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Ce(III) UV-vis spectrum

Accurately predicting spectra for heavy elements, often open-shell systems, is a sig-

nificant challenge typically addressed using a single cluster approach with a fixed

coordination number. Developing a realistic model that accounts for temperature ef-

fects, variable coordination numbers, and interprets experimental data is even more

demanding due to the strong solute-solvent interactions present in solutions of heavy

metal cations. This study addresses these challenges by combining multiple method-

ologies to accurately predict realistic spectra for highly-charged metal cations in

aqueous media, with a focus on the electronic absorption spectrum of Ce3+ in water.

Utilizing highly correlated relativistic quantum mechanical (QM) wavefunctions and

structures from molecular dynamics (MD) simulations, we show that the convolution

of individual vertical transitions yields an excellent agreement with experimental re-

sults without the introduction of empirical broadening. The good results are obtained

for both the normalized spectrum and that of absolute intensity. The study incor-

porates a statistical machine learning algorithm, Gaussian Mixture Models-Nuclear

Ensemble Approach (GMM-NEA), to convolute individual spectra. The microscopic

distribution provided by MD simulations allows us to examine the contributions of

the octa- and ennea-hydrate of Ce3+ in water to the final spectrum. Additionally,

the temperature dependence of the spectrum is theoretically captured by observing

the changing population of these hydrate forms with temperature. We also explore

an alternative method for obtaining statistically representative structures in a less

demanding manner than MD simulations, derived from QM Wigner distributions.

The combination of Wigner-sampling and GMM-NEA broadening shows promise for

wide application in spectroscopic analysis and predictions, offering a computationally

efficient alternative to traditional methods.

PACS numbers: Valid PACS appear here

Keywords: Ce3+ hydrate, classical interaction potentials, MD, NEVPT2, electronic

transitions, statistical average of transitions, line broadening procedures
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I. INTRODUCTION

Ultraviolet–visible (UV-vis) spectroscopy is a widely used characterization technique due

to the distinctive features it provides, such as the position and spacing of the luminescence

bands, their bandwidths and intensities, serving as unique fingerprints for compounds and

complexes absorbing in the UV-vis region1–7. This method has proven valuable for studying

ion speciation in electrolyte solutions, as the local environment strongly influences the elec-

tronic structure8. However, in certain cases, spectroscopic information alone may not fully

determine sample properties.

From a theoretical perspective, various approaches offer insights into spectrum properties.

Quantum mechanical (QM) calculations have long contributed to a better understanding of

recorded spectra features and the underlying physics of excitation processes. Techniques

such as time-dependent density functional theory (TD-DFT) or high-level iterative such as

Equation of Motion Coupled-Cluster Theory (EOM-CCSD(T)) and multi-reference methods

like Complete Active Space Self-Consistent Field (CASSCF) and the second-order pertur-

bation theory such as CASPT2 or NEVPT2 (N-Electron Valence Perturbation Theory of

the Second Order) methods, etc., have successfully described the luminescence of many

systems9–12. These computations yield information about transition energies and intensi-

ties. However, to construct the full picture of electronic spectrum, an additional ingredient

is needed: signal broadening.

Achieving signal broadening using a single structure is a challenging task. Various strate-

gies have been adopted to address this challenge. One approach involves deriving the band

shape from the autocorrelation function between the ground state and time-dependent

excited-state wave functions13,14, computing the spectral band shapes from the vibronic

coupling of the electronic states. Oher et al. 15 computed integrals between vibrational wave

functions associated with the ground and excited states, known as Franck-Condon factors

(FCFs). In many cases, FCF calculations use the harmonic approximation; however, Barone

et al.16–18 went further by including anharmonic corrections via vibrational perturbation the-

ory (VPT2). Chang, Chen, and Huang 19 used a similar strategy with a different approach to

include anharmonicity in the FCF calculations. Madsen et al. 20 considered only an a priori

selected small number of normal modes. These strategies are accurate and often provide a

good reproduction of the experimental spectra but are computationally demanding.

