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Minimality of vortex solutions to Ginzburg–Landau
type systems for gradient fields in the unit ball in

dimension N ≥ 4

Radu Ignat∗, Mickael Nahon† and Luc Nguyen‡

Abstract
We prove that the degree-one vortex solution is the unique minimizer for the

Ginzburg–Landau functional for gradient fields (that is, the Aviles–Giga model)
in the unit ball BN in dimension N ≥ 4 and with respect to its boundary value.
A similar result is also proved in a model for SN -valued maps arising in the theory
of micromagnetics. Two methods are presented. The first method is an extension
of the analogous technique previously used to treat the unconstrained Ginzburg–
Landau functional in dimension N ≥ 7. The second method uses a symmetrization
procedure for gradient fields such that the L2-norm is invariant while the Lp-norm,
2 < p < ∞, and the H1-norm are lowered.
Keywords: Minimality, vortex solutions, gradient fields, Ginzburg–Landau, Aviles–
Giga, Hardy’s inequality, symmetrization.
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1 Introduction
Let BN be the unit ball in RN . Consider the Ginzburg–Landau (GL) functional

EGL
ϵ [U ] =

ˆ
BN

[1
2 |∇U |2 + 1

2ϵ2W (1 − |U |2)
]
dx,

where ϵ > 0, W (t) = t2

2 and U belongs to the set

AGL = {U ∈ H1(BN ,RN) : U(x) = x on ∂BN}.

The functional EGL
ϵ has a unique radially symmetric critical point in AGL of the form

Uϵ(x) = fϵ(r)
x

r
∈ AGL, r = |x|, (1.1)

where the profile fϵ is the unique solution to the ODE (see e.g. [31, 36])−f ′′
ϵ (r) − N−1

r
f ′

ϵ(r) + N−1
r2 fϵ(r) = 1

ϵ2fϵ(r)W ′(1 − fϵ(r)2),
fϵ(0) = 0, fϵ(1) = 1.

(1.2)

Moreover fϵ > 0 and f ′
ϵ > 0 in (0, 1).

The map Uϵ in (1.1), called the (RN -valued) Ginzburg–Landau vortex solution of
topological degree one, can be considered as a regularization of the singular harmonic
map n : BN → SN−1 given by n(x) = x

|x| for every x ∈ BN , which is the unique
minimizing SN−1-valued harmonic map forN ≥ 3 with respect to the boundary condition
n(x) = x on ∂BN (see Brezis, Coron and Lieb [11] and Lin [48]). The question about
the minimality of Uϵ for any ϵ > 0 was raised in dimension N = 2 in Bethuel, Brezis and
Hélein [8, Problem 10, page 139], and in higher dimensions in Brezis [10, Section 2]. It is
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not hard to see that, when ϵ is sufficiently large, EGL
ϵ is strictly convex and so Uϵ is the

unique bounded critical point of EGL
ϵ in AGL for every N ≥ 2 (see e.g. [8] or [40, Remark

3.3]). In dimension N = 2, Pacard and Rivière showed in [57] that, for small ϵ > 0, Uϵ

is the unique critical point of EGL
ϵ in AGL; however, whether uϵ is the unique minimizer

of EGL
ϵ for all ϵ > 0 remains an open question. In dimensions N ≥ 7, this question was

answered positively in recent works of Ignat, Nguyen, Slastikov and Zarnescu [39, 40]:
Uϵ is the unique minimizer of EGL

ϵ in AGL for every ϵ > 0. It is not known whether Uϵ

minimizes EGL
ϵ in AGL in dimensions 3 ≤ N ≤ 6 when ϵ is small. However, it is known

that for every ϵ > 0, Uϵ is a local minimizer of EGL
ϵ in AGL – for dimension N = 2, see

Mironescu [52] and also Lieb and Loss [47]; for dimension 3 ≤ N ≤ 6, see Ignat and
Nguyen [34].

Minimizers of the Ginzburg-Landau energy EGL
ϵ are sometimes referred to as ap-

proximate SN−1-valued harmonic maps (e.g. [13]) in the sense that they are smooth
and approximate a minimizing harmonic map with or without singularity. In this con-
text, the uniqueness of the vortex solution is of special relevance in dimension N = 3, 4.
Indeed, in these dimensions, by [61, Theorem 2.7], a minimizing harmonic map from
BN → SN−1 is regular away from a set of isolated points, and by [11, Theorem 1.2] in
dimension N = 3 and [54, Theorems 1.2 and 2.1] in dimension N = 4, near each such
singular point, the harmonic map has degree ±1 and its tangent map is the vortex map
x

|x| up to a rigid rotation. The uniqueness of the vortex solution, if it is true, would
suggest that each approximate harmonic map would look like the vortex solution near
each singular point of the true harmonic map.

