
HAL Id: hal-04722876
https://hal.science/hal-04722876v1

Submitted on 6 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

VG-Prefetcher Cache: Towards Edge-Based Time Series
Data Management Using Visibility Graph Prefetching

Akram Bensalem, Laurent d’Orazio, Julien Lallet, Andrea Enrici

To cite this version:
Akram Bensalem, Laurent d’Orazio, Julien Lallet, Andrea Enrici. VG-Prefetcher Cache: Towards
Edge-Based Time Series Data Management Using Visibility Graph Prefetching. International Confer-
ence on Scientific and Statistical Database Management (SSDBM), Jul 2024, Rennes France, France.
pp.1-4, �10.1145/3676288.3676304�. �hal-04722876�

https://hal.science/hal-04722876v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


VG-Prefetcher Cache: Towards Edge-Based Time Series Data
Management Using Visibility Graph Prefetching

Akram Bensalem∗

akram.bensalem@imt-atlantique.fr
Plouzané, France

Laurent d’Orazio
laurent.dorazio@irisa.fr

Lannion, France

Andrea Enrici
andrea.enrici@nokia-bell-labs.com

Massy, France

Julien Lallet
julien.lallet@nokia-bell-labs.com

Lannion, France

ABSTRACT
The demand for efficient and reliable cloud computing systems is
increasing. However, effectively managing data workloads in edge
cloud systems, especially for connected cars, can be challenging.
To address this issue, we have developed a new cache management
technique named VG-Prefetcher Cache that uses visibility graphs to
handle time series data more effectively. Our approach involves pre-
dicting future data and prefetching it into the cache, which reduces
retrieval time and improves system performance. VG-Prefetcher
Cache presents a promising approach for overcoming challenges in
managing data workloads, thus paving the way for a more efficient
and reliable cloud computing system.

CCS CONCEPTS
• Computer systems organization → Real-time system archi-
tecture; Cloud computing; • Information systems→ Key-value
stores.

KEYWORDS
Data Management, Time Series, Visibility Graph, Prefetching
ACM Reference Format:
Akram Bensalem, Laurent d’Orazio, Andrea Enrici, and Julien Lallet. 2024.
VG-Prefetcher Cache: Towards Edge-Based Time Series Data Management
Using Visibility Graph Prefetching. In 36th International Conference on
Scientific and Statistical Database Management (SSDBM 2024), July 10–12,
2024, Rennes, France. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3676288.3676304

1 INTRODUCTION
The transportation industry has recently experienced a significant
transformation with the emergence of Intelligent Transportation
Systems (ITS), replacing traditional systems [25]. This is mainly due
to the development of wireless communication technologies, which
have enabled vehicles to become more connected and intelligent[11,
14]. However, with the increasing demand for heavy applications
∗All authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

SSDBM 2024, July 10–12, 2024, Rennes, France
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1020-9/24/07
https://doi.org/10.1145/3676288.3676304

and services, challenges arise as we move towards an autonomous
future. The growing number of compute-intensive applications
requires more resource capacity, leading to increased energy con-
sumption and decreased autonomy for connected vehicles [17].
This is a significant obstacle to developing connected vehicles and
ITS. We can look forward to a more intelligent, efficient, and reli-
able transportation system, improving the safety of connected cars,
robots, and other vehicles [15]. Connected and autonomous cars
generate a significant amount of data that needs to be processed in
real-time to ensure the smooth running of the vehicles [13, 26].
To handle the continuous flow of data, various technologies such
as edge computing [8, 10], cloud computing [23], and big data pro-
cessing are utilized [19, 22]. Edge computing processes the data
sensors capture at the edge, which is then transmitted to the cloud
for further analysis. The cloud provides the necessary scalability
and flexibility to store and manage the vast data generated [20].
While VG-Prefetcher Cache primarily targets the ITS industry, it is
a versatile solution designed to cater to any real-time system that
relies on real-time time series data. Its adaptability extends to fields
such as medicine, robotics, and more, promising many applications
and benefits.

Ensuring system reliability is a critical task, and one effective
solution is to load data into cache memory in the Edge Cloud, which
is near clients. This cache memory stores frequently accessed data,
significantly reducing the time required to transfer extensive data.
The selection of data to be loaded into cache memory quickly and
the location and design of the cache memory are crucial aspects
to consider.We aim to revolutionise the performance of connected
cars and similar systems by reducing response latency to client
queries and increasing overall throughput, explicitly focusing on
time series databases. We are venturing into a quick and efficient
non-traditional forecasting method to predict client queries as fast
as possible to achieve this. Unlike traditional AI methods, this in-
novative approach holds great promise, sparking curiosity and
excitement.