3



Ce(III) UV-vis spectrum

Alternative methods for obtaining band shapes extend beyond dealing with a single struc-

ture and rely on an ensemble of configurations. The broadening of the band can result from

convoluting individual energies and oscillator strengths with a typically assigned phenomeno-

logical broadening11,21. These ensembles can be derived from statistical simulations, either

classical or ab initio11,22–24, which encompass all anharmonicities in their description. An-

other widely used technique, the Wigner sampling method25,26, utilizes normal vibrational

modes to generate different structures from the potential energy surface minimum of the

target system27,28. This approach eliminates the need for a force field or expensive ab initio

molecular dynamics but operates under a harmonic description, so it may struggle with

low-frequency modes or highly flexible systems. More sophisticated methods, such as the

one proposed by Cerezo et al. 2930, couple Molecular Dynamics (MD) for the exploration of

the configurational space and vibronic models for the band shapes, eliminating the need for

phenomenological broadening. Another approach described by Segarra-Mart́ı et al. 14 also

combines classical sampling and quantum mechanical tools to compute electronic spectra

with a QM broadening of the bands. The strategy is to consider the physical origin of the

broadening (intra-molecular vibrations, homogeneous and inhomogeneous broadening) and

model these different contributions to obtain the final spectrum.

These studies commonly focus on molecules that, even in solution, maintain a consistent

structure. The investigation of metal ions in solution is particularly intriguing, because

anharmonicities could significantly impact in the representation of a flexible metal complex

dynamics, especially concerning the first-shell water molecules and structural changes in the

aqua ion. Modifications in ligand orientations, distances, and even coordination number can

influence the electronic structure to some extent8. Some of the works already cited above

emphasize the importance of including solvent effects, both implicitly or explicitly, for more

realistic modeling of absorption spectra11,22,24,30,31. Not just for a more accurate description

of the dynamics of the system, but for a better description of the electronic structure when

there are strong solute-solvent interactions in the explicit solvent models. In this context,

the review by Zuehlsdorff and Isborn 11 presents representative examples on how electronic

spectra of solutions such as Nile red in acetone and ethanol32, or cyanin in water33,34 can be

well described by including solvent effects at the molecular level.

This study aims to compute the UV-visible absorption spectrum of the Ce3+ hydrate, and

discuss the measured spectrum of Ce3+ in a dilute aqueous solution (1.80mM of CeCl3 in
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20mM HCl)35. Ce3+ has a 4f1 ground-state configuration, and the parity allowed excitations

from the 4f orbitals to the 5d ones give rise to broad absorption bands in the ultraviolet.

This aqua ion exhibits flexibility and water exchange in its first hydration shell at 300K. A

previous work by Lindqvist-Reis et al. 35 measured and theoretically analyzed the absorption

spectrum of the ion and its chloro-derivatives, using crystal structures as model compounds.

They observed that both the local symmetry of the coordinated water molecules and their

number (9 or 8) around the Ce3+ ion considerably influences the positions and the intensities

of the absorption bands. In that study, single-point calculations were performed and to

match the experimental UV-vis spectra, a chosen phenomenological broadening was applied.

The obtention of a realistic spectrum is conditioned by the selection and the number of the

representative structures, reflecting geometrical fluctuations of the aqua ion. In this work, we

reconstruct the entire spectrum of the aqua ion averaging individual spectra corresponding to

a set of configurations derived from MD simulations, being proved a sufficient number have

being selected. These simulations utilize previously developed force fields for lanthanoids

in water. Geometrical fluctuations due to thermal agitation, provided by MD simulations,

contribute to the broadening of absorption bands. This strategy allows us to capture the

anharmonicity present in the system, which comes from QM-computed potential energy

surfaces used to parameterize the force field.

II. METHODOLOGY AND COMPUTATIONAL PROCEDURE

To construct the electronic spectrum, we adopted a strategy similar to the one previously

developed for averaging EXAFS spectra from MD calculations of metal ions in solution36,37.

Specifically, individual UV-vis absorption spectra were obtained from simulation snapshots

and then averaged.