Strong evidence to support the uniqueness of the vortex solution in any dimension
N ≥ 2 is available in the blown-up limit: When the domain is the whole space RN , the
minimality (in the sense of De Giorgi) of the vortex solution was proved in dimension
N = 2 by Mironescu [53], dimension N = 3 by Millot and Pisante [51] and dimension
N ≥ 4 by Pisante [58]. See also [16, 28, 29, 56] for studies on stability issues.

The main aim of this paper is to show that in dimensions 4 ≤ N ≤ 6 and for
every ϵ > 0, Uϵ is the unique minimizer of EGL

ϵ relative to the set of gradient field
configurations in AGL (this is often referred to as the Aviles–Giga model).

1.1 The Aviles–Giga model
Consider a general non-negative convex C2 potential W : (−∞, 1] → [0,∞) such that
W (0) = 0 and for every ϵ > 0, the Ginzburg–Landau energy EGL

ϵ (U) restricted to
gradient fields

U = ∇u ∈ H1(BN ,RN) such that U |∂BN = Id.

Within a suitable rescaling (i.e., ϵEGL
ϵ (∇u)), this is the so-called Aviles–Giga model

(introduced with the standard potential W (t) = t2/2).
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This was introduced by Aviles and Giga in [3] to account for codimension 1 and 2
defects in 3D Smectic-A liquid crystals. In dimension N = 2 (with W (t) = t2) it is con-
jectured that, on the set of gradient fields, ϵEGL

ϵ Γ-converges to an energy that penalizes
line defects, and furthermore, when restricted to limit stream functions u ∈ W 1,1 such
that |∇u| = 1, ∇u ∈ BV , the limit energy is given by E0(∇u) = 1

6

´
J∇u

|[∇u]|3 dH1,
where [∇u] is the jump of ∇u across the jump set J∇u. Many results point to this
conjecture being true in dimension N = 2 (see for instance [1, 14, 18, 19, 43, 59]).
In particular, every optimal transition layer across a line-defect is one-dimensional (so,
no microstructure exists) and gives the cubic cost |[∇u]|3 in E0, see [33]. However,
in dimension N ≥ 3, the situation is very different as was pointed out in [17]: one-
dimensional transition layers across a one-codimensional defect are no longer optimal as
microstructures with strictly lower energy exist. One of the motivation for studying the
Aviles–Giga model in our setting (in the ball with the boundary condition ∇u(x) = x)
is to understand in the easiest case of a point defect if there exists symmetry-breaking
counterexample to the natural vortex solution.

Note that the (RN -valued) Ginzburg–Landau vortex solution Uϵ introduced in (1.1)
is a gradient field Uϵ = ∇uϵ for some radial function uϵ = uϵ(r) determined (up to a
constant) by u′

ϵ = fϵ in (0, 1) where fϵ is the unique solution in (1.2).
We prove the following result:

Theorem 1. Assume that 4 ≤ N ≤ 6 and W : (−∞, 1] → [0,∞) is a C2 non-negative
convex function such that W (0) = 0. For every ϵ > 0, the radially symmetric vortex
solution Uϵ in (1.1) is the unique minimizer of EGL

ϵ over the set of gradient fields {U =
∇u ∈ AGL}.

Note that the above result holds in dimension N ≥ 7 as a consequence of [39, 40]. We
expect the result holds also in dimension N ∈ {2, 3} and more generally for non-gradient
fields as pointed out previously, but our methods do not prove it; see the discussion in
Subsection 1.4. We mention here the work Lorent [49, 50] and Lamy and Marconi [44]
on stability of the vortex solution in dimension N = 2 and in the limit ϵ → 0 (for the
Aviles–Giga model as well as other micromagnetic models).

1.2 The SN-valued Ginzburg–Landau model
We consider the following model:

EMM
η [M ] =

ˆ
BN

[1
2 |∇M |2 + 1

2η2 W̃ (M2
N+1)

]
dx
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where η > 0 and M = (∇m,MN+1) is a unit-length vector field that is a gradient field
in the first N components belonging to

AMM = {M = (∇m,MN+1) ∈ H1(BN ,SN) : M(x) = (x, 0) on ∂BN}.

