
HAL Id: hal-04723118
https://hal.science/hal-04723118v1

Submitted on 6 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic 3D Gaussians: Tracking by Persistent Dynamic
View Synthesis

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, Deva Ramanan

To cite this version:
Jonathon Luiten, Georgios Kopanas, Bastian Leibe, Deva Ramanan. Dynamic 3D Gaussians: Tracking
by Persistent Dynamic View Synthesis. International Conference on 3D Vision (3DV), Mar 2024,
Davos (Suisse), Switzerland. �hal-04723118�

https://hal.science/hal-04723118v1
https://hal.archives-ouvertes.fr

Dynamic 3D Gaussians:
Tracking by Persistent Dynamic View Synthesis

Jonathon Luiten1,2 Georgios Kopanas3 Bastian Leibe2 Deva Ramanan1

1 Carnegie Mellon University, USA 2 RWTH Aachen University, Germany 3 Inria & Université Côte d’Azur, France

luiten@vision.rwth-aachen.de

Figure 1. Persistent Dynamic Novel-View Synthesis and Tracking Results. Novel-view (unseen) renders of color images and depth maps
across 5 scenes (columns) and 2 views (rows) at the same timestep. Each scene is parameterized by 200-300k Dynamic 3D Gaussians which
move over time. We render (with occlusions) the 3D trajectories of 2.5% of these over the last 15 timesteps (0.5s). [Videos]

Abstract
We present a method that simultaneously addresses the
tasks of dynamic scene novel-view synthesis and six degree-
of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by
recent work that models scenes as a collection of 3D Gaus-
sians which are optimized to reconstruct input images via
differentiable rendering. To model dynamic scenes, we al-
low Gaussians to move and rotate over time while enforcing
that they have persistent color, opacity, and size. By regu-
larizing Gaussians’ motion and rotation with local-rigidity
constraints, we show that our Dynamic 3D Gaussians cor-
rectly model the same area of physical space over time, in-
cluding the rotation of that space. Dense 6-DOF tracking
and dynamic reconstruction emerges naturally from persis-
tent dynamic view synthesis, without requiring any corre-
spondence or flow as input. We demonstrate a large num-
ber of downstream applications enabled by our representa-
tion, including first-person view synthesis, dynamic compo-
sitional scene synthesis, and 4D video editing. 1

1. Introduction
Persistent dynamic 3D world modeling would be transfor-
mative for both discriminative and generative artificial in-
telligence. On the discriminative side, this would enable a
metric-space reconstruction of every part of the scene over
time. Modeling where everything currently is, where it
has been, and where it is moving, is crucial for many ap-
plications including robotics, augmented reality and self-
driving. In generative AI, such models could enable new
forms of content creation such as easily controllable and ed-
itable high resolution dynamic 3D assets for use in movies,
video games or the meta-verse. Many such applications re-
quire scalable approaches that can be run on high-resolution
imagery in real-time. Thus far, no approach has been
able to produce photo-realistic reconstructions of arbitrary
dynamic scenes with highly-accurate tracks and visually-
appealing novel-views, all while being able to be trained
quickly and rendered in real-time.

1. Project Website.

1

ar
X

iv
:2

30
8.

09
71

3v
1

 [
cs

.C
V

]
 1

8
A

ug
 2

02
3

https://dynamic3dgaussians.github.io/
https://dynamic3dgaussians.github.io/

In this paper we present such an approach by simultane-
ously tackling the discriminative tasks of dynamic 3D scene
reconstruction and dense non-rigid long-term 6-DOF scene-
tracking, while addressing the generative task of dynamic
novel-view synthesis. We formulate both of these tasks in
an analysis-by-synthesis framework, i.e., we build a persis-
tent dynamic 3D representation of the moving scene that
is consistent with all the input observations (images from
different timesteps and cameras) and from which tracking
emerges as a product of correctly modelling the underlying
scene with physically plausible spatial consistency priors.
3D Gaussian Splatting [17] has recently emerged as a
promising approach to modelling 3D static scenes. It rep-
resents complex scenes as a combination of a large number
of coloured 3D Gaussians which are rendered into camera
views via splatting-based rasterization. The positions, sizes,
rotations, colours and opacities of these Gaussians can then
be adjusted via differentiable rendering and gradient-based
optimization such that they represent the 3D scene given by
a set of input images. In this paper we extend this approach
from modelling only static scenes to dynamic scenes.
Our key insight is that we restrict all attributes of the Gaus-
sians (such as their number, color, opacity, and size) to
be the same over time, but let their position and orienta-
tion vary. This allows our Gaussians to be thought of as a
particle-based physical model of the world, where oriented
particles undergo rigid-body transformations over time. In
order to reconstruct such particles from raw camera im-
agery, we exploit the property that at any time, they can
be efficiently splatted onto to any camera viewpoint, allow-
ing them to be optimized with an image reconstruction loss.
Crucially, particles allow us to operationalize physical pri-
ors over their movement that act as regularizers for the opti-
mization: a local rigidity prior, a local rotational-similarity
prior, and a long-term local isometry prior. These priors
ensure that local neighborhoods of particles move approxi-
mately rigidly between timesteps, and that nearby particles
remain closeby over all timesteps.
Previous approaches to neural reconstruction of dynamic
scenes can be seen as either Eulerian representations that
keep track of scene motion at fixed grid locations [5, 10, 36]
or Lagrangian representations where an observer follows a
particular particle through space and time. We fall in the
latter category, but in contrast to prior point-based repre-
sentations [1, 45], we make use of oriented particles that
allow for richer physical priors (as above) and that directly
reconstruct the 6-DOF motion of all 3D points, enabling a
variety of downstream applications (see Fig. 3 and 7).
We perform experiments using synchronized multi-view
video (27 training cameras, 4 testing cameras) from the
CMU Panoptic Studio dataset [15]. Our approach achieves
28.7 PSNR on dynamic novel view rendering while render-
ing at 850 FPS. It is trained on 150 timesteps with 27 train-

ing cameras in each timestep in only 2 hours on a single
RTX 3090 GPU. Furthermore, our approach results in ac-
curate metric 3D dense non-rigid long-term scene tracking
with an average L2 error of only 2.21cm in 3D over 150
timesteps, and having an average of 1.57 normalized-pixel
error on 2D tracking metrics, which is an order of magni-
tude (10x) better than previous state-of-the-art. Our method
is also able to track the rotation of every 3D point in space,
enabling full 6-DOF dense scene tracking. We show visual
results in Fig. 1.
An remarkable feature of our approach is that tracking
arises exclusively from the process of rendering per-frame
images. No optical flow, pose skeletons, or any other form
of correspondence information is given as input. Due to its
persistent and naturally decomposable nature, Dynamic 3D
Gaussians are naturally amenable to a number of creative
scene editing techniques such as propagating edits over all
timesteps, adding or removing dynamic objects to a scene,
or having cameras follow scene elements, as seen in Fig 7.
Furthermore, the extremely fast rendering and training time
make them much easier to work with than previous ap-
proaches for dynamic reconstruction [14], and enable real-
time rendering applications.

