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ABSTRACT

Big data’s impact is driving research into efficient solutions for
managing growing datasets, with a focus on distributed systems.
Recent advancements in query processing, particularly the join
operator, have been significant. WebAssembly (Wasm), known for
its efficiency, is increasingly adopted. This project aims to evalu-
ate the efficiency of Wasm in serverless environments, addressing
challenges posed by serverless architectures and comparing Wasm-
based joins against native in performance. We propose Blossom,
a Rust-based experimental platform, to give insights into Wasm-
based joins. Our initial results reveal trade-offs between Wasm
performance and its generality.
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1 INTRODUCTION

Recent advances in cloud and big data processing [1] have led
to challenges in network operations, particularly in performance,
privacy, and energy consumption. The exponential growth of data
centers in both usage and capacity has raised critical concerns about
their CO2 footprint [9]. Serverless computing, a cloud computing
model where the cloud provider dynamically manages the allocation
of server-side machine resources, may offer a promising solution
[2]. By allowing developers with Function as a Service (FaaS) to
focus on operator, it enhances resource management and potentially
reduces energy consumption, making it an active point of research.

Join is an extensively used operation, e.g. to filter data, in de-
ployed functions over the cloud which justifies a concern in its study.
However, serverless nodes may turn off and lose data, which poses
challenges in managing ephemeral data with stateful operations
like complex joins requiring intermediate storage. Nonetheless,
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other challenges arise in this distributed context such as the de-
ployment of quick, both bandwidth-wise and performance-wise,
operators while being less energy-consuming. Native operators
induce a well-known time overhead called cold-start upon deploy-
ment, e.g., in Spark serverless [11]. That gives an inside to the
re-usability challenge of operators taking into account ephemeral
nodes. In edge/fog systems, data-privacy is also a concern [10] in
transiting data, especially involved in joins.

Lots of papers on joins, for example in MapReduce or in-memory
systems [12] [13] have dealt with joins optimization. To the best of
our knowledge, none of the above-mentioned works has addressed
efficient deployment of joins in serverless, edge or fog computing
in particular to mitigate the cold-start effect. Recent works focus
on local database systems with close objectives like Mutable [5] but
none have specifically tackled serverless joins.

Our main goal is to generally improve joins in serverless comput-
ing. In this paper, we analyze stateless joins, e.g., Sort-Merge join
for ease of deployment. Therefore, we propose leveraging a poten-
tial solution to tackle above limitations with a recent and emerging
technology: WebAssembly (Wasm) [15]. Wasm is a portable binary
instruction format with near-native performance, providing pos-
sible solutions to our problems. It is initially developed for web
browsers enabling high-performance execution of code written in
languages like C, C++, and Rust, alongside JavaScript. The use of
the WebAssembly System Interface! (WASI) for Wasm pushes this
technology beyond web-browsers. It allows standalone execution
coupled with a Wasm runtime, giving opportunities in serverless
computing [18] [3]. The adoption of this technology poses some
new challenges as seen in [7] and we aim to point out Wasm pros
over its implementation, specifically in serverless joins. As far as
we know, there is not yet an existing benchmark tool to assess
Wasm joins. Hence, we propose to study three join algorithms in
Wasm and native, performance-wise. Our study relies on three
environments to highlight Wasm features in serverless comput-
ing. Experiments are conducted using BLOSSOM, a Rust-based
benchmarking tool, to assess Wasm’s suitability for serverless joins
compared to native. The goal of our work here is to get insights
into Wasm’s potential for serverless computing before its adoption,
in particular with widely used join operations.

The remainder of this paper is organized as follows: Section 2
presents WebAssembly in serverless computing by outlining its
pros, cons and central challenges. In Section 3 we introduce Blos-
som, our experimental platform to assess Wasm-based joins, along
with our experimental protocol and technical challenges. The im-
plementation details and preliminary results are given in Section 4
with a global overview, and Section 5 concludes the paper.
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Figure 1: Experimental protocol with three environments,
workloads, and joins. Rounded-boxes are steps executed by
the wrapper program, and Straight-boxes by the operator.