To illustrate the procedure employed, a flowchart has been included in Figure 1

We employed a set of force fields, based on the hydrated ion model38,39, which has been

applied to study the hydration of various trivalent lanthanoids and actinoids in water40–42. A

flexible and polarizable water model (MCDHO2)43 was used. Although no specific ion-water

potential was developed for Ce3+, we used force fields closely related lanthanoid cations, La3+

and Nd3+. Details of these force fields are provided in the Supplementary Material (SM). We

leveraged these force fields to simulate the hydration around Ce3+, assuming that the La3+,
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4f1

5d1 

GMM-NEA

Total spectrum reconstruction 

Wigner sampling (DFT opt+freq)

MD sampling (La3+, Nd3+ FFs)

FIG. 1: Schematic representation of the methodology designed to obtain the theoretical

spectra.

Nd3+, and Ce3+ hydrates exhibit very similar structures for the hydration shells beyond the

first one due to their proximity in the Periodic Table44–46. Recently, the structure of the first

and second hydration shells for the entire series of trivalent lanthanides was investigated

by Duvail et al. 47 , confirming that the second hydration shell exhibits similar structural

characteristics across these cations (see Fig. 3 of their work).

MD simulations of La3+ and Nd3+ surrounded by 1000 water molecules, running for

7 ns in the NVT ensemble with periodic boundary conditions, were conducted. Using an

appropriate cutoff radius, approximately 500 clusters per nanosecond of La3+ and Nd3+ with

9 and 8 water molecules, respectively, were selected. Subsequently, the La and Nd ions were

replaced by Ce to perform QM calculations for the vertical transitions between electronic

states.

The subsequent step involves QM computations of vertical excitations. This procedure

aligns with the methodology used by some of us in a previous study of Ce3+35, where spin-

orbit (SO) coupling was shown to be essential for an accurate QM approach. Scalar relativis-

tic all-electron calculations through the second-order DKH (Douglas-Kroll-Hess) procedure

were conducted for computing the vertical excitation energies of Ce3+ aqua ions. The ener-

gies of the 12 electronic states, corresponding to 4f1 and 5d1 electronic configurations, were

obtained through state-averaged CASSCF calculations. The chosen active space included
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one electron distributed over the set of 4f orbitals and 5d orbitals of Ce3+ (CASSCF(1,12)).

Dynamical electron correlation was incorporated using NEVPT248–50. The spin-orbit cou-

pling was calculated from atomic mean field (AMFI) SO integrals, an approach that proved

to be very accurate for valence energy levels51. Altogether twelve electronic states corre-

sponding to the electronic states of 4f1 (7 states) and 5d1 (5 states) configurations were

computed.

For the basis set, ma-DKH-def2-QZVPP52 was used for O and H, while all-electron

SARC2-DKH-QZVP53 was used for Ce. The calculations were further accelerated using the

RIJK pseudospectral methods, with the corresponding auxiliary basis sets. This method

has been tested and validated in previous works54,55, showing satisfactory performance even

on metals56–58. In the case of both octa- and ennea-hydrated ions, 31 and 32 orbitals (cor-

responding to the oxygen 1s orbitals and the core orbitals of cerium) respectively, were kept

frozen in the NEVPT2 correlation step. Some test calculations have been performed includ-

ing the CPCM solvation model59. All QM calculations were performed using the ORCA

software60. An example of the input is provided in the Supplementary Material (SM).

To build the complete spectrum, a broadening criterion must be assigned. The chosen

approach is the Gaussian Mixture Models-Nuclear Ensemble Approach (GMM-NEA) de-

veloped by Cerdán and Roca-Sanjuán 21 . This method relies on a probabilistic machine

learning technique, GMM, eliminating the need for phenomenological broadening. It can

detect outliers from a set of computed vertical excitation energies and oscillator strengths.