To address these, we propose a novel solution called VG-Prefetcher
Cache, an in-memory time series cache management based on Visi-
bility Graph techniques for its adaptive prefetcher.

In this paper, We will review the latest research in the field and
then develop a preliminary concept before diving into our solution.
This will involve considering global design and architecture and
the complexities of caching management and prefetcher functions.
Finally, we will conclude by exploring opportunities for further
advancements.

https://orcid.org/0009-0000-8019-0577
https://doi.org/10.1145/3676288.3676304
https://doi.org/10.1145/3676288.3676304
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3676288.3676304
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3676288.3676304&domain=pdf&date_stamp=2024-08-23


SSDBM 2024, July 10–12, 2024, Rennes, France Bensalem et al.

2 RELATEDWORK
Time series data caching has become increasingly popular in recent
years. This paper will discuss the relevant works most applicable
to our research. Most previous works have focused on handling
time series data in databases created for various purposes and with
different focus areas.
The most well-known in-memory solution is Memcached[1]. It is a
distributed caching system introduced by Fitzpatrick in 2004 to im-
prove the performance of web applications by reducing the load on
databases [9]. Its features include its distributed nature, key-value
store approach and in-memory storage.
Meanwhile, it was not designed explicitly for time series. Pelko-
nen et al. (2015) introduced Gorilla[21] as a high-performance in-
memory database for storing large amounts of time-series data. The
database employs a unique compression algorithm to maximise
memory efficiency and minimise overhead. With its in-memory
architecture, Gorilla offers significantly reduced query latencies.
Recent research on semantic caches has revealed their varied appli-
cations in different domains[24]. BSCache[28] is a specific semantic
caching scheme that caters to the time-series data that Zhang,Wang,
and Shao created. It introduces a novel caching mechanism that
utilises a semantic approach to account for unique access patterns
and update frequencies. This mechanism organises cached data
into semantic layers and prioritises them based on relevance, signif-
icantly improving query performance. BSCache[28] can also adjust
its caching strategy dynamically to optimise utilisation for evolving
workloads.
TSCache[16] is a caching time-series data scheme specifically de-
signed for time-series data by leveraging the benefits of flash mem-
ory. TSCache[16] efficiently separates hot and cold data, signifi-
cantly minimising write operations, and employs algorithms that
adapt to real-time data access patterns.
Unlike BSCache, TSCache[16] does not directly interact with time-
series databases. Instead, it adopts a time-aware mechanism to
distinguish hot data, keeping it in the cache longer. Additionally,
it utilises a unique two-layered indexing scheme to keep track of
queries and data in the cache efficiently. In contrast, BSCache[28]
relies on the semantics of time series for cache management.

3 PRELIMINARY
Time series Queries. Time series refers to sets of observations

or measurements taken at specific time intervals [2, 3], usually at
uniform intervals. The nature and properties of time series queries
distinguish it from other data types. and it have unique properties:

• Write-Once and Append-Only
• Dominance of Range Queries
• Unique and Highly Skewed Access Pattern

Edge Caching. Caching is a well-known technique for improving
the performance of distributed systems and thereby reducing the
latency of data retrieval [5].

Prefetching. Prefetching refers to predicting future requests for
data before the actual requests are made and proactively fetching
the data from a remote storage location to a local cache in anticipa-
tion of the predicted requests [6, 27]. This method aims to enhance
the performance of distributed systems by reducing the latency of

Figure 1: Globale Architecture overview

data retrieval and improving the responsiveness of applications.
In edge cloud computing, prefetching can be applied to store fre-
quently accessed data, such as sensor data and other content, at the
edge servers (ESs).

4 VG-PREFETCHER CACHE
4.1 Design and Architecture
As presented in Figure 1, our proposal system design utilises a time-
series system cache mechanism. The client’s end-point service will
communicate directly with the memory cache instead of the Remote
Database. This change will not affect the platform’s behaviour; the
result will remain the same. The service will first access data from
the cache memory. Suppose it does not exist in the cache memory.
In that case, another service will handle the situation by retrieving
the data from remote sources in the cloud and uploading it into
the memory cache. Simultaneously, several serverless functions
will run in parallel to predict the future required data by analysing
previous queries.