The non-negative potential W̃ : [0,∞) → [0,∞) is a C2 convex function such that
W̃ (0) = 0.

This model comes from micromagnetics where the order parameter M stands for the
magnetization in ferromagnetic materials (see [27])1, and also the Oseen-Frank theory
for nematic liquid crystals (see [2]). Considering radially symmetric critical points of
EMM

η in AMM , one is led to

Mη(x) = (f̃η(r)x
r
, gη(r)) ∈ AMM (1.3)

where the radial profiles f̃η and gη satisfy

f̃ 2
η + g2

η = 1 in (0, 1), (1.4)

and the system of ODEs:

−f̃ ′′
η − N − 1

r
f̃ ′

η + N − 1
r2 f̃η = λ(r)f̃η in (0, 1), (1.5)

−g′′
η − N − 1

r
g′

η = − 1
η2 W̃

′(g2
η)gη + λ(r)gη in (0, 1), (1.6)

f̃η(1) = 1 and gη(1) = 0, (1.7)

where
λ(r) = (f̃ ′

η)2 + N − 1
r2 f̃ 2

η + (g′
η)2 + 1

η2 W̃
′(g2

η)g2
η (1.8)

is the Lagrange multiplier due to the unit length constraint in AMM . Note that indeed
the vortex solution Mη in (1.3) is of the form Mη = (∇mη,Mη,N+1) ∈ AMM for some
radial function mη = mη(r) determined (up to a constant) by m′

η = f̃η in (0, 1).
As proved in [34], the solutions to (1.3)–(1.7) satisfy the dichotomy: either f̃η(0) = 0

or f̃η(0) = 1. Furthermore, in the latter case, it holds that N ≥ 3 and (f̃η = 1, gη = 0)
in (0, 1), which corresponds to the equator map

M̄(x) := (x
r
, 0).

1In dimension N = 2, EMM
η is the reduced energy functional in a certain thin-film ferromagnetic

regime (see e.g. [20, Section 4.5] or [32, Section 7]) where, after a rotation by π
2 in the first two

components of M , the condition ∇ × (M1, M2) = 0 is imposed in the space of admissible configurations
in AMM .
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In dimension N ≥ 7, M̄ is the unique minimizing harmonic map from BN into SN in
H1(BN , SN) with with boundary condition (Id, 0) on ∂BN (Jäger and Kaul [42]; see also
Sandier and Shafrir [60] and [40, Example 1.6]); so M̄ is the unique minimizer of EMM

η

in AMM for every η > 0. Therefore, in the following, we focus on dimensions 2 ≤ N ≤ 6
and on escaping SN -valued radially symmetric vortex solutions

M±
η (x) = (f̃η(r)x

r
,±gη(r)) with gη > 0 in (0, 1).

It was proved in Hang and Lin [30] in dimension N = 2 and [34] in dimension 3 ≤ N ≤ 6
that, for any η > 0, (1.3)–(1.7) has a unique escaping solution (f̃η, gη) with gη > 0 and
M±

η are locally minimizers for EMM
η . Moreover, f̃η(0) = 0, f̃η > 0, f̃ ′

η > 0 and g′
η < 0

in (0, 1). (See also [46] for a related work in the context of micromagnetic skyrmions in
R2.)

We prove the following result:

Theorem 2. Assume 4 ≤ N ≤ 6 and W̃ : [0,∞) → [0,∞) is a C2 non-negative
convex function such that W̃ (0) = 0. For every η > 0, EMM

η has exactly two minimizers
over the set {(∇m,MN+1) ∈ AMM} and they are given by the escaping vortex solutions
M±

η (x) = (f̃η(r)x
r
,±gη(r)) with gη > 0 in (0, 1). In particular, minimizers of EMM

η in
AMM are radially symmetric for every η > 0.

As in the case of the Aviles–Giga model, we expect the above result holds also in
dimension N ∈ {2, 3}.

1.3 The extended model
More generally, we consider a family of extended energy functionals Eϵ,η depending on
two positive parameters ϵ, η of which EGL

ϵ and EMM
η are limiting cases when η → 0 and

ϵ → 0, respectively:

Eϵ,η[U ] =
ˆ

BN

[1
2 |∇U |2 + 1

2ϵ2W (1 − |U |2) + 1
2η2 W̃ (U2

N+1)
]
dx, ϵ, η > 0, (1.9)

where U = (∇u, UN+1) : BN → RN+1 is a gradient field in the first N components and
belongs to

A = {U = (∇u, UN+1) ∈ H1(BN ,RN+1) : U(x) = (x, 0) on ∂BN}.