III. RESULTS AND DISCUSSION

To incorporate Ce3+ specificity in the structures, we optimized the [Ln(H2O)9]
3+ and

[Ln(H2O)8]
3+ aqua ions of La3+, Nd3+, and Ce3+ at the DFT level using the M06 functional

and DEF2-TZVPP basis set, consistent with the level of theory and basis set employed in

force field construction. The optimization results are presented in Table I. The average Ln-O

distance decreases by −0.040 Å when transitioning from La3+ to Ce3+ in the enneahydrate

cluster and increases by 0.035 Å in the octahydrate when going from Nd3+ to Ce3+. For the

spectra calculations, we adjusted the snapshots to create “distance-corrected” clusters: we

added 0.035 Å to the Nd-O distances in the octahydrate clusters and subtracted 0.040 Å for

the La-O bond distances in the enneahydrate clusters. The average Ln-O distances from MD
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simulations are also provided in Table I, showing that the outer hydration sphere’s effect on

this parameter is smaller than a hundredth of an angstrom.

TABLE I: Average Ln-O distances obtained from QM optimizations, from MD simulations

and from Wigner sampling. The correction, ∆d, from [La(H2O)9]
3+ to [Ce(H2O)9]

3+ and

from [Nd(H2O)8]
3+ to [Ce(H2O)8]

3+ comes from the QM optimization results.

Average Ln-O (Å) [Ce(H2O)9]
3+ [La(H2O)9]

3+ [Ce(H2O)8]
3+ [Nd(H2O)8]

3+

QM optimizations 2.576 2.614 2.541 2.507

Rounded ∆d −0.040 0.035

MD simulations 2.583 2.623 2.540 2.505

Wigner sampling 2.586 2.549

To assess the consistency of our approach, we generated a sampling of a Q-harmonic

Wigner distribution26 from the QM-optimized geometries of [Ce(H2O)8]
3+ and [Ce(H2O)9]

3+

along with their normal vibrational modes, at 300K in vacuum. Previous studies have shown

that the use of implicit solvation models in geometry optimisation and frequency calculations

for such clusters results in minimal changes when compared to vacuum calculations61,62. The

Ce-O and O-H Wigner distributions were compared with the “distance-corrected” distribu-

tions obtained from the octa- and ennea-hydrate in our MD simulations. Table I reveals

that the average Ce-O distances differ only by 0.003 Å and 0.009 Å for the ennea- and octa-

hydrate, respectively.

To further validate our results, we compared the Ce-O distributions for both hydration

numbers, as shown in Figure 2. Both distributions exhibit the maximum at nearly the

same position, although the Wigner sampling distribution follows a Gaussian shape (due

to the harmonic approximation), while the MD distribution is more asymmetric. These

distributions indicate that the main geometrical parameter (Ce-O distance) of the aqua ions

presents fluctuations of about 0.4 Å, which clearly produces an spreading in the bands of the

spectra obtained from each structure (Figure 3). The O-H distance distributions, included

in Figure S3 and Figure S4 of the SM, adopt Gaussian shapes, as expected for the strong

O-H bonds, with the MD distribution having a narrower width than the Wigner one. This

could be understood on the basis that the O-H bond fluctuations given by the MCDHO2
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potential correspond to the fitting of a different potential energy surface to that used for the

Wigner distribution. Additionally, the MD simulation account for the interaction between

the second hydration shell and the Ce3+ aqua ion, while the Wigner distribution corresponds

to the aqua ion isolated. Consequently, the solvent’s compacting effect, introduced by the

MD simulations likely contributes to the narrower O-H distribution in this case.

These values were compared with literature reports. Duvail, Vitorge, and Spezia 44 pre-

dicted an average Ce-O distance of 2.50 Å, in agreement with the value proposed by Allen

et al. 63 in the presence of chloride ions. However, these values are shorter than the 2.569 Å

obtained by Migliorati et al. 45 using MD approaches. Recent Raman experiments explor-

ing the solvation of Ln(III) ions in perchlorate acid solution proposed similar bond lengths

between the cerium ion and the coordinated water molecules (2.565 Å)46. The latest results

are in line with our proposed values.