According to Figure 1, eight steps integrate the cache mecha-
nism with prefetching capability in the edge cloud; the client sends
queries to the cloud. The edge cloud endpoint handles the request
by accessing the local cache memory. Simultaneously with step
two, the edge cloud launches a serverless function to predict future
data based on previous requests for 5. and 6. In case of any missing
values of queries from the client or predicted queries in the cache
memory, another service will handle the situation by uploading the
missing data from the data source. The data is sent to the designated
endpoint for the edge cloud. Then, It streams the response directly
to the final destination.



VG-Prefetcher Cache: Towards Edge-Based Time Series Data Management Using Visibility Graph Prefetching SSDBM 2024, July 10–12, 2024, Rennes, France

4.2 Cache Management
It is essential to have data management strategies that are both
efficient and customised for different data types, particularly time-
sensitive data. Leveraging techniques from popular caching systems
such as TSCache [16] and BSCache [28], our architecture aims to
provide efficient in-memory caching for time series data.
VG-Prefetcher Cache is designed to address the complexities of
edge computing. It is adapted from TSCache [16]. This allows it to
effectively manage caching in distributed systems, ensuring that
frequently accessed data is available to edge devices while minimiz-
ing network traffic and latency.
A In-memory cache system as Memcache [1] has been updated to
include new and essential features that make it work better.

• Time-range based Interface: The time-range-based inter-
face has been designed to allow users to retrieve data within
specific intervals. where queries often require data from
specific time ranges.

• Handling Partial Hits: Instead of retrieving all requested
data from the remote database when it is not in the cache,
our system identifies that part of data that already existed
in cache memory and retrieves whatever data is available in
the cache first. It then proceeds to obtain the remaining data
from the remote database.

• Time-aware Caching Policy:We propose to have a time-
aware policy that considers the temporal nature of time-
series data. It prefers recent data, which is more relevant in
time-series scenarios, and evicts older data. It ensures users
get the most pertinent and timely data from the cache.

4.3 Visibility Graph Prefetcher
Data prefetching involves predicting the data that will be required
in the future and preloading it into the cache of the edge device. This
approach helps reduce latency and improve the overall performance
of edge computing systems. With the increasing demand for real-
time data processing and analysis. We will explore our proposal to
predict data to load in cache memory before being requested.

4.3.1 Prediction Function. We recommend using a serverless ap-
proach. Prefetching future query predictions can also reduce the
delay in loading a large amount of data from the data source.
Considering various factors, this function utilises an adaptive prefetcher
that identifies coming data to be loaded in the memory cache.

Adaptive Prefetcher. When a client submits a request for a read
query, the system’s specific service performs two simultaneous
tasks, as shown in figure 2. The system’s specific service is designed
to handle many read queries without compromising the system’s
performance. This means the query results are delivered quickly,
even if multiple queries are processed simultaneously.
The first process is to predict the following query, and the prediction
function will predict both the time range and any metadata of the
query. By analysing the patterns in the start time, end time, and
metadata tags, we can determine the necessary information for
the query. This process requires various algorithms to predict time
series data and determine the most probable outcome.
The cache memory system is designed to hold frequently accessed
data, which means that the more often a query is executed, the

Figure 2: Adaptive prefetche

higher the likelihood that the response data will be found in the
cache memory.
To optimize performance, the service will execute the upcoming
queries before the client asks for them. This allows part of the
following data to be in the cache memory.

Query predictability. Certain conditions must be met to predict a
client’s query accurately. As shown in figure 3, Specific criteria must
be met to determine if a query can be repeated. Firstly, we require a
sufficient number of previous queries of the exact nature to forecast
the current query. we also need to ensure that the values of the tags
and fields used in past queries are repeatable. By checking these
two conditions, we can determine if a query is repeatable.

Figure 3: The Cases of Queries that can be predictable

4.3.2 Prediction of Time Range for Query. As shown in figure 4.
The proposed method is designed to achieve accurate and efficient
predictions. The process is divided into different phases, each care-
fully designed to produce the desired outcome.
Phase 1 focuses on collecting a list of queries with the same key
and placing them in a First-In-First-Out (FIFO) queue for quick
predictions. Phase 2 involves extracting two sets of time series
for further examination, providing valuable information about the
data’s behaviour over time. In phase 3, data is transformed into
a complex network graph using the Visibility Graph approach to
predict future time series data. Phase 4 uses the visibility graph to
predict future values. It finds similarities between nodes and uses
these similarities as factors to make accurate predictions.