2. Related Work
In this work, we are interested in solving the combina-
tion of dynamic novel-view synthesis, long-term point-
tracking and dynamic reconstruction in a unified analysis-
by-synthesis framework.
Dynamic Novel-View Synthesis. The general field of
novel-view synthesis exploded in popularity with the re-
lease of NeRF [25] in 2020. Since then there have been
a large number of ‘dynamic NeRF’ papers extending the
idea of fitting a 3D radiance field to the 4D dynamic do-
main. Most of these use monocular video as input, whereas
we focus on using multi-camera capture. Typically these
methods belong to one of the following 5 categories:
(a) Methods that fit a separate representation per timestep,
and cannot model correspondence over time [2, 43].
(b) Methods that represent the scene using an Eulerian rep-
resentation on a 4D space-time grid, often with various grid
decompositions for efficiency such as planar decomposition
or hash functions [5, 10, 36]. Such Eulerian approaches also
do not give rise to correspondence over time.
(c) Methods that represent the 3D scene in a canonical
timestep and use a deformation field to warp this to the
rest of the timesteps [8, 21, 22, 28, 29, 32, 40, 44]. Such
methods naturally result in one-directional backward corre-
spondences between each frame and the reference frame,
but by default, not the forward correspondences which
are required to generate correspondences between any two
timesteps. [11] advocates for expensive ad hoc root-finding
to determine and evaluate such correspondences. A num-

2

ber of methods specifically parameterize their warp-fields
in a way that is easily invertable such as linear-blend-
skinning [35, 44], or reversible neural networks [40], in or-
der to obtain correspondences. While this often works quite
well [35, 40, 44], requiring a single canonical view for a
scene greatly restricts the dynamic representation ability.
(d) Template guided methods [13, 20, 42], which model
dynamic scenes in restricted environments where the mo-
tion can be modelled by a predefined template e.g. a set of
human-pose skeleton transformations. This approach often
requires a-priori knowledge of what is to be reconstructed
and thus is not a solution for general scenes.
(e) Point-based methods [1, 45], which compared to all of
the above categories, hold the most promise for representing
dynamic scenes in a way where accurate correspondence
over time can emerge due to their natural Lagrangian repre-
sentation. However, these haven’t achieved as much atten-
tion because the point-based rendering approaches haven’t
worked as well as MLP [25] or grid based approaches [26].
While a number of view-synthesis works have used Gaus-
sians for static scenes [17, 18, 39], to the best of our knowl-
edge we are the first to use them to reconstruct dynamic
scenes. We build our dynamic Gaussian renderer upon the
the static renderer ‘3D Gaussian splatting’ [17] which is
currently the state-of-the-art static scene reconstruction al-
gorithm in terms of both accuracy and speed.
Other than rendering accuracy and speed, modeling the dy-
namic world with Gaussians has a distinct advantage over
points as Gaussian’s have a notion of ‘rotation’ so we can
use them to model the full 6 degree-of-freedom (DOF) mo-
tion of a scene at every point and can use this to construct
physically-plausible local rigidity losses.
Long-Term Point Tracking. Traditionally video track-
ing algorithms have been focused on tracking whole objects
(as bounding boxes or segmentation masks) [19, 30, 38], or
tracking dense scene points but only between two timesteps
(e.g. optical-flow / scene flow) [4, 37]. Recently, a num-
ber of approaches have started tackling the task of long-
term dense point tracking [6, 7, 12, 16, 40, 47], where ev-
ery pixel in a video needs to be tracked across every video
frame. In this paper, we extend this long-range tracking
task to 3D and evaluate it in a multi-camera capture setup.
Most of these prior approaches [6, 7, 12, 16, 47] are deep
learning based and work by being trained on a large-dataset
of ground-truth point tracks (often using synthetic training
data). The most similar method to ours is OmniMotion [40]
which also fits a dynamic radiance field representation using
test-time optimization for the purpose of long-term track-
ing. They focus on monocular video while we focus on
multi-camera capture and as such we can reconstruct tracks
in metric-3D while they produce a ‘pseudo-3D’ representa-
tion. However, the largest and most significant difference
between our method and OmniMotion is that they require

dense optical-flow input between every pair of timesteps as
an optimization target, which is incredibly expensive as it
scales with the number of frames squared. The optical flow
estimates already provide a (noisy and inconsistent) track-
ing result which is made consistent through dynamic mod-
elling of the scene. In contrast, our method takes no corre-
spondences at all as input and tracking emerges from fitting
a persistent representation to the input frames along with
physically-based priors.
Dynamic Reconstruction In addition to the radiance-field
based approaches listed above, a number of other ap-
proaches have tackled the task of ‘dynamic reconstruction’
[3, 14, 23, 27, 31, 34]. Such approaches either rely on
the presence of accurate depth cameras [27, 34], assume
ground-truth object point clouds as input [31], or are heavily
specific to certain domains e.g. reconstructing moving cars
in driving scenes [3, 23]. The closest approach to ours is
[14] which also predicts long-term 3D point tracks and also
uses the Panoptic Studio data for evaluation. However this
approach requires 480 input cameras (in contrast we use 27)
and also requires as input pre-computed optical-flow corre-
spondences, which it then lifts into 3D trajectories.

3. Method
Overview. Given a set of images from different timesteps
and different cameras (It,c), along with each camera’s re-
spective intrinsic (Kc) and extrinsic (Et,c) matrices, our ap-
proach reconstructs the dynamic 3D scene (S) observed by
these cameras in a temporally persistent manner.
This reconstruction is performed via test-time optimization
and no further training data other than the test scene is used.
The reconstruction is performed temporally online, i.e., one
timestep of the scene is reconstructed at a time with each
one being initialized using the previous timestep’s repre-
sentation. The first timestep acts as an initialization for our
scene where we optimize all properties, and then fix all for
the subsequent timesteps except those defining the motion
of the scene. Each timestep is trained via gradient based op-
timization using a differentiable renderer (R) to render the
scene at each timestep into each of the training cameras.

