Supplementary Materials

Impact of Zn addition on structural, morphological, and magnetic properties of thermally annealed Li–Zn nanoferrite

S. N. Kane^a, R. Verma^a, C. Parmar^a, S. S. Modak^a, J. P. Araujo^b, F. Mazaleyrat^c, Tetiana Tatarchuk^{d,e}*

^aMagnetic Materials Laboratory, School of Physics, D. A. University, Khandwa Road Campus, Indore-452001, India ^bIFIMUP, Departmento de Fisica, Universidade de Porto, 4169-007 Porto, Portugal ^cSATIE, ENS Paris-Saclay, Gif-sur-Yvette, France ^dFaculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland ^eEducational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, 76018 Ivano-Frankivsk, Ukraine

CONTACT S. N. Kane, kane_sn@yahoo.com, Magnetic Materials Laboratory, School of Physics, D. A. University, Khandwa Road Campus, Indore-452001, India

Tetiana Tatarchuk, <u>tatarchuk.tetyana@gmail.com</u>, Faculty of Chemistry, Gronostajova str., 2, Jagiellonian University, 30-387 Kraków, Poland; Educational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenko str., 52, 76018 Ivano-Frankivsk, Ukraine

Lattice parameter (a_{exp}) corresponding to [311] reflection was obtained by:

$$a_{\exp} = d\sqrt{h^2 + k^2 + l^2}$$
(1)

where d – inter-planar spacing, (h, k, l) – Miller indices.

X-ray density x-ray density (ρ_{xrd}) was calculated by:

$$\rho_{XRD} = \left(\frac{8M_w}{Na^3}\right) \tag{2}$$

where M_w – molecular weight, NA – Avagrado's number, a – lattice parameter.

Specific surface area 'S' was obtained by the following expression:

$$S = \frac{6}{\rho_{XRD} \times D_{W-H}} \tag{3}$$

where ρ_{XRD} – X-ray density, D_{W-H} – Grain diameter.

Dislocation density was computed by the following expression:

$$\rho_{\rm D} = 15\varepsilon / \left(a_{\rm exp.} \times D_{\rm W-H}\right) \tag{4}$$

Grain diameter (D_{W-H}) was obtained by the Williamson–Hall (W-H) method, by incorporating both instrumental and strain broadening. Instrumental broadening was calculated by taking the XRD data of the standard LaB₆ Sample. According to this method, x-ray diffraction peak broadening $\beta_{hkl} = \beta_{size} + \beta_{strain}$. The actual peak broadening (β) is obtained by correcting the experimental peak broadening ' β_{ex} ' and the instrumental broadening ' β_{in} ' as: $\beta^2 = \beta_{ex}^2 - \beta_{in}^2$. Hence, XRD peak broadening $\beta_{hkl} = \beta_{size} + \beta_{strain}$ equation (13) can be in modified form as:

$$\beta_{hkl} = (0.94\lambda / D_{W-H} \cos\theta) + 4\varepsilon \tan\theta$$
(5)

and

$$\beta_{\rm hklcos\theta} = (0.94\lambda / D_{\rm W-H}) + 4\varepsilon \sin\theta \tag{6}$$

where λ – wavelength of x-ray used, β – full width at half maximum '*FWHM*', D_{W-H} – Williamson Hall grain diameter, ϵ – strain.

Obtained cationic distribution was used to compute Néel magnetic moment ' n_N ', theoretical magnetization at 0 K: $M_{s(th)}$, is calculated by using the formula: $n_N = M_B - M_A$ in Bohr magneton ' μ_B ' where M_A , M_B are respectively magnetic moments of A, B-site obtained

by cationic distribution. Conversion of $M_{s(th)}$ from μ_B to Am^2/kg is done using the following expression: $M_{s(th)} = [q \times \mu_B \times N_A] / m$, where, q - Neel magnetic moment, $\mu_B - 0.9274 \times 10^{-20}$ emu, $N_A - Avogadro's$ number, m - molecular weight (g mol⁻¹).