SSDBM 2024, July 10–12, 2024, Rennes, France Bensalem et al.

Figure 4: Extract time start, time end, and duration series
from a list of queries that have the same key

5 DISCUSSION
The proposed method optimises edge cloud-based time series sys-
tems by integrating traditional caching methods with predictive
prefetching capabilities. This enables seamless and faster data ac-
cess, reducing latency and optimising bandwidth utilisation, partic-
ularly during high-traffic scenarios. Our solution is tailored for edge
cloud environments and is highly effective in time series database
applications such as ITS, making it adaptable to various situations,
especially when handling massive real-time datasets. This system
efficiently manages large amounts of data and users, adapting to
real-time incoming data to ensure a smooth user experience.

6 CONCLUSION
This paper introduces VG-Prefetcher Cache which is a new ap-
proach to managing time series data on the edge cloud by develop-
ing an advanced version of an in-memory caching tool well-suited
for real-time applications such as connected cars. This system will
predict the required data based on Visibility Graph techniques, mak-
ing the process faster and more efficient. This reduces waiting time
and enhances system performance, especially under heavy usage.
As technology develops, we can improve our in-memory caching
solution and adaptive prefetcher function by incorporating FPGA
accelerators[4, 7, 12]. By leveraging Field-Programmable Gate Ar-
rays (FPGA), we can significantly enhance the performance of VG-
Prefetcher Cache, particularly in reducing latency incurred during
memory accesses and predicting queries with reduced latency [18].
Using FPGA accelerators can bypass the latencies of traditional
CPU-based approaches and achieve a performance boost, leading to
significant advancements in performance optimisation and setting
a new standard in the field of in-memory database solutions.

ACKNOWLEDGMENTS
The research presented in this paper was supported by Nokia Bell
Labs France in collaboration with IRISA Laboratory.

REFERENCES
[1] [n. d.]. Memcached. https://github.com/memcached/memcached. Accessed:

2023-09-09.
[2] [n. d.]. What Is a time series? https://www.investopedia.com/terms/t/timeseries.

asp. Accessed: 2023-09-09.
[3] [n. d.]. What is time series data? https://www.influxdata.com/what-is-time-

series-data/. Accessed: 2023-09-09.

[4] Thomas Bollaert. 2018. Fundamentals of FPGA-based Acceleration.
https://www.xilinx.com/publications/events/developer-forum/2018-
frankfurt/fundamentals-of-fpga-based-acceleration.pdf Accessed: 2023-
09-10.

[5] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
computing and its role in the internet of things. In Proceedings of the first edition
of the MCC workshop on Mobile cloud computing. 13–16.

[6] Surendra Byna, Yong Chen, and Xian-He Sun. 2008. A taxonomy of data prefetch-
ing mechanisms. In 2008 International Symposium on Parallel Architectures, Algo-
rithms, and Networks (i-span 2008). IEEE, 19–24.

[7] Andrew Canis and Ruolong Lian. 2018. Accelerating Memcached on Cloud
FPGAs. https://www.xilinx.com/publications/events/developer-forum/2018-
frankfurt/accelerating-memcached-on-cloud-fpgas.pdf Accessed: 2023-09-10.

[8] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. 2020. An overview on
edge computing research. IEEE access 8 (2020), 85714–85728.

[9] Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux journal 2004,
124 (2004), 5.

[10] Fabio Giust, Vincenzo Sciancalepore, Dario Sabella, Miltiades C Filippou, Simone
Mangiante, Walter Featherstone, and Daniele Munaretto. 2018. Multi-access edge
computing: The driver behind the wheel of 5G-connected cars. IEEE Communi-
cations Standards Magazine 2, 3 (2018), 66–73.

[11] Jianhua He, Kun Yang, and Hsiao-Hwa Chen. 2020. 6G cellular networks and
connected autonomous vehicles. IEEE Network 35, 4 (2020), 255–261.

[12] Kevin D Hsiue. 2014. FPGA-based hardware acceleration for a key-value store
database. Ph. D. Dissertation. Massachusetts Institute of Technology.