Ît,c = R(St,Kc, Et,c)

The renderings Ît,c are compared to the input images It,c,
and the parameters of S are iteratively updated using auto-
matic differentiation in order to decrease the error between
Ît,c and It,c. After convergence, the representation St is a
3D reconstruction of the scene given by each of the train-
ing cameras {It,c,Kc, Et,c} for this timestep. By choos-
ing a suitable representation for S and applying physically-
based regularization losses during optimization, we can en-
sure that all the St are temporally consistent with one an-
other and that there exists a one-to-one correspondence be-
tween every 3D point in every timestep, along with their
corresponding changes in 3D rotation. In this way, tracking

3

Figure 2. Gaussian Centers. Point-cloud of colored centers in
contiguous timesteps, showing how they model scene geometry
and move over time. [Videos]

emerges from persistent dynamic view synthesis.
Dynamic 3D Gaussians. Our dynamic scene representa-
tion (S) is parameterized by a set of Dynamic 3D Gaus-
sians, each of which has the following parameters:
1) a 3D center for each timestep (xt, yt, zt).
2) a 3D rotation for each timestep parameterized by a

quaternion (qwt, qxt, qyt, qzt).
3) a 3D size in standard deviations (consistent over all

timesteps) (sx, sy, sz)
4) a color (consistent over all timesteps) (r, g, b)
5) an opacity logit (consistent over all timesteps) (o)
6) a background logit (consistent over timesteps) (bg)
This gives a total of 7t + 8 parameters for each Gaussian.
In our experiments, scenes are represented by between 200-
300k Gaussians, of which only 30-100k usually are not part
of the static background. While the code contains the ability
to represent view-dependent color using spherical harmon-
ics, we turn this off in our experiments for simplicity.
Each Gaussian can be thought of as softly representing an
area of 3D physical space which is occupied by solid matter.
Each Gaussian influences a point in physical 3D space (p)
according to the standard (unnormalized) Gaussian equa-
tion weighted by its opacity:

fi,t(p) = sigm(oi) exp

(
−1

2
(p− µi,t)

TΣ−1
i,t (p− µi,t)

)
Where µi,t =

[
xi,t yi,t zi,t

]T
is the center of each

Gaussian i at timestep t, and Σi,t = Ri,tSiS
T
i R

T
i,t

is the covariance matrix of Gaussian i at timestep
t, given by combining the scaling component Si =
diag

([
sxi syi szi

])
, and the rotation component Ri,t =

q2R
([
qwi,t qxi,t qyi,t qzi,t

])
, where q2R() is the for-

mula for constructing a rotation matrix from a quaternion.
sigm() is the standard sigmoid function.
Each Gaussian’s influence (f) is both inherently local (be-
ing able to represent a small area of space), while also

Figure 3. Relative Rotation Tracking. 1st panel: Left-facing
coloured vectors are attached to 3% of Gaussians in the first frame.
2nd and 3rd panels: These vectors move and rotate along with the
Gaussians they are attached to, showing that our approach cor-
rectly models 6-DOF motion. [Videos]

theoretically having infinite extent, such that gradients can
flow to them even from a long distance, which is crucial
for gradient-based tracking-by-differentiable rendering, as
Gaussians which may currently be in the wrong 3D loca-
tion need to get gradients pushing them towards moving to
the correct 3D location through the differentiable renderer.
The softness of this Gaussian representation also means that
Gaussians typically need to significantly overlap in order to
represent a physically solid object. As well as physical den-
sity, each Gaussian contributes its own color (r, g, b) to each
of the 3D points it influences.
By fixing the size/opacity/color of the Gaussians across
time, each Gaussian should represent the same physical as-
pect of space, even as this space dynamically moves through
time. To represent this motion, each Gaussian has a center
location and rotation that can move with time, enabling full
dense non-rigid 6-DOF tracking of a whole scene.
We visualize the trajectories of these Gaussians in Fig 1, the
locations of the Gaussian’s centers in Fig 2, and the change
in rotation over time in Fig 3.
Differentiable Rendering via Gaussian 3D Splatting. In
order to optimize the parameters of our Gaussians to repre-
sent the scene, we need to render the Gaussians into images
in a differentiable manner. In this work we use the differen-
tiable 3D Gaussian renderer from [17] and extend its use to
dynamic scenes. This works by splatting 3D Gaussians into
the image plane by approximating the projection of the in-
tegral of the influence function f along the depth dimension
of the 3D Gaussian into a 2D Gaussian influence function
in pixel coordinates. The center of the Gaussian is splatted
using the standard point rendering formula:

µ2D = K ((Eµ)/(Eµ)z)

where the 3D Gaussian center µ is projected into a 2D im-
age by multiplication with the world-to-camera extrinsic
matrix E, z-normalization, and multiplication by the intrin-
sic projection matrix K. The 3D covariance matrix is splat-

4

https://dynamic3dgaussians.github.io/
https://dynamic3dgaussians.github.io/

Figure 4. Local Rigidity Loss. For each Gaussian i, nearby Gaus-
sians j should move in a way that follows the rigid-body transform
of the coordinate system of i between timesteps.

ted into 2D using the formula from [48]:

Σ2D = JEΣETJT

where J is the Jacobian of the point projection formula
above, i.e. ∂µ2D/∂µ.
The influence function f can now be evaluated in 2D for
each pixel for each Gaussian. The influence of all Gaussians
on this pixel can be combined by sorting the Gaussians in
depth order and performing front-to-back volume rendering
using the Max [24] volume rendering formula (the same as
is used in NeRF [25]):

Cpix =
∑
i∈S

cif
2D
i,pix

i−1∏
j=1

(1− f 2D
j,pix)

where the final rendered color (Cpix) for each pixel is a
weighted sum over the colors of each Gaussian (ci =[
ri gi bi

