this study is rather to compare their relative speedup efficiencies using the 

grid acceleration process which has been used for make the 3d-grid. Figure 4 shows a 

clear split between the off-grid algorithm and the other two algorithms near-grid and 

mixed-near-grid. The gradient ascent part being a rate-limiting step, the off-grid 

algorithm remains logically slower than the two others. Nevertheless, when the number 

of processors increases, the speed of the off-grid algorithm becomes closer to others. For 

example, the ELF basin analysis for the CG complex takes 662 s using a single core and it 

takes only 39 s using 16 CPU cores (green curve on Figure 4). The similar analysis using 

the near-grid algorithm takes 25 s using a single core and it takes only 3 s using 16 CPU 

cores (red curve on Figure 4).  We conclude that the computation cost of the off-grid 

analysis using 16 cores became approximatively comparable to the near-grid analysis 

using a single core. This is an important finding which makes possible the application of 

the off-grid basin analysis regardless of the on-grid methods commonly known as 

associated to a low computational time. Figure 5 displays the speedup quantity which 

can be evaluated by the calculation of the well-know efficiency defined as the ratio of the 

computational time associated to a single processor T1p (serial execution) and the time 

TNp associated to Np processors. [36] As observed in Figure 5, the speedup scales lineraly 

with the number or CPU cores from one core to thirty cores, approximatively. Clearly, 

the reduction of the computational cost due to the twofold effectiveness both the 

accelerated grid process and the parallization scheme make possible the grid-based 

analysis to large systems where large grids need to be produced.  

 

Figure 4. Log scale of the total time (seconds), elapsed for the ELF basin analysis for the guanine 

(G) –cytosine (C) complex computed at the B3LYP/6-31+G(d,p) level of theory. Color code : Green: 

off-grid algorithm with the acceleration process. Purple: off-grid algorithm without the 

acceleration process, Red: near-grid algorithm and Blue: mixed-near-grid algorithm. Black square : 

TopMod09 program (single core). The used grid step is 0.1 bohr. 

 



 

 

Figure 5. Parallel speedup elapsed for the ELF basin analysis applied to the GC complex computed 

at the B3LYP/6-31+G(d,p) level of theory. Color code : Black: off-grid algorithm Red: near-grid 

algorithm. 

 

4.3  Numerical Integrated Properties. 

 To illustrate the applicability of our implementation and its accuracy, we discuss in 

this section the basins populations after the basin analysis for each of algorithm 

considered in this paper. The accuracy of integrated populations is of crucial interest 

because it often the preliminary step to compute more elaborate QCT descriptor such as 

the delocalization index[37] or more generally, the variance and covariance matrix 

elements [38] which explicitely depend on the populations. Note that no computational 

effort is needed in this work for the calculation of populations since the numerical 

integration of the electron density over the basin volume is plainly computed by 

summing over the grid points assigned to the volume. Tables 2 and 3 show the results 

obtained for QTAIM and ELF, respectively. The basin numbering is given with respect to 

the numbering given in Figure 6. A fine grid spacing (0.075 bohr) as well as an 

intermediate grid step (0.1 bohr) were been used. The grid spacing of 0.075 bohr was 

selected because populations obtained from a lower grid spacing than 0.075 bohr 

(typically 0.05 bohr) only differ in average with a negligible discrepancy lower than 0.001 

e . The benzene and the CG complex have been selected as test systems. Indeed, the QCT 

analysis of C6H6 is expected to be consistent with the high symmetry of the molecule (D6h 

group). For example, it means that the basin populations of carbon atom or ELF bonding 

bassin V(C, C) should be the same.  In contrast, the CG complex doesn’t show any 

symmetry and seems to be a reasonable choice as test of an enough large system.  