The 3300 selected snapshots from MD simulations were all reoriented using calcu-

late rmsd.py64 with respect to a reference structure to allow the use of the same initial

guess orbitals. From these snapshots, individual UV-vis absorption spectra were computed

quantum-mechanically to extract excitation energies and oscillator strengths for each struc-

ture. The absorption peaks primarily correspond to the parity-allowed 4f to 5d electronic

excitations. The next step involves including spectral broadening and convoluting the dif-

ferent signals. As mentioned earlier, the GMM-NEA procedure21 facilitate the construction

of the final spectrum without the need for establishing empirical broadening for each tran-

sition line. Figure 3 displays the deconvoluted spectrum resulting from the contributions of

individual spectra corresponding to the ennea-hydrate structures (200 among the 3300 are

represented), as well as the reconstructed spectrum.

Before analyzing the UV-visible spectrum of the aqueous solution, where the presence of

octahydration and enneahydration has been reported35, we examined the average spectra

computed for a given hydration number, either the octahydrate (MD 8w) or the enneahy-

drate (MD 9w). These spectra can be compared individually with the experimental spectra

recorded by Lindqvist-Reis et al.35 for the crystalline structure doped with Ce3+ to obtain

an octa- (Exp solid 8w) or an ennea-coordination (Exp solid 9w). Figure 4 displays these

comparisons. The features in both spectra are quite similar in the general shape and the

relative intensities of the different bands, although a red-shifting by about 10 nm in the

theoretical results is observed with respect to the most intense experimental peaks (about
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FIG. 2: Ce-O distance distribution (Probability Density Function) for the octa- (a) and

ennea-hydrate (b) structures of Ce3+ from MD simulations and Wigner distributions at

300K.

240 nm and 260 nm for the octa and ennea-coordinated cerium in the cristalline structures).

While a match between experimental and theoretical spectra is not expected due to the

difference between crystalline and liquid samples, the close similarity must be understood

as the fact that the common [Ce(H2O)n]
3+ motif is the main responsible for the electronic
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FIG. 3: Computed spectrum of individual snapshots (200 among the 3300 are represented)

and average theoretical spectrum corresponding to the [Ce(H2O)9]
3+ aqua ion.

transitions.

The UV-visible spectrum of the CeCl3 aqueous solution
35 (Exp aq) is presented alongside

average spectra obtained from MD simulations corresponding to the ennea- (MD 9w) and

octa-coordination (MD 8w) in Figure 5. The small experimental peak at ∼ 300 nm was

assigned by the authors to the octa-coordination35. This assignment is corroborated by the

theoretical spectrum of the octahydrate where an intense signal appears at this wavelength,

whereas no peak is present in the case of the enneahydrate. The previous comparison of

solid samples, where the octa- and ennea-coordination can be analyzed separately, also cor-

roborates this assignment. The significant intensity disparity between the experimental and

simulated octahydrate spectra suggests that the aqueous solution contains a minor fraction

of Ce3+ aqua ion under this specific coordination. Conversely, the simulated spectrum for

enneahydration closely resembles the experimental spectrum with a slight red shift of ap-

proximately 10 nm, indicating that the enneahydrated aqua ion predominates in the solution

at 300K, suggesting an equilibrium between both aqua ions.

In addition to the solvent effects induced by outer solvation shells on the aqua ion struc-

ture, we have explored the solvent effects on the electronic spectrum due to the inclusion of a

continuum solvation model, as the CPCM method65. Figure S5 in the SM shows the spectra

computed with and without the inclusion of the dielectric medium for a set of 500 struc-

tures taken from 1ns of MD simulation. The results indicate minor alteration in spectrum

shapes. Bearing in mind that electronic states involved in the transitions correspond to

11



Ce(III) UV-vis spectrum

200 225 250 275 300 325 350
λ/nm

0.0

0.2

0.4

0.6

0.8

1.0

ab
so

rb
an

ce
(n

or
m

al
iz

ed
)

Exp solid 8w

MD 8w

(a) octahydrate

200 225 250 275 300 325 350
λ/nm

0.0

0.2

0.4

0.6

0.8

1.0

ab
so

rb
an

ce
(n

or
m

al
iz

ed
)

Exp solid 9w

MD 9w

(b) enneahydrate

FIG. 4: (a) Experimental spectra of crystalline cerium with octa-coordination

(Exp solid 8w) and the average theoretical spectrum of the [Ce(H2O)8]
3+ aqua ion

(MD 8w). (b) Experimental spectra of crystalline cerium with ennea-coordination

(Exp solid 9w) and the average theoretical spectrum of the [Ce(H2O)9]
3+ aqua ion

(MD 9w).

orbitals centered on the Ce3+ center, and assuming that the multipole charge distribution of

the wavefunctions remains relatively unchanged from ground to excited states, the solvent

reaction field induces similar effects on both states.