]T
), weighted by the Gaussian’s influence on

that pixel f 2D
i,pix (the equivalent of the formula for fi in 3D

except with the 3D means and covariance matrices replaced
with the 2D splatted versions), and down-weighted by an
occlusion (transmittance) term taking into account the ef-
fect of all Gaussians in front of the current Gaussian.
The implementation of [17] uses a number of graphics and
CUDA optimization techniques to achieve incredibly fast
rendering speeds (e.g., 850 FPS for our scenes), which
therefore also enables very fast training.
Physically-Based Priors. We find that just fixing the color,
opacity and size of Gaussians is not enough on its own to
generate long-term persistent tracks, especially across ar-
eas of the scene where there is a large area of near uni-
form colour. In such situation the Gaussians move freely
around the area of similar colour as there is no restriction
on them doing so. Since we are trying to model physically
moving scenes, it makes sense to look to non-rigid physical
modelling for inspiration on how to regularize the optimiza-
tion procedure to be physically plausible and give correct
long-term tracking results. We introduce three regulariza-
tion losses, short-term local-rigidity Lrigid and local-rotation
similarity Lrot losses and a long-term local-isometry loss.
The most important of these is the local-rigidity loss Lrigid,
defined as:

Lrigid
i,j = wi,j

∥∥(µj,t−1 − µi,t−1)−Ri,t−1R
−1
i,t (µj,t − µi,t)

∥∥
2

Lrigid =
1

k|S|
∑
i∈S

∑
j∈knni;k

Lrigid
i,j

This states that, for each Gaussian i, nearby Gaussians j
should move in a way that follows the rigid-body transform
of the coordinate system of i between timesteps. See Fig 4
for a visual explanation.
Since we are performing online optimization, all of
µi,t−1, Ri,t−1, µj,t−1 are fixed, and we are optimizing
µi,t, Ri,t, µj,t to ensure that they match the values in t − 1
up to the rigid body transformation defined by the change in
Gaussian i’s own coordinate system. e.g. if i rotates, then j
needs to translate (in it’s own coordinate system) in a way
that in equivalent to rotating around the center of i. This loss
also applies the other way, forcing the rotation to match the
translation, such that we obtain accurate rotation (6-DOF)
tracking for every dense point in space, even though we only
optimize to match the rendered images, which isn’t possible
with a point-based representation.
We restrict the set of Gaussians j to be the k-nearest-
neighbours of i (k=20), and weight the loss by the a weight-
ing factor for the Gaussian pair:

wi,j = exp
(
−λw ∥µj,0 − µi,0∥22

)
which is an (unnormalized) isotropic Gaussian weighting
factor. We set λw to 2000, which gives a standard deviation
of ∼2.2cm, and calculate this with the distance between the
Gaussian centers in the first timestep and fix it over the rest
of the timesteps. This results in the rigidity loss only be-
ing enforced locally, while still allowing global non-rigid
reconstruction.
The rigidity loss is both necessary and adequate on it’s own
to achieve good results. Since the rigidity loss is applied
on all points it is applied in both directions between any
pair i and j and thus implicitly enforces i and j to have the
same rotation, however we found better convergence if we
explicitly force neighbouring Gaussians to have the same
rotation over time:

Lrot =
1

k|S|
∑
i∈S

∑
j∈knni;k

wi,j

∥∥q̂j,tq̂−1
j,t−1 − q̂i,tq̂

−1
i,t−1

∥∥
2

where q̂ is the normalized quaternion representation of each
Gaussian’s rotation, which enables smooth optimization.
We use the same set of k-nearest-neighbours and weighting
function as before.
We apply Lrigid and Lrot only between the current timestep
and the directly preceding timestep, thus only enforcing
these losses over short-time horizons. Which sometimes
causes elements of the scene to drift apart, thus we apply
a third loss, the isometry loss, over the long-term:

Liso=
1

k|S|
∑
i∈S

∑
j∈knni;k

wi,j

∣∣∥µj,0 − µi,0∥2− ∥µj,t − µi,t∥2
∣∣

This is a weaker constraint than Lrigid in that instead of en-

5

forcing the positions between two Gaussians to be the same
it only enforces the distances between them to be the same.
Optimization Details. Each timestep of a scene is opti-
mized one-at-a time. During the first timestep, all parame-
ters of the Gaussians are optimized. After the first timestep
the size, color, opacity, and background logit are fixed and
only the position and rotation are updated. Thus, our ap-
proach can be seen as first performing static reconstruc-
tion of the first frame, followed by long-term dense 6-DOF
tracking throughout the remaining frames.
Following [17], in the first timestep we initialize the scene
using a coarse point cloud that could be obtained from run-
ning colmap, but instead we use available sparse samples
from depth cameras. Note that these depth values are only
used for initializing a sparse point cloud in the first timestep
and are not used at all during optimization.
We use the densification from [17] in the first timestep in or-
der to increase the density of Gaussians and achieve a high
quality reconstruction. For the rest of the frames the number
of Gaussians is fixed and the densification is turned off.
We fit the 3D scene in the first frame for 10000 iterations
(around 4 minutes) using 27 training cameras, where each
iteration renders a single but complete image. For each
timestep after that we use 2000 iterations (around 50 sec-
onds), for a total of 2 hours for 150 timesteps. At the begin-
ning of each new timestep we initialize the estimated Gaus-
sian center positions and rotation quaternion parameters by
using forward estimate based on a velocity estimated from
the current position minus the previous position, and do
the same for the quaternion using normalized quaternions
(e.g. we also re-normalize the quaternion representation).
We find this to be quite important to getting good results.
We also reset the Adam first and second order momentum
parameters at the start of each timestep.
In our test scenes the subject’s shirt colours (grey) are very
similar to the background. We noticed that often the shirt
was being mis-tracked as it was confused with the back-
ground, while more contrastive elements like pants and hair
were being tracked correctly. To increase the contrast be-
tween foreground and background parts of the scene we also
render a foreground/background mask and apply a back-
ground segmentation loss LBg against a pseudo-ground-
truth background mask, which we can easily obtain by dif-
ferencing with an image from the dataset where no fore-
ground objects are presents. We also directly apply a loss
that background points shouldn’t move or rotate, and re-
strict the above rigidity, rotation and isometry losses to only
operate over foreground points to improve efficiency. This
also ensures that these losses are never enforced between
foreground parts of the scene and the static floor.
Finally, since we are optimizing over 27 different training
cameras, each of which has different camera properties such
as white balance, exposure, sensor sensitivity, and color cal-