2 WEBASSEMBLY IN SERVERLESS

This section outlines Wasm traits in serverless computing and
addresses rising challenges with its potential adoption. Especially,
we think Wasm may present several advantages addressing the
aforementioned limitations:
1. Re-usability: Wasm operators compared to native ones may of-
fer easier deployment in serverless environments [4], as standalone
programs to be run on a runtime. They would be lightweight alter-
natives [3] and thus easier to dispose off.
2.Near-native speed: Wasm provides competitive speed compared
to native programs, balancing generality and performance [15].
3. Less energy-consuming: We believe from point 1 that Wasm
enables lower cold-start times [4] [3] and less energy-consuming
operators [14] [16], consequently improving serverless computing.
4. Language-interoperability with a portable binary format:
Wasm supports widely used languages like C++, C and Rust, simpli-
fying developers choices. Easier architecture maintenance for cloud
providers is also possible with a portable format only requiring a
Wasm runtime such as Wasmtime? [17].
5. Sandboxed environment: Wasm programs have enforced se-
curity as they run in isolated environments, disallowing direct
resource access. This enhances data-privacy in transiting data and
resilience against cyber-attacks. Such property can be a direct alter-
native to containerization for classic operators, e.g., with Docker [3].
Nonetheless, the adoption of Wasm presents three central chal-
lenges in serverless computing with its recent portability out of the
web. We identify the three following challenges:
1. Limited memory: As of the current Wasm32 version, a Wasm’s
module is limited to 4GB of linear memory with 32-bit addressing.
This highlights a challenge in a big data context to handle large
workloads. Although, some work is already being done towards
Wasmo64, which would remove this memory-limit barrier.
2. Early state: Wasm and WASI are still in development, with WASI
being in early state. Several technical details need to be known, and
a few limitations are to be considered when dealing with simple
programs. For instance, memory-communication from user to a
Wasm module would often need an intermediate program wrapper.
This program would instantiate the Wasm module and allow classic
native IPC-like/IO standard communications.

Thttps://wasi.dev/
Zhttps://wasmtime.dev/
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3. Performance: A central point is that Wasm was originally
developed to run web applications, Wasm promises native-close
performance in this initial context: the performance comparison
lies between interpreted JavaScript and Wasm. Traditionally, web
applications are run with interpreted JavaScript, whereas Wasm-
applications are applications that have been compiled to Wasm
to produce Wasm byte code. Afterward, Wasm-applications are
executed directly on a Wasm runtime part of web browsers or stan-
dalone Wasm virtual machines (e.g., V83), often using JIT or other
optimization techniques. In our context, we consider Wasm outside
the web to execute sandboxed modules with WASI: the performance
is compared between a given Wasm runtime and raw native.

3 BLOSSOM

We propose BLOSSOM?, an experimental platform to analyze and
compare Wasm-based joins. To address above-mentioned chal-
lenges, we consider the experimental protocol illustrated in Figure
1 presenting the join operator execution in three environments:
Env. 1) No-serverless native: The join operator runs in native
Rust and performs join algorithms on all loaded datasets.

Env. 2) No-serverless Wasm: Similar to 1. but with Wasm; a devel-
oped wrapper program acts as an intermediate to give progressive
data throughput to the Wasm operator. There is only one Wasm
module instantiation, i.e., execution.

Env. 3) Serverless Wasm: For each loaded dataset, a new Wasm
module is instantiated and then executed. This mimics a serverless
node with ephemeral data.

A fourth environment would be the Serverless native one, simi-
lar to Env. 3 but instead considering a native-compiled operator
that would be run over again for each dataset. It has not been ex-
plored initially, given its lesser relevance regarding performance
and known cold-start aspects compared to lightweight Wasm opera-
tors. A notable point lies in Wasm overheads with its supplementary
steps. Our experimental protocol is:

(1) Load the datasets: directly in the operator in native and in the
wrapper program passed in the module for Wasm.

(2) Only for Envs. 2 and 3, write data to the Wasm module. This
step is necessary considering current Wasm32 memory limitation.
(3) Wasm or native operator runs the three join algorithms for a
given dataset.

(4). For Envs. 2 and 3, read join results in Wasm memory from the
wrapper program.