QTAIM. The carbon atomic populations have been reported in Table 2. The results 

obtained with our off-grid implementation are in good agreement with the values 

obtained with AIMALL taken as reference for a fine grid spacing (0.075 bohr) as well as 

for an intermediate grid step (0.1 bohr). A standard deviation of 0.001 e is computed from 

the both off-grid algorithm and AIMALL populations. In contrast, the on-grid (near-grid 

and mixed-near-grid) algorithms display a clear symmetry breaking , a group of two 



 

atoms highlighting a slight smallest value (< 5.97e instead of 6e) for an intermediate grid 

spacing is used. The origin of the effect can be understood as an intresic failure of on-grid 

algorithms for which the basin’s assigment is mandatory restricted to the grid. Note that 

the results obtained with TopMod09 seems to break slightly the D6h symmetry.. Whatever 

the used algorithms,  the QTAIM populations of the CG complex are, in average, rather 

consistent with all populations obtained from the AIMALL package. 

ELF. The core and valence populations were also computed in the benzene molecule and 

the CG complex. The near-grid and mixed-near-grid algorithms have been compared 

satisfactorily to the related results provided by the off-grid populations taken as 

reference (see Table 2). Once again, the populations of selected core basins obtained from 

the on-grid assignment lightly differ from the off-grid populations. Moreover, all the 

tested algorithms depict a small difference between the V(C, C) populations of C6H6. The 

latter difference is of 0.04e in average for the on-grid implementation whereas this 

difference is only of 0.01e for the off-grid implementation. These findings remain 

unchanged whatever the used step grid of 0.1 bohr or of 0.075 bohr. In contrast, Table 4 

shows the ELF populations obtained with a more large grid spacing of 0.175 bohr. For 

this latter case, the off-grid valence populations remain rather unchanged in comparison 

to the on-grid process where some large variations can be oberved. This finding is 

highlighted for the core basins where gradients are sharply modified around the nuclear 

regions. For example, a population of 2.03e was found for C(O8) basin using the off-grid 

implementation while a untenable value of 2.27e is found using on-grid algorithms, the 

reference value being of 2.12e obtained from the off-grid implementation using a fine 

grid step of 0.075 bohr. Once again, this is a no-surprising result because the real space 

integrations using uniform grids less dense near atomic nuclei and the on-grid 

algorithms appear as a less efficient. Overall, although the ELF topology remains enough 

stable even for an enough large grid step spacing, this confirms that an off-grid 

implementation remains more robust and should be prefered for any QCT study where 

the accuracy of descriptors is required.  

 

Basins off-grid(a) near-grid(b) 

mixed-near-grid 

off-grid and near-

grid(c) 

TopMod09 

package *+ 

AIMALL 

package* 

C6H6      

C1 6.025 (6.022) 6.018 (6.019) 6.013 (6.001) 6.06 (6.09) 6.004 

C2 6.023 (6.010) 6.010 (5.964) 6.001 (5.969) 6.03 (6.03) 6.003 

C3 6.025 (6.022) 6.018 (6.019) 6.013 (6.001) 6.03 (6.07) 6.004 

C4 6.025 (6.022) 6.018 (6.019) 6.013 (6.001) 6.03 (6.01) 6.004 

C5 6.023 (6.010) 6.010 (5.964) 6.001 (5.969) 5.99 (5.98) 6.003 

C6 6.025 (6.022) 6.018 (6.019) 6.013 (6.001) 6.03 (6.03) 6.004 

Mean C atoms 6.024 (6.018) 6.015 (6.001) 6.009 (5.990) 6.03 (6.04) 6.003 

Standard deviation  0.001 (0.006) 0.004 (0.029) 0.006 (0.016) 0.02 (0.04) 0.001 

      

C-G complex      

C2 4.865 (4.861) 4.874 (4.866) 4.902 (4.864) 4.87 (4.87) 4.856 

C4 4.185 (4.171) 4.170 (4.150) 4.163 (4.205) 4.18 (4.19) 4.159 

C10 4.659 (4.661) 4.646 (4.642) 4.660 (4.667) 4.66 (4.66) 4.635 

N3 8.193 (8.203) 8.199 (8.227) 8.185 (8.217) 8.20 (8.19) 8.204 

N7 8.345 (8.348) 8.302 (8.295) 8.312 (8.274) 8.36 (8.39) 8.295 

O8 9.230 (9.212) 9.217 (9.195) 9.217 (9.194) 9.21 (9.21) 9.236 



 