ibration, these factors contribute to variations in color rep-
resentation across images. Thus we naively model these
differences by simply optimizing a scale and offset parame-
ter for each colour channel for each camera separately. We
optimize these only over the first timestep and then fix these
for the rest of the timesteps.
Tracking with Dynamic 3D Gaussians. After we have
trained our Dynamic 3D Gaussian scene representation we
can use it to obtain dense correspondence for any point in a
3D scene. To determine the correspondence of any point in
3D space p across timesteps, we can linearize the motion-
space by simply taking the point’s location in the coordinate
system of the Gaussian that has the most influence f(p) over
this point (or the static background coordinate system if
f(p) < 0.5 for all Gaussians). There is now a well-defined
and invertible one-to-one mapping for all points in space
across all timesteps giving dense correspondences.
We can use this same idea to track any 2D pixel-location
from any input or novel view into any other timestep or
view. To do so we first have to determine the 3D point cor-
responding to an input pixel. We can render out depth-maps
for any view by using the Max [24] rendering equation for
Gaussians [17] but replacing the colour component of each
Gaussian with the depth of that Gaussian’s center, as seen
in Figure 1. A pixel’s 3D location can be found via unpro-
jection, the highest influence Gaussian determined, tracked
and then projected into a new camera frame.

4. Experiments
Dataset Preparation. We prepare a dataset which we call
PanopticSports. We take six sub-sequences from the
sports sequence of the Panoptic Studio dataset [15]. Each of
our six sequences contain interesting motions and objects
which we name them after: juggle, box, softball,
tennis, football and basketball. We produce vi-
sual results for 3 more sequences, handstand, sway and
lift but don’t include them in evaluation results as they
don’t have 3D track ground-truth available. For each se-
quence we obtain 150 frames at 30 FPS, from the set of the
HD cameras. There are 31 cameras, which we split into 27
training and 4 testing cameras (cam 0, 10, 15 and 30 are
test). Cameras are temporally aligned and have accurate in-
trinsics and extrinsics provided. The cameras are positioned
roughly in a hemisphere around an area of interest in the
middle of a capture studio dome. Fig 1 shows an example.
We undistort the images from each camera using the pro-
vided distortion parameters, and resize each image to be
640x360. We create an initial point cloud for the first
timestep to initialize the Gaussians by taking the points
from 10 available depth cameras, synchronized to the cur-
rent timestep, subsample these depth maps by a factor of 2
in both dimensions and obtain an initial colour by projecting
these points into the nearest training camera. Points that do

6

Task Metrics Method Juggle Boxes Softball Tennis Football Basketball Mean

View Synthesis

PSNR↑ 3GS-O [17] 28.19 28.74 28.77 28.03 28.49 27.02 28.21
Ours 29.48 29.46 28.43 28.11 28.49 28.22 28.7

SSIM↑ 3GS-O [17] 0.91 0.91 0.91 0.90 0.90 0.89 0.90
Ours 0.92 0.91 0.91 0.91 0.91 0.91 0.91

LPIPS↓ 3GS-O [17] 0.15 0.15 0.14 0.16 0.16 0.18 0.16
Ours 0.15 0.17 0.19 0.17 0.19 0.18 0.17

3D Tracking

3D MTE↓ 3GS-O [17] 32.81 39.95 64.94 75.54 45.57 76.71 55.9
Ours 1.90 1.97 2.02 2.33 2.45 2.56 2.21

3D δ↑ 3GS-O [17] 13.6 3.5 5.9 4.2 9.8 3.5 6.8
Ours 77.2 75.9 70.3 69.0 69.4 66.3 71.4

3D Surv↑ 3GS-O [17] 56.3 60.8 37.2 16.9 59.6 31.9 43.8
Ours 100 100 100 100 100 100 100

2D Tracking

2D MTE↓
3GS-O [17] 23.86 29.88 51.6 58.15 35.15 64.29 43.8
PIPS [12] 5.76 8.42 13.3 21.0 23.2 22.6 15.7

Ours 1.54 1.42 1.69 1.36 1.48 1.93 1.57

2D δ↑
3GS-O [17] 17.1 10.5 8.9 6.5 15.0 7.2 10.9
PIPS [12] 55.9 39.5 37.0 28.4 43.5 33.2 39.6

Ours 80.4 82.5 77.3 80.2 79.7 73.9 78.4

2D Surv↑
3GS-O [17] 71.3 74.4 42.7 23.0 69.6 47.1 54.7
PIPS [12] 91.6 61.3 88.6 72.2 79.8 77.6 79.0

Ours 100 100 100 100 100 100 100

Table 1. Results on our prepared PanopticSports dataset. See text for details on the dataset, metrics, tasks and methods.

Method PSNR↑ SSIM↑ LPIPS↓

TiNeuVox-S [9] 26.64 0.92 0.14
TiNeuVox [9] 27.28 0.91 0.13

InstantNGP [26] 24.69 0.91 0.12
Particle-NeRF [1] 27.47 0.94 0.08

Ours 39.49 0.99 0.02

Table 2. Result on the Particle-NeRF dataset. See text for details
on the dataset, metrics, tasks and methods.

not project into any training camera are discarded. We ob-
tain pseudo-ground-truth foreground-background segmen-
tation masks by simply doing frame-differencing between
each frame and a reference frame from the dataset for each
camera when no foreground objects are present.
We prepare ground-truth trajectories for 2D and 3D tracking
by taking the high-quality facial and hand key-point anno-
tations that are available for the scene [33]. For each person
in each scene (four scenes have one person, two have two),
we take one random face key-point and one random hand
key-point from each hand. We manually verify the accuracy
of these trajectories by projecting them into the images and
viewing them, and remove three that are not accurate. This
leaves us with a total of 21 ground truth 3D trajectories.
For 2D tracking, we use the camera-visibility labels to de-
termine if the first point in each 3D trajectory is visible in
each camera, and add these videos and projected points to
our 2D tracking evaluation. Each 3D point is visible in
around 18 cameras for a total of 371 2D ground-truth tracks.
Evaluation Metrics. We evaluate novel-view synthesis on
the hold-out 4 camera views across all 150 timesteps for the
6 sequences. We use the standard PSNR, SSIM and LPIPS

metrics [41, 46]. For 2D long-term point tracking we use
the metrics from the recent point-odyssey benchmark [47]:
median trajectory error (MTE), position accuracy (δ), and
survival rate. For 3D long-term point tracking there is no
prior relevant work, so we decide adapt the 2D metrics from
[47] to the 3D domain, except in terms of centimeters in 3-
dimensions instead of normalized-pixels in 2D. E.g. MTE
is reported as error in cm. δ is calculated at 1, 2, 4, 8 and
16cm thresholds and survival is measuring trajectories that
are within 50cm of the ground-truth.