The interionic distances between cations – b, c, d, e, f, and between cation and anion – p, q, r, s were estimated the a_{exp} and $u^{\overline{4}3m}$ by using the following relations:

$$b = \frac{a_{\exp} \sqrt{2}}{4}, \qquad p = a_{\exp} \sqrt{11}, \\c = \frac{a_{\exp} \sqrt{11}}{8}, \qquad q = a_{\exp} \sqrt{3} \sqrt{3} \sqrt{11} \sqrt{11}, \\d = \frac{a_{\exp} \sqrt{3}}{4}, \qquad r = a_{\exp} \sqrt{3} \sqrt{11} \sqrt{11} \sqrt{11} \sqrt{11} \sqrt{11} \sqrt{11} \sqrt{11} \sqrt{11} \sqrt{11}, \\e = \frac{3a_{\exp} \sqrt{3}}{8}, \qquad s = a_{\exp} \sqrt{3} \sqrt{3} \sqrt{11} \sqrt{11} \sqrt{11} \sqrt{11}, \\f = \frac{a_{\exp} \sqrt{6}}{4}$$
(8)

where, $a_{exp.}$ – experimental lattice parameter, and $u^{\overline{4}_{3m}}$ – oxygen position parameter.

Theoretical lattice parameter $a_{th.}$, bond angles $-\theta_1$, θ_2 , θ_3 , θ_4 , θ_5 , oxygen position parameter $-u^{\overline{4}3m}$ were also computed by cationic distribution, utilizing the following equations:

$$a_{\rm th} = \frac{8}{3\sqrt{3}} \left[(r_{\rm A} + R_0) + \sqrt{3}(r_{\rm B} + R_0) \right] \tag{9}$$

where, $r_A - A$ -site ionic radius, $r_B - B$ -site ionic radius, $R_o - 0.138$ nm is the radius of Oxygen ion.

$$u^{\overline{4}3m} = \frac{(r_A + R_o)}{(\sqrt{3} * a_{\exp})} + \frac{1}{4}$$
(10)

where, $R_o - 0.138$ nm is the radius of Oxygen ion, a_{exp} - experimental lattice parameter.

$$\theta_{1} = \cos^{-1} \left[\frac{p^{2} + q^{2} - c^{2}}{2pq} \right], \qquad \theta_{2} = \cos^{-1} \left[\frac{p^{2} + r^{2} - e^{2}}{2pr} \right], \qquad \theta_{3} = \cos^{-1} \left[\frac{2p^{2} - b^{2}}{2p^{2}} \right] \\ \theta_{4} = \cos^{-1} \left[\frac{p^{2} + s^{2} - f^{2}}{2ps} \right], \qquad \theta_{5} = \cos^{-1} \left[\frac{r^{2} + q^{2} - d^{2}}{2rq} \right]$$
(11)

where p, q, r, s – the distance between metal cations, and Oxygen anions (Me - O), b, c, d, e, f – the distance between metal–metal cations (M_e – M_e).

Canting angle α_{Y-K} was computed using the equation :

$$\alpha_{Y-K} = \cos^{-1} \left\{ \left(n^{e}_{B(x)} + M_{A(x)} \right) / M_{B(x)} \right\}$$
(12)

where $M_{A(x)}$ and $M_{B(x)}$ are the magnetic moments expressed in Bohr magneton μ_B on A, and B sites, and $n^e_{B(x)}$ is the experimental magnetic moment.

Anisotropy constant K₁ was calculated by using the equation:

$$K_1 = [H_c \times M_s] / 0.96$$
(13)

Where M_s – Saturation magnetization, H_c - coercivity

Switching field distribution SFD is determined by using the expression:

$$SFD = \Delta H / Hc, \tag{14}$$

Where, ΔH – full width at half maximum of the dM / dH.