O9 9.226 (9.210) 9.209 (9.196) 9.205 (9.182) 9.20 (9.20) 9.223 

H20 0.455 (0.456) 0.494 (0.487) 0.509 (0.495) 0.45 (0.43) 0.488 

H21 0.445 (0.445) 0.471 (0.456) 0.478 (0.464) 0.44 (0.42) 0.477 

H25 0.419 (0.419) 0.451 (0.456) 0.456 (0.463) 0.41 (0.39) 0.446 

Mean 5.002 (4.999) 5.003 (4.997) 5.008 (5.002) 4.99 (4.99) 5.002 

Standard deviation 3.656 (3.653) 3.635 (3.636) 3.632 (3.626) 3.65 (3.66) 3.641 

Table 2. Comparative selected QTAIM populations (electrons) obtained from several algorithms and programs 

performed to the benzene and the guanine (G) –cytosine (C) complex computed at the B3LYP/6-31+G(d,p) level 

of theory. The basin numbering is given with respect to the numbering given in Figure 6. An used grid step of 

0.075 bohr was used. In brackets, the grid step is 0.1 bohr. (a) off-grid algorithm (b) Original Henkelman’s 

group algorithm performed with the bader charge analysis package (c) Mixed-near-grid off-grid and near-grid 

*Analytical integrations are performed. (+ Only two significant digits are provided by the program. 

 

 

Basins off-grid(a) near-grid(b) 

mixed-near-grid 

off-grid and near-

grid(c) 

TopMod09 

package*+ 

C6H6     

V(C1, C2) 2.780 (2.772) 2.783 (2.766) 2.783 (2.766) 2.82 (2.81) 

V(C2, C3) 2.780 (2.772) 2.783 (2.766) 2.783 (2.766) 2.72 (2.74) 

V(C3, C4) 2.776 (2.787) 2.743 (2.736) 2.743 (2.737) 2.78 (2.78) 

V(C4, C5) 2.780 (2.773) 2.783 (2.766) 2.783 (2.766) 2.72 (2.74) 

V(C5, C6) 2.780 (2.773) 2.783 (2.766) 2.783 (2.766) 2.82 (2.81) 

V(C6, C1) 2.776 (2.787) 2.743 (2.736) 2.743 (2.737) 2.78 (2.78) 

C(C1) 2.090 (2.088) 2.110 (2.120) 2.109 (2.119) 2.09 (2.09) 

C(C2) 2.090 (2.088) 2.110 (2.120) 2.109 (2.119) 2.10 (2.09) 

     

C-G complex     

Core basins     

C(C2) 2.087 (2.090) 2.107 (2.124) 2.107 (2.124) 2.09 (2.09) 
C(O8) 2.122 (2.130) 2.170 (2.194) 2.170 (2.194) 2.13 (2.12) 
C(N3) 2.109 (2.121) 2.142 (2.175) 2.142 (2.175) 2.11 (2.11) 
Valence basins     

V(C2, N7) 2.256 (2.255 ) 2.251 (2.238) 2.251 (2.238) 2.26 (2.26) 
V(C2, N3) 2.369 (2.369) 2.356 (2.363) 2.356 (2.363) 2.36 (2.36) 
V(C4, N3) 2.339 (2.333) 2.314 (2.282) 2.314 (2.282) 2.34 (2.36) 
V(C4, O8) 2.216 (2.225) 2.201 (2.209) 2.201 (2.208) 2.19 (2.20) 

V(O8) 
2.851,2.707 

(2.845 , 2.709) 

2.853, 2.657 

(2.832, 2.635) 

2.853, 2.657 

(2.832, 2.636) 

2.85, 2.72 

(2.86, 2.72) 

V(O9) 
2.944, 2.617 

(2.944, 2.622) 

2.950, 2.571 

(2.932, 2.579) 

2.950, 2.571  

(2.932, 2.579) 

2.98, 2.60 

(2.98, 2.60) 