Comparisons. For all three tasks of View-Synthesis, 3D
tracking and 2D tracking we compare our Dynamic 3D
Gaussian method to the original 3D Gaussian Splatting [17]
which we build upon. We run this in a similar online mode
that we run our method for the same number of iteration
steps, and thus we call this 3GS-O. We also perform com-
parisons on the dataset of Particle-NeRF [1], which includes
20 train and 10 test cameras, and contains much simpler
synthetic scenes with both simple geometry and motion. On
this benchmark we compare to Particle-NeRF [1], Instant-
NGP [26], and TiNeuVox [9]. The benchmark task for this
dataset [1] is defined as one in which at each timestep meth-
ods are allowed a certain number of ray renders and back-
propagation steps. Since our approach doesn’t work in the
same way we are not able to compare exactly using these
criterion. Instead as a reasonably fair criterion we run train
our method for each timestep for no more wall clock time
than Particle-NeRF does, e.g. 200ms per timestep.

For 3D long-term point tracking we have not found any
further methods to compare against for this relatively new

7

Exp # Description
Additions View Synthesis 3D Tracking 2D Tracking

LRigid LRot LIso LBg Fix Prop PSNR↑ SSIM↑ LPIPS↓ 3D MTE↓ 3D δ↑ 2D MTE↓ 2D δ↑

0 Ours - Full ✓ ✓ ✓ ✓ ✓ ✓ 29.48 0.92 0.15 1.90 77.2 1.54 80.4
1 No LRigid ✗ ✓ ✓ ✓ ✓ ✓ 28.51 0.91 0.17 4.32 55.2 3.80 58.7
2 No LRot ✓ ✗ ✓ ✓ ✓ ✓ 29.43 0.92 0.16 1.91 76.6 1.55 79.8
3 No LIso ✓ ✓ ✗ ✓ ✓ ✓ 29.36 0.92 0.16 1.93 76.7 1.72 79.3
4 No LBg ✓ ✓ ✓ ✗ ✓ ✓ 24.14 0.82 0.34 8.46 60.0 6.40 63.2
5 No Param Fixing ✓ ✓ ✓ ✓ ✗ ✓ 27.14 0.89 0.22 30.7 57.7 19.15 58.8
6 No Forward Prop ✓ ✓ ✓ ✓ ✓ ✗ 28.48 0.91 0.16 6.32 54.87 5.4 57.7
7 3GS-O [17] ✗ ✗ ✗ ✗ ✗ ✗ 28.19 0.90 0.15 32.81 13.6 23.86 17.1

Table 3. Ablation results on the Juggle scene of PanopticSports. See text for details on the dataset, metrics, tasks and methods.

Figure 5. Visual comparison. Comparing Particle-NeRF (left)
and Ours (right) on the Particle-NeRF dataset.

task. The two methods we would like most to compare to
are OmniMotion [40] adapted to multi-camera metric space
and MAP Visibility Estimation [14] since they seem like
the most promising competitors. However, since no code is
currently available for either we are unable to run such com-
parisons. For 2D tracking we compare against 2D long-term
tracking approaches of which the canonical example is PIPs
[12]. We provide comparison results with PIPs to show a
comparison against a learnt method that was trained specif-
ically for long-term 2D point tracking, and is also one of the
state-of-the-art approaches for this task. Although the com-
parison isn’t entirely fair to either method. E.g. our method
sees all 27 training cameras while PIPs only sees the one
that needs to be tracked in. However on the other hand PIPs
was trained on 13085 training videos where ground-truth
tracks were provided while our method has never seen any
ground-truth tracks, nor any other video data other than the
camera views for the current test scene. Regardless it is still
a good test of our method to compare against such 2D point
tracking methods.
PanopticSports Results. We present the results on our
prepared PanopticSports dataset in Table 1. Our ap-
proach achieves good scores on all three novel-view syn-
thesis metrics, with a final PSNR score of 28.7. Compared
to the original 3D Gaussian Splatting [17] we achieve bet-
ter PSNR and SSIM scores (although slightly worse LPIPS)
across all scenes by correctly modelling the temporal con-
sistency of the dynamic scene. Visual examples of the high-
quality novel-view synthesis results can be found in Fig. 1.

Figure 6. Ground-truth Comparison. Comparing our result
(blue) to the ground-truth (red). Where ground-truth is noisy, our
result may be more accurate. [Videos]

In terms of 3D tracking, our method achieves outstanding
results with a median trajectory error of only 2.21cm across
all trajectories in all scenes. This is less than the width
of a wrist across 150 timesteps of 3D tracking through ex-
tremely complex and fast motions (see Fig. 1). Our method
also has 100% survival rate across all sequences never los-
ing the point to track and an accuracy value of 71.4. The
original Gaussian Splatting [17] approach doesn’t correctly
track points in 3D at all with with a much higher 55.9cm
median trajectory error. A visual comparison of our method
compared to the ground-truth can be found in Fig 6.
When measuring the 2D tracking ability of our method and
comparing it to the 2D tracker PIPs [12] we can see where
our method really shines. Although it’s not a 1-to-1 fair
comparison, by comparing our numbers against the num-
bers of a state-of-the-art tracker we can accurately gauge
the performance of our approach. We achieve a 10x lower
median trajectory error of only 1.57 pixels compares to PIPs
15.7, have a much higher trajectory accuracy of 78.4 com-
pared to 39.6, and a 100% survival rate compared to 79%.
Overall these results show that our method performs excel-
lently on the tasks of novel-view-synthesis, as well as both
2D and 3D tracking.
Particle-NeRF Dataset Results. On the Particle-NeRF
dataset our method achieves almost perfect scores for all
of PSNR, SSIM and LPIPS. This is due to the dataset being
relatively simple in terms of simple synthetic objects and
simple motions. A visual comparison between our method’s
results and those of Particle-NeRF can be seen in Fig 5.