The analysis of the temperature influence on this equilibrium represents a significant step

towards understanding Ce3+ hydration behavior. Experimental investigations conducted by

Lindqvist-Reis et al. 35 recorded absorption spectra of Ce3+ in diluted aqueous solutions
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FIG. 5: Experimental spectrum of Ce3+ in solution (Exp aq), average theoretical spectrum

of enneahydrated Ce3+ (MD 9w) and average theoretical spectrum of octahydrated Ce3+

(MD 8w).

across temperatures ranging from 10 ◦C to 90 ◦C. Figure 6 displays the spectra correspond-

ing to the lowest (10 ◦C) and highest (90 ◦C) temperatures. With increasing temperature, the

population of the octahydrate aqua ion rises. Lindqvist-Reis et al. 35 proposed molar frac-

tions of this octahydrate aqua ion to be 0.12 and 0.30 at 10 ◦C and 90 ◦C, respectively. Simu-

lated spectra at these temperatures (MD mix) were computed by averaging electronic spec-

tra, maintaining the octa- and ennea-hydrate ratio consistent with the experimental data.

To facilitate comparison of features, the simulated spectra were blue-shifted by 1590 cm−1 to

align more closely with the experimental spectra. In Figure 6, a notable agreement between

experimental and simulated spectra is observed, particularly in the 200 nm to 280 nm range,

where band intensities and relative positions are consistently reproduced. Although the

intensity of the peak near 300 nm is overestimated for both temperatures, consistent with

observations in the spectrum corresponding to the octa-coordinated Ce-doped crystal and its

simulated counterpart (see Figure 4a), the relative intensity changes across the bands remain

consistent between the experimental and simulated spectra. These temperature-related find-

ings reinforce the confidence in the statistical and QM methodologies employed to construct

the UV-vis spectra and affirm the existence of a chemical equilibrium in solution between

ennea- and octa-coordination. An additional test of the performance of our methodology

is to compare the absolute intensity against the experimental spectrum, instead of the nor-

malized absorbance. Cerdán and Roca-Sanjuán 21 show how to obtain the absorption cross
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section (σ(E)) from a set of energies and oscillator strengths in GMM-NEA method. This

is what has been represented in the previous figures normalizing the intensity to the high-

est one. σ is related to the molar extintion coefficient (ϵ(E)) as ϵ(E) = σ(E)NA/ln(10).

Figure S6 shows the comparison of the experimental spectrum with the theoretical ones

without normalization. There is a 2 factor for the variation of ϵ with wavelength when com-

paring experiment and theory, but the relative intensity of the maxima does not seem to

be affected by the coordination number. This indicates that the absorption cross section is

independent of the ion coordination. In addition, Figure S7 shows a comparison of the octa

and ennea coordination mixtures using the observed mole fractions at 30ºC, again without

normalization, and blue-shifted to match the maximum of the most intense band.

200 220 240 260 280 300 320 340
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FIG. 6: Experimental absorption spectra at 10 ◦C and 90 ◦C and the combination of

MD 8w and MD 9w theoretical spectra at the respective molar fractions. The simulated

spectra have been blue-shifted by 1590 cm−1 to maximize the overlap with the

experimental data.

Once a satisfactory reproduction of the experimental spectrum has been achieved, one

should examine how convergence was attained with respect to the number of structures

used in the statistical average spectrum. The evolution of the spectrum with the number

of snapshots is illustrated in Figure S8 and Figure S9 of the SM for the cases of the Ce3+

octahydrate and enneahydrate, respectively. In both cases, a visual inspection reveals that

spectra with more than 1000 structures closely match.