Here, W : (−∞, 1] → [0,∞) and W̃ : [0,∞) → [0,∞) are non-negative C2 convex
potentials such that W (0) = W̃ (0) = 0. We point out that these imply that W ′(0) = 0,
tW ′(t) ≥ 0 in (−∞, 1] \ {0}, and W̃ ′(t) ≥ 0 in [0,∞). However, we allow the possibility
that W or W̃ can be zero in a neighborhood of the origin.

6



Radially symmetric critical points of Eϵ,η in A take the form

Uϵ,η = (fϵ,η(r)x
r
, gϵ,η(r)) ∈ A, (1.10)

where (fϵ,η, gϵ,η) satisfies the system of ODEs

− f ′′
ϵ,η − N − 1

r
f ′

ϵ,η + N − 1
r2 fϵ,η = 1

ϵ2W
′(1 − f 2

ϵ,η − g2
ϵ,η)fϵ,η, (1.11)

− g′′
ϵ,η − N − 1

r
g′

ϵ,η = 1
ϵ2W

′(1 − f 2
ϵ,η − g2

ϵ,η)gϵ,η − 1
η2 W̃

′(g2
ϵ,η)gϵ,η, (1.12)

fϵ,η(1) = 1 and gϵ,η(1) = 0. (1.13)

Note that the above implies fϵ,η(0) = 0 and g′
ϵ,η(0) = 0 (see [34, Lemma A.5]). Also, note

that the first N components of Uϵ,η(r) is a gradient field ∇φϵ,η for some radial function
φϵ,η(r) determined (up to a constant) by φ′

ϵ,η = fϵ,η in (0, 1).
In dimensions N ≥ 7, it follows from [39, 40] that the non-escaping vortex solution

Ūϵ(x) = (fϵ(r)
x

r
, 0)

is the unique global minimizer of Eϵ,η in A for every ϵ > 0 and η > 0. Therefore, in
the following, we focus on dimensions 2 ≤ N ≤ 6; we will analyse escaping radially
symmetric vortex solutions

U±
ϵ,η = (fϵ,η(r)x

r
,±gϵ,η(r)), gϵ,η > 0 in (0, 1).

It is shown by [34] that such an escaping radially symmetric critical point Uϵ,η with
gϵ,η > 0 exists if and only if 2 ≤ N ≤ 6, W ′(1) > 0, 0 < ϵ < ϵ0 and η > η0(ϵ) for
some ϵ0 ∈ (0,∞) and a continuous non-decreasing function η0 : [0, ϵ0) → [0,∞) with
η0(0) = 0. In this case, it is the unique escaping solution of (1.10)–(1.13) with gϵ,η > 0
in (0, 1); moreover, we have fϵ,η(0) = 0, f 2

ϵ,η + g2
ϵ,η < 1, fϵ,η > 0, f ′

ϵ,η > 0, g′
ϵ,η < 0 in

(0, 1). See Section 1.4 and Figure 1 for more information.

We prove the following theorem:

Theorem 3. Suppose 4 ≤ N ≤ 6 and W : (−∞, 1] → [0,∞) and W̃ : [0,∞) → [0,∞)
are C2 non-negative convex functions satisfying W (0) = W̃ (0) = 0. For every ϵ > 0, η >
0, we have the following dichotomy:

• Either the escaping radially symmetric vortex solutions U±
ϵ,η exist and they are the

only two minimizers of Eϵ,η in A,
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• Or the escaping radially symmetric vortex solutions U±
ϵ,η do not exist and the non-

escaping vortex solution Ūϵ is the unique minimizer of Eϵ,η in A.

In particular, minimizers of Eϵ,η in A are always radially symmetric for every ϵ, η > 0.

To complete the picture, we recall facts from [34] on the escaping vs. non-escaping
phenomena. The escaping phenomenon is related to the loss of stability of the non-
escaping vortex solution Ūϵ. More precisely, consider the stability operator δ2Eϵ,η

δU2
N+1

at Ūϵ

along the N + 1 direction:

T̄ϵ,η = −∆ − 1
ϵ2W

′(1 − f 2
ϵ ) + 1

η2 W̃
′(0).