V(N3) 3.031 (3.037) 3.034 (3.019) 3.035 (3.019) 3.05 (3.04) 
V(H20, N11) 2.110 (2.111) 2.086 (2.066) 2.086 (2.066) 2.08 (2.08) 
V(H21, N19) 2.000 (1.998) 2.016 (2.005) 2.016 (2.004) 2.00 (2.00) 
V(C10, O9) 2.128 (2.121) 2.101 (2.056) 2.101 (2.056) 2.09 (2.10) 

Table 3. Comparative selected ELF populations (electrons) obtained from several algorithms and programs 

performed to the benzene and the guanine (G) –cytosine (C) complex optimized at the B3LYP/6-31+G(d,p) level 

of theory. The basin numbering is given with respect to the numbering given in Figure 6. The populations have 

been obtained using a fine equidistant cube grid (step of 0.75 bohr), in brackets, a grid step of 0.1 bohr was 

used. a) off-grid algorithm (b) Original Henkelman’s group algorithm (c) Mixed-near-grid off-grid and near-

grid *Analytical integrations are performed. + Only two significants digits are provided by the program. 

 



 

Basins off-grid(a)  near-grid(b) mixed-near-grid (c)  Reference(d) 

C(N8) 2.020 2.229 2.229 2.087 

C(O8) 2.030 2.274 2.274 2.122 

C(C2) 2.050 2.142 2.141 2.109 

V(C2, N7) 2.262 2.179 2.179 2.256 

V(C2, N3) 2.363 2.249 2.249 2.369 

V(C4, N3) 2.330 2.262 2.262 2.339 

V(C4, O8) 2.218 2.149 2.149 2.216 

V(O8) 2.859, 2.731 2.791, 2.571 2.791, 2.571 2.851, 2.707 

V(O9) 2.940, 2.654 2.882, 2.491 2.882, 2.491 2.944, 2.617 

V(N3) 3.060 2.981 2.981 3.031 

V(H20, N11) 2.109 2.002 2.002 2.110 

V(H21, N19) 1.998 1.945 1.945 2.000 

V(C10, O9) 2.119 2.028 2.028 2.128 

Table 4. Comparative selected ELF populations (electrons) obtained from several algorithms and programs 

performed for the guanine (G) –cytosine (C) complex optimized at the B3LYP/6-31+G(d,p) level of theory. 

Basins numbering with respect to the numbering given in Figure 6. A coarse grid step of 0.175 bohr was used. 

a) off-grid algorithm (b) near-grid algorithm (c) Mixed-near-grid (d) off-grid algorithm using a fine grid spacing 

of 0.075 bohr is taken as a reference. 

 

 

Figure 6. Guanine (G) –cytosine (C) complex optimized at the B3LYP/6-31+G(d,p) level of theory. 

The numbering of atoms correspond to that numbering reported in Tables 2, 3 and 4. 

5. Conclusion.  

 In this paper, we have presented a robust strategy designed to make more efficient 

and fast both the calculation of the scalar function over a three-dimensional discrete grid 

and its assignment to basins. A comparative study of well-known grid-based algorithms 

designed to partition the 3d-grid into QCT basin volumes was also presented. The 

capabilities of grid-based numerical analysis to handle different elaborated one-electron 

density functions such the ELF topological analysis have been illustrated. In light of 

these investigations, the efficiency of the off-grid implementation and its accuracy were 

demonstrated. Taken into account the speeding-up of the parallelized process used to 

generate grids, the grid-based quantum chemical topology is expected to be well suited 

to molecular or solid systems where large grids need to be produced whatever the used 

one-density function, i.e. for the QTAIM analysis and beyond. Future works will focus 

on the development of new abilities of grid-based algorithms to allow the handle of 

typical adaptative grids where gradients of the scalar function are sharply modified 

around the nuclear regions and a fine grid spacing is required. Note that the QCT 

analysis on such non-uniform grids remain scarce.[11,28] A new MPI parallel 

implementation of the off-grid based algorithm is also currently under developments in 

our group. 
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