8

https://dynamic3dgaussians.github.io/

Figure 7. Augmented reality applications enabled by Dynamic 3D Gaussians. Left: Dynamic objects can easily be removed from
scenes, duplicated and added together with other dynamic objects to new scenes. Center Left: Image edits can be lifted to 3D and then
automatically propagated across time. Center Right: Camera views can be attached to dynamic Gaussians that move as the scene moves,
e.g. first-person view (above) or juggling-ball’s view (below). Right: Objects can be scanned and added to dynamic scenes in a way that
follow the scene. E.g. the hat stays correctly on the person with the correct translation and rotation as he does a handstand. [Videos]

Ablation Study. In Table 3 we show results on the Jug-
gle sequence of our PanopticSports dataset ablating
the various different components of our approach. We iden-
tify 6 key components of our approach which are above and
beyond that of the original 3D Gaussian splatting approach
[17], as described in Section 3. We evaluate the effect of
removing each of these components from our final method
one-at-a-time as well as the effect of removing them all at
once, which is then just the method from [17] run in an on-
line mode over different timesteps.

For view synthesis, the original 3GS-O already works ex-
tremely well, but by correctly modelling the motion of com-
ponents in the scene our full method is able to achieve a
boost of 1.3 PSNR. For tracking the original doesn’t ac-
curately track the scene at all, but ours performs very ac-
curately. In terms of key-components required for these
results, all of the rigidity loss, the background segmenta-
tion loss, the colour/opacity/size parameter fixing, and the
forward propagation for timestep initialization are key to
obtaining both good tracking results and improvement in
view-synthesis results. The rotation loss and isometric loss
only provide very small improvement in the measured met-
rics, however visually we found the reconstruction results
to be much more coherent and correct with both of these on
over turning either off.

Further Applications. Our Dynamic 3D Gaussian ap-
proach also leads itself nicely to being used for editing of
dynamic 3D scenes. Because Gaussians are independent,
subsets of them can easily be added or removed from scenes
to create all sort of interesting effects. E.g., creating realis-
tic renders by combining multiple different dynamic com-
ponents from different scenes and different backgrounds.
We can also very easily propagate edits over time. E.g., lo-
gos can be added to surfaces in a single frame, and the col-
ors of the Gaussians can be updated to reflect this change.
Such edits will automatically propagate to all other frames

of a video. Finally, because we are performing full 6-DOF
tracking we can take advantage of this for all sorts of visual
effects, for example we could put a camera at ‘first person
view’ by attaching it to any particular Gaussian and it will
follow where that Gaussian moves and rotates over time.
The same can be done for adding objects to the scene that
can move and rotate along with the Gaussians they are at-
tached to. We show examples of all of these creative appli-
cations in Fig 7.

5. Conclusion and Limitations
Limitations While our method achieves excellent results
it is not without limitations. For example, by design our
method is only able to track parts of scenes that are visible
in the initial frame. It would completely fail to reconstruct
new objects entering the scene. Our method also requires
a multi-camera setup and does not work off-the-shelf on
monocular video. We believe that these limitations are the
seeds of exciting future research directions to build upon
and extend our Dynamic 3D Gaussian representation.
Conclusion In this work, we have introduced a novel
method for dynamic 3D scene modeling, view synthesis,
and 6-DOF tracking that has relevant applications across
various domains, including entertainment, robotics, VR and
AR. Utilizing Gaussian elements to model dynamic scenes,
our approach uniquely captures movements and rotations,
consistent with physical properties. The implications of our
method extend beyond the immediate results, offering new
avenues for real-time rendering and creative scene editing.
Our approach, characterized by efficiency and accuracy,
sets a promising direction for future research and practical
applications in 3D modeling and tracking, underscoring the
potential for further innovation in these fields.
Acknowledgements: Jonathon Luiten’s research was funded, in parts, by
NRW Verbundprojekt WestAI (01IS22094D). EP/N019474/1. The authors
would like to thank Joanna Materzynska, Leonid Keselman, Dinesh Reddy,
Jonas Schult and Adam Harley for helpful discussions.

9

https://dynamic3dgaussians.github.io/

References
[1] Jad Abou-Chakra, Feras Dayoub, and Niko Sünderhauf. Par-

ticlenerf: Particle based encoding for online neural radiance
fields in dynamic scenes. arXiv:2211.04041, 2022. 2, 3, 7

[2] Aayush Bansal and Michael Zollhoefer. Neural pixel compo-
sition for 3d-4d view synthesis from multi-views. In CVPR,
pages 290–299, 2023. 2

[3] Ioan Andrei Bârsan, Peidong Liu, Marc Pollefeys, and An-
dreas Geiger. Robust dense mapping for large-scale dynamic
environments. In ICRA, pages 7510–7517. IEEE, 2018. 3

[4] Steven S. Beauchemin and John L. Barron. The computation
of optical flow. ACM computing surveys (CSUR), 27(3):433–
466, 1995. 3

[5] Ang Cao and Justin Johnson. Hexplane: A fast representa-
tion for dynamic scenes. In CVPR, pages 130–141, 2023.
2

[6] Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Re-
casens Continente, Kucas Smaira, Yusuf Aytar, Joao Car-
reira, Andrew Zisserman, and Yi Yang. Tap-vid: A bench-
mark for tracking any point in a video. In NeurIPS Datasets
Track, 2022. 3

[7] Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush
Gupta, Yusuf Aytar, Joao Carreira, and Andrew Zisserman.
Tapir: Tracking any point with per-frame initialization and
temporal refinement. arXiv:2306.08637, 2023. 3

[8] Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenen-
baum, and Jiajun Wu. Neural radiance flow for 4d view syn-
thesis and video processing. In ICCV, pages 14304–14314.
IEEE Computer Society, 2021. 2

[9] Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xi-
aopeng Zhang, Wenyu Liu, Matthias Nießner, and Qi Tian.
Fast dynamic radiance fields with time-aware neural voxels.
In SIGGRAPH Asia 2022 Conference Papers, 2022. 7

[10] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk
Warburg, Benjamin Recht, and Angjoo Kanazawa. K-planes:
Explicit radiance fields in space, time, and appearance. In
CVPR, pages 12479–12488, 2023. 2

[11] Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell,
and Angjoo Kanazawa. Monocular dynamic view synthesis:
A reality check. Advances in Neural Information Processing
Systems, 35:33768–33780, 2022. 2

[12] Adam W. Harley, Zhaoyuan Fang, and Katerina Fragkiadaki.
Particle video revisited: Tracking through occlusions using
point trajectories. In ECCV, 2022. 3, 7, 8

[13] Mustafa Işık, Martin Rünz, Markos Georgopoulos, Taras
Khakhulin, Jonathan Starck, Lourdes Agapito, and Matthias
Nießner. Humanrf: High-fidelity neural radiance fields for
humans in motion. ACM Transactions on Graphics (TOG),
42(4):1–12, 2023. 3