[13] Rasheed Hussain and Sherali Zeadally. 2018. Autonomous cars: Research results,
issues, and future challenges. IEEE Communications Surveys & Tutorials 21, 2
(2018), 1275–1313.

[14] Damigou Kombate et al. 2016. The Internet of vehicles based on 5G commu-
nications. In 2016 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE,
445–448.

[15] Yangxin Lin, Ping Wang, and Meng Ma. 2017. Intelligent transportation system
(ITS): Concept, challenge and opportunity. In 2017 ieee 3rd international conference
on big data security on cloud (bigdatasecurity), ieee international conference on
high performance and smart computing (hpsc), and ieee international conference
on intelligent data and security (ids). IEEE, 167–172.

[16] Jian Liu, Kefei Wang, and Feng Chen. 2021. TSCache: an efficient flash-based
caching scheme for time-series data workloads. Proceedings of the VLDB Endow-
ment 14, 13 (2021), 3253–3266.

[17] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. 2019.
Edge computing for autonomous driving: Opportunities and challenges. Proc.
IEEE 107, 8 (2019), 1697–1716.

[18] Fabio Maschi, Dario Korolija, and Gustavo Alonso. 2023. Serverless FPGA: Work-
In-Progress. In Proceedings of the 1st Workshop on SErverless Systems, Applications
and MEthodologies. 1–4.

[19] Bob McQueen. 2017. Big data analytics for connected vehicles and smart cities.
Artech House.

[20] Pavan Muralidhara. 2017. IoT applications in cloud computing for smart devices.
INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 1, 1
(2017), 1–41.

[21] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A fast, scalable, in-memory
time series database. Proceedings of the VLDB Endowment 8, 12 (2015), 1816–1827.

[22] Christian Prehofer and Shafqat Mehmood. 2020. Big data architectures for vehicle
data analysis. In 2020 IEEE International Conference on Big Data (Big Data). IEEE,
3404–3412.

[23] Ling Qian, Zhiguo Luo, Yujian Du, and Leitao Guo. 2009. Cloud computing: An
overview. In Cloud Computing: First International Conference, CloudCom 2009,
Beijing, China, December 1-4, 2009. Proceedings 1. Springer, 626–631.

[24] Qun Ren, Margaret H Dunham, and Vijay Kumar. 2003. Semantic caching and
query processing. IEEE transactions on knowledge and data engineering 15, 1
(2003), 192–210.

[25] Akhtar All Shah and Lee Jong Dal. 2007. Intelligent transportation systems in
transitional and developing countries. IEEE Aerospace and Electronic Systems
Magazine 22, 8 (2007), 27–33.

[26] Aditi Tiwari and KBAkhilesh. 2020. Exploring connected cars. Smart Technologies:
Scope and Applications (2020), 305–315.

[27] Steven P Vander Wiel and David J Lilja. 1997. When caches aren’t enough: Data
prefetching techniques. Computer 30, 7 (1997), 23–30.

[28] Kai Zhang, Zhiqi Wang, and Zili Shao. 2022. BSCache: A Brisk Semantic Caching
Scheme for Cloud-based Performance Monitoring Timeseries Systems. In Pro-
ceedings of the 51st International Conference on Parallel Processing. 1–10.

https://github.com/memcached/memcached
https://www.investopedia.com/terms/t/timeseries.asp
https://www.investopedia.com/terms/t/timeseries.asp
https://www.influxdata.com/what-is-time-series-data/
https://www.influxdata.com/what-is-time-series-data/
https://www.xilinx.com/publications/events/developer-forum/2018-frankfurt/fundamentals-of-fpga-based-acceleration.pdf
https://www.xilinx.com/publications/events/developer-forum/2018-frankfurt/fundamentals-of-fpga-based-acceleration.pdf
https://www.xilinx.com/publications/events/developer-forum/2018-frankfurt/accelerating-memcached-on-cloud-fpgas.pdf
https://www.xilinx.com/publications/events/developer-forum/2018-frankfurt/accelerating-memcached-on-cloud-fpgas.pdf

	Abstract
	1 Introduction
	2 RELATED WORK
	3 Preliminary
	4 VG-Prefetcher Cache
	4.1 Design and Architecture
	4.2 Cache Management
	4.3 Visibility Graph Prefetcher

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