We measure time for data loading and results retrieval ((2), (4)) and
operator execution ((3)) for raw performance comparison. Step (1)
has no measuring, as it is similar for all Envs. We emphasize Env. 1
executes the join program directly, while Envs. 2 and 3 require a na-
tive wrapper program, here embedded in BLOSSOM, for handling
large data as native programs are only limited in memory with
the RAM. This is one of the required workarounds due to Wasm’s
limited memory and early state challenges. There are a few ways to
communicate to Wasm modules, in particular the following three:
i. Linear allocation: Manipulate Wasm’s linear memory object,
which is a contiguous array shared amongst Wasm modules. This
is possible through the use of the associated Wasm runtime library.

Shttps://v8.dev/
“The project is available on GitHub: https://github.com/chanattan/Blossom
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ii. Pipe communication: As WASI was originally designed to be
POSIX-like, we may communicate with Wasm modules through
command line arguments, environment variables or pipes. Espe-
cially, stdin and stdout streams to pass data in and out.
iii. Libraries: Some tools like Wasm-bindgen® are being developed
to facilitate high-level interactions between Wasm modules and
JavaScript.
In this first study, we focused on approach i. with linear alloca-
tion. The main pro of this technique is that linear memory allows
fast data communication. This is a possible solution to the Wasm
performance challenge. However, this solution incurs notable devel-
opment complexity in managing memory on the runtime because
of Wasm’s early state. The other approaches were not yet fully
studied, comparatively, pipe communication lacks of flexibility: in-
put is passed in the program with stdin, but the output is only
received from stdout once the program is done computing. In or-
der to avoid potential performance slowdown or another layer of
complexity with JavaScript, approach i. was considered. In our ex-
periments, all data is read raw as strings and manually serialized
given hard-coded table structures, with future support for optimal
serialization envisioned. A central hypothesis of our protocol lies
in a disaggregated-database-like setup with an independent data
storage layer (as in S3, MinIO or HDFS) that is close to the compute
layer of a node: we assume close available datasets in experiments.
We study three join algorithms — Nested-Loop, Hash and Sort-
Merge [13] — implemented directly within the join operator. The
conducted benchmarks are based on relational data with SQL join-
queries. For starters, we use the TPC-H bench test, but others like
TPC-DS or SSB could be used with minor changes. Similar to previ-
ous studies [12], we focus on equi-join queries involving a single
key attribute join from two relations. The queries are based on
TPC-H Q-queries (2,3,5,8,9) simplified to only relevant join parts.
We consider Wasm join operators as a potential solution for
serverless joins based on the outlined advantages above. Nonethe-
less, this prompts further questions with Wasm central challenges:
What is the development and maintenance burden of Wasm op-
erators? To which extent are these operators re-utilizable? Is the
trade-off between generality and performance justified with out-
of-the-web Wasm? How effectively Wasm impacts cold-start times
and energy use? Our experimental protocol is still in development
(Figure 1) to give possible solutions, with some aspects slated for
future research due to space constraints.

4 PRELIMINARY RESULTS

All code is written in Rust, the join operator is compiled to both
native and Wasm32-WASI. We use the Wasmtime runtime as it is
lightweight and has competitive performance, but any other WASI-
supported Wasm runtime, e.g., Wasmer, [6] [8] could be used with
minor revisions, given the runtime has a Rust library. Experiments
are conducted on a Grid’5000° cluster equipped with an Intel Xeon
Gold 6254 (18 cores) with 384 GiB of RAM.

Shttps://rustwasm.github.io/wasm-bindgen/

SExperiments presented in this paper were carried out using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see https://www.Grid5000.fr)
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Figure 2: Performance results for Nested-Loop, Hash and
Sort-Merge in the three environments for a fixed query.
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Figure 3: Experimental protocol with highlight on reading,
execution and results writing big steps. Each detailed step
on each environment shows its part of time taken on the
global process (in percentage) from left to right. Each block
column corresponds to a step in the join operator execution,
and each line to the execution timeline for an environment.

The joins are performed on the TPC-H datasets with different
Scale Factors (SF). Because of Wasm limited memory, we first re-

stricted SF values from .1 (~100MB) to 1 (~ 1GB) with a step of .1. We
[R[+]S]

|runtime|’

where |R| and |S| denote the tuple counts of two relations, and

|runtime| represents the join operation time in seconds.