[14] Hanbyul Joo, Hyun Soo Park, and Yaser Sheikh. Map vis-
ibility estimation for large-scale dynamic 3d reconstruction.
In CVPR, pages 1122–1129, 2014. 2, 3, 8

[15] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe,
Iain Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser
Sheikh. Panoptic studio: A massively multiview system for
social motion capture. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 3334–3342,
2015. 2, 6

[16] Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
tracker: It is better to track together. arXiv:2307.07635,
2023. 3

[17] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics
(TOG), 42(4):1–14, 2023. 2, 3, 4, 5, 6, 7, 8, 9

[18] Leonid Keselman and Martial Hebert. Approximate differ-
entiable rendering with algebraic surfaces. In ECCV, 2022.
3

[19] Matej Kristan, Jiřı́ Matas, Aleš Leonardis, Michael Felsberg,
Roman Pflugfelder, Joni-Kristian Kämäräinen, Hyung Jin
Chang, Martin Danelljan, Luka Cehovin, Alan Lukežič, On-
drej Drbohlav, Jani Käpylä, Gustav Häger, Song Yan, Jinyu
Yang, Zhongqun Zhang, and Gustavo Fernández. The ninth
visual object tracking vot2021 challenge results. In ICCVW,
pages 2711–2738, 2021. 3

[20] Ruilong Li, Julian Tanke, Minh Vo, Michael Zollhofer, Jur-
gen Gall, Angjoo Kanazawa, and Christoph Lassner. Tava:
Template-free animatable volumetric actors. In ECCV, 2022.
3

[21] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. In CVPR, pages 6498–6508, 2021. 2

[22] Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu
Tseng, Ayush Saraf, Changil Kim, Yung-Yu Chuang, Jo-
hannes Kopf, and Jia-Bin Huang. Robust dynamic radiance
fields. In CVPR, pages 13–23, 2023. 2

[23] Jonathon Luiten, Tobias Fischer, and Bastian Leibe. Track
to reconstruct and reconstruct to track. IEEE Robotics and
Automation Letters, 5(2):1803–1810, 2020. 3

[24] Nelson Max. Optical models for direct volume rendering.
IEEE Transactions on Visualization and Computer Graphics,
1(2):99–108, 1995. 5, 6

[25] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2, 3, 5

[26] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, 2022. 3, 7

[27] Richard A Newcombe, Dieter Fox, and Steven M Seitz.
Dynamicfusion: Reconstruction and tracking of non-rigid
scenes in real-time. In CVPR, pages 343–352, 2015. 3

[28] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In ICCV, pages 5865–5874, 2021. 2

[29] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. ACM Trans. Graph., 40(6), 2021. 2

10

[30] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.
Gross, and A. Sorkine-Hornung. A benchmark dataset and
evaluation methodology for video object segmentation. In
CVPR, 2016. 3

[31] Sergey Prokudin, Qianli Ma, Maxime Raafat, Julien
Valentin, and Siyu Tang. Dynamic point fields.
arXiv:2304.02626, 2023. 3

[32] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields for
dynamic scenes. In CVPR, pages 10318–10327, 2021. 2

[33] Tomas Simon, Hanbyul Joo, and Yaser Sheikh. Hand key-
point detection in single images using multiview bootstrap-
ping. CVPR, 2017. 7

[34] Miroslava Slavcheva, Maximilian Baust, Daniel Cremers,
and Slobodan Ilic. Killingfusion: Non-rigid 3d reconstruc-
tion without correspondences. In CVPR, pages 1386–1395,
2017. 3

[35] Chonghyuk Song, Gengshan Yang, Kangle Deng, Jun-Yan
Zhu, and Deva Ramanan. Total-recon: Deformable scene
reconstruction for embodied view synthesis. In ICCV, 2023.
3

[36] Haithem Turki, Jason Y Zhang, Francesco Ferroni, and Deva
Ramanan. Suds: Scalable urban dynamic scenes. In CVPR,
pages 12375–12385, 2023. 2

[37] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins,
and Takeo Kanade. Three-dimensional scene flow. In Pro-
ceedings of the Seventh IEEE International Conference on
Computer Vision, pages 722–729. IEEE, 1999. 3

[38] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon
Luiten, Berin Balachandar Gnana Sekar, Andreas Geiger,
and Bastian Leibe. Mots: Multi-object tracking and segmen-
tation. In CVPR, pages 7942–7951, 2019. 3

[39] Angtian Wang, Peng Wang, Jian Sun, Adam Kortylewski,
and Alan Yuille. Voge: a differentiable volume renderer us-
ing gaussian ellipsoids for analysis-by-synthesis. In ICLR,
2022. 3

[40] Qianqian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi
Li, Bharath Hariharan, Aleksander Holynski, and Noah
Snavely. Tracking everything everywhere all at once.
arXiv:2306.05422, 2023. 2, 3, 8

[41] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 7

[42] Chung-Yi Weng, Brian Curless, Pratul P Srinivasan,
Jonathan T Barron, and Ira Kemelmacher-Shlizerman. Hu-
mannerf: Free-viewpoint rendering of moving people from
monocular video. In CVPR, pages 16210–16220, 2022. 3

[43] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil
Kim. Space-time neural irradiance fields for free-viewpoint
video. CVPR, 2021. 2

[44] Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ra-
manan, Andrea Vedaldi, and Hanbyul Joo. Banmo: Building
animatable 3d neural models from many casual videos. In
CVPR, pages 2863–2873, 2022. 2, 3

[45] Qiang Zhang, Seung-Hwan Baek, Szymon Rusinkiewicz,
and Felix Heide. Differentiable point-based radiance fields

for efficient view synthesis. In SIGGRAPH Asia 2022 Con-
ference Papers, pages 1–12, 2022. 2, 3

[46] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 7

[47] Yang Zheng, Adam W. Harley, Bokui Shen, Gordon Wet-
zstein, and Leonidas J. Guibas. Pointodyssey: A large-scale
synthetic dataset for long-term point tracking. In ICCV,
2023. 3, 7

[48] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and
Markus Gross. Surface splatting. In Proceedings of the
28th annual conference on Computer graphics and interac-
tive techniques, pages 371–378, 2001. 5

11

	. Introduction
	. Related Work
	. Method
	. Experiments
	. Conclusion and Limitations