To quantitatively establish convergence, we employed the relative integral change (RIC)

method proposed by Xue, Barbatti, and Dral 66 . A detailed description of this procedure can
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be found in the SM, and Figure S10 illustrates how the RIC index reaches an appropriate

threshold when 1000 structures are included in the spectrum reconstruction.

While achieving a good reproduction of the shape and position of bands in experimental

spectra, exploring alternative methods to obtain an ensemble of structures without rely-

ing on a force field for MD computations is worthwhile. One such approach is Wigner

sampling26–28. The theoretical spectra obtained at 300K from both MD simulations and

Wigner sampling for ennea- and octa-hydrates are depicted in Figure 7. For the octa-aqua

ion, the spectra show similar band shapes and positions, with the most intense peak exhibit-

ing a slight shift of approximately 5 nm. In contrast, the spectrum from Wigner sampling

for the enneahydrate ion displays slightly reduced intensity in the lower wavelength region,

and the most intense peak is also shifted. Despite the very similar Ce-O distances (see

Table I and Figure 2), significant differences are observed in the O-H distributions, detailed

in the SM (see Figure S3 and Figure S4). The orientation of water molecules relative to

the central cation has been identified to significantly influence the relative intensities of

vertical transitions in Ce3+ aqua ions, as highlighted in the previous study by Lindqvist-

Reis et al. 35 . Thus, discrepancies between the theoretical spectra from MD simulations and

Wigner sampling methods may be attributed to differing treatments of vibrational water

modes. Furthermore, these discrepancies may be also attributed to the fact that in MD

simulations the interactions of the first- and second-hydration shell are described, whereas

in the Wigner case only the first hydration shell is taken into account.

It is crucial to highlight that deriving spectra from MD simulations typically necessitates

access to specific force fields and subsequent classical MD simulations, or alternatively,

performing ab initio MD simulations. In contrast, computing Wigner spectra requires only

the geometry optimization of the cluster and its second derivatives. This data is sufficient

to generate a statistical sampling using the Wigner method, which is computationally less

demanding compared to classical or ab initio MD simulations.

IV. CONCLUDING REMARKS

In summary, this study demonstrates the successful integration of a well-balanced sta-

tistical distribution of structures obtained from MD simulations with highly-correlated rel-

ativistic xQM computations of UV-vis spectra in Ce3+-containing aqueous solutions. The
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FIG. 7: Average theoretical spectra for the [Ce(H2O)8]
3+ (a) [Ce(H2O)9]

3+ (b) in solution

obtained from the MD simulations (MD 8w and MD 9w) and average theoretical spectra

derived from a Wigner sampling (Wigner 8w and Wigner 9w) at 300K.

flexibility of the aqua ion, captured by the force field, is pivotal in accurately reconstructing

the entire spectrum from numerous individual spectra. Spectrum broadening is attributed,

in part, to geometrical fluctuations influencing both the position and intensity of transition

lines, as illustrated in Figure 3. The inherent statistical distribution of numerous vertical

transitions effectively reproduces band shapes through broadening based on statistical dis-

tribution rather than a parametric criterion. Additionally, the study explores an alternative

method using Wigner sampling, which produces electronic spectra similar to those derived

from MD simulations. This approach, combining Wigner sampling with the GMM-NEA

16
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method for spectrum construction, offers insights applicable to addressing various chemical

challenges where such a combination proves advantageous.

SUPPLEMENTARY MATERIAL

Supplementary Material includes a description of the MCDHO2 model and the force field

employed for the ion-water and water-water interactions. O-H distance distributions of the

MD simulations. ORCA input file for electronic spectrum computation. Comparison of

theoretical spectra computed with or without a continuum solvation model. Comparison

of the theoretical and experimental spectra using absolute intensities in terms of molar

extinction coefficient. Test of convergence of the spectra computed from a given number of

snapshots. Evolution of the RIC convergence index with the number of structures used for

averaging using GMM-NEA method.
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