Figure 2 shows the results of native and Wasm joins raw per-
formance on the cluster for the three join algorithms: Nested-loop,
Hash and Sort-Merge joins on different SF values. It is important to
note that drawing reliable conclusions requires higher SF and more
consolidation due to significant execution runtimes, this presents
preliminary results. Moreover, Wasm and Wasm runtimes’ early
state gave us technical challenges in order to implement our experi-
ments. On top of that, we encountered difficulties with LLVM-based
tool chain for wasm32, e.g. wasi-sdk or emscripten, and in our case
with Rust to allocate a single linear memory object larger than
1GiB. This problem restricted the SF values for first results with our
experiments. A considered solution is to implement a custom allo-
cator with four independent linear memory objects less than 1GiB,
in order to make the most use of Wasm32 4GiB linear memory.

Nonetheless, these suggest that Wasm exhibits slower perfor-
mance compared to native, with a performance gap widening at
higher SF values. This was expected given Wasm performance cen-
tral challenge in section 2, where Wasm-WASI performances are
being compared to raw native instead of Wasm against JavaScript
on the web. Similar performance can be seen for both Envs. 2 and
3 as Figure 2 only focuses on the join. On average, Wasm shows

use the join throughput metric from [13], calculated as

OUTPUT
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performance gaps of 100%, 25%, and 47% below native for Nested,
Hash, and Sort-Merge algorithms, respectively. It can also be noted
that tested Wasm modules have been produced with by-default JIT
compilation, but not with AOT compilation. Preliminary analysis
indicates that performance gaps may persist even with the potential
benefits of Wasm64 with higher memory, emphasizing particular
attention of out-of-the-web Wasm performance central challenge.
Figure 2 provides a comparison of the execution part, as depicted
in Figure 3. For preliminary results, only the orders of magnitude of
other steps are displayed. For instance, at the same SF values, Wasm
demonstrates a magnitude of 10~4s for module instantiation, 10~2s
for writing datasets, and 10~s for reading results. Figure 3 presents
the same experimental protocol as Figure 1, emphasizing the three
significant steps in join function execution: 1. Reading data, 2. Exe-
cuting the join, and 3. Writing results. Using empirically collected
mean values as magnitude orders, we can assign percentage values
corresponding to each block column (each step) as part of the total
time taken for the entire protocol execution, from step 1 to step
3, for each environment. These values provide insights into the
distribution of time spent during the execution of a join operator
in a given environment. Notably, Figure 3 reveals that the majority
of time spent in executing a join operator is dedicated to the actual
join execution across all three environments, in particular with Env.
3, hinting at serverless Wasm potentially being a considerable solu-
tion. In particular, we observe a pseudo cold-start in Env. 3 when
instantiating a new Wasm module for each dataset, mimicking a
serverless node with ephemeral data. However, the figure indicates
that about 0.001% of the join operator execution time is consumed
by this pseudo cold-start. Additionally, only about 1% of the time
is allocated to memory communication of a Wasm module, which
may become significant with larger workloads but remains minor
compared to the execution time, which takes around 90% of the
time. Regarding pseudo cold-start, only Env. 3 accounts for this
aspect, as Env. 2 mimics a Wasm-based serverful node, and Env. 1
can be considered as having zero pseudo cold-start in our setup.
While a startup time for Env. 2 can be seen, it occurs only once.

5 CONCLUSION

The current implementation of WebAssembly shows noticeable
overheads in both technical implementation and raw performance.
Although it was expected to be slower than native code, out-of-the-
web Wasm still offers significant advantages like enhanced security,
reusability and may ease developer choices and server-side main-
tenance. The potential for energy efficiency in serverless Wasm is
still being explored. Our experiments suggest that some technical
overheads in Wasm may be negligible compared to join execution
aspects. Consequently, there is growing interest in improving the
raw performance of Wasm programs, for a given Wasm runtime.
Some specific Wasm runtimes with optimized out-of-the-web sce-
narios are also explored by peers. With the upcoming release of
Wasmo64, performance levels may remain consistent, albeit with
larger memory allocation capabilities. This hints at potential so-
lutions involving parallelism within Wasm, using parallel Wasm
modules on a single Wasm runtime. It may require an orchestration
of join operations for efficient task distribution, as seen with semi-
joins. Our findings show necessary trade-offs between Wasm32

Chanattan, Laurent, Reyyan and Dimitri

performance and versatility, with performance being a significant
concern. However, ongoing work aims to optimize join execution
and compilation in Wasm, making it a considerable solution.
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