The first eigenvalue of T̄ϵ,η on H1
0 (BN ,R) takes the form ℓ(ϵ) + 1

η2 W̃
′(0) where ℓ(ϵ) is

the first eigenvalue of
Lϵ := −∆ − 1

ϵ2W
′(1 − f 2

ϵ ). (1.14)

Then the

escaping vortex solutions U±
ϵ,η with gϵ,η > 0 exists if and only if ℓ(ϵ) + 1

η2 W̃
′(0) < 0.

When N ≥ 7 or W ′(1) = 0, it holds always that ℓ(ϵ) > 0, hence escaping vortex solutions
do not exist. When 2 ≤ N ≤ 6 and W ′(1) > 0,

there exists ϵ0 > 0 such that ℓ(ϵ) > 0 for ϵ > ϵ0 and ℓ(ϵ) < 0 for 0 < ϵ < ϵ0.

Thus, in this case, the function η0(ϵ) mentioned above (so that escaping vortex solutions
exist if and only if 0 < ϵ < ϵ0 and η > η0(ϵ)) is given by

η0(ϵ) =

√√√√W̃ ′(0)
|ℓ(ϵ)| for 0 < ϵ < ϵ0.

In Figure 1, we describe the dichotomy of escaping and non-escaping phenomena for
minimizers2 of Eϵ,η in radial symmetry in dimension 2 ≤ N ≤ 6. Theorem 3 asserts
that, in dimension 4 ≤ N ≤ 6, this picture remains valid in the larger set A of gradient
field configurations in the first N components.

For the case η = ∞ (that is the RN+1-valued Ginzburg–Landau model), we refer
the reader to the recent article Ignat and Rus [41]. For a similar bifurcation from non-
escaping to escaping phenomenon, see Bethuel, Brezis, Coleman and Hélein [7].

2Recall from [34] that solutions of (1.11)-(1.13) satisfying gϵ,η > 0, when they exist, are minimizing
for Eϵ,η relatively to the set of radially symmetric configurations.
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Figure 1: Escaping vs. Non-escaping phenomenon in dimension 2 ≤ N ≤ 6.
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1.4 Ideas of the proofs
Theorems 1 and 2 will be obtained from Theorem 3 by taking the limits η → 0 or
ϵ → 0, respectively. For simplicity, instead of describing the proof of Theorem 3 (which
is the main result), we explain instead the strategy of the proof in the case η = 0, i.e.
Theorem 1 for the Aviles–Giga model. We will present two methods of proof. Roughly
speaking, the first method follows the strategy in [39, 40] adapted to the situation of
gradient field configurations, and the second method uses a symmetrization procedure.

Method 1

It was observed in [39, 40] that the convexity of the potential W implies the inequality

EGL
ϵ [Uϵ + V ] − EGL

ϵ [Uϵ] ≥ 1
2

ˆ
BN

LϵV · V dx =: 1
2Fϵ[V ] for V ∈ H1

0 (BN ,RN), (1.15)

where Lϵ is the operator defined in (1.14). Recall that in dimension N ≥ 7, the first
eigenvalue ℓ(ϵ) of Lϵ is positive, Fϵ[V ] > 0 for V ∈ H1

0 (BN ,RN) \ {0}, and hence, Uϵ is
the unique minimizer of EGL

ϵ in AGL. In dimension 2 ≤ N ≤ 6, one has ℓ(ϵ) < 0 for
ϵ < ϵ0, and so it is not clear from the above argument if Uϵ is a minimizer of EGL

ϵ in
AGL. However, in the current case of gradient field configurations (i.e. V = ∇v), we are
able to conclude in dimension N ≥ 4.

To appreciate the idea, consider the limit ϵ → 0 where Lϵ → −∆ − N−1
r2 =: L∗

as bounded linear operators from H1
0 (BN ,RN) into H−1(BN ,RN). Although L∗ is not

positive definite when N ≤ 6, we have the following inequality3 for gradient fields in
3Here H2

0 (BN ,R) is the closure of C∞
c (BN ,R) in H2(BN ,R). In particular, if v ∈ H2

0 (BN ,R), then
v and ∇v have zero trace on the boundary.
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dimension N ≥ 4:
ˆ

BN

L∗(∇v) · (∇v) dx =
ˆ

BN

(
(∆v)2 − N − 1

r2 |∇v|2
)
dx ≥ 0 for v ∈ H2

0 (BN ,R),

i.e. L∗ is positive definite on the subspace of gradient fields in H1
0 (BN ,RN). This is a

consequence of the sharp Hardy inequality for gradient fields (see e.g. [4, 12, 26, 63]):

ˆ
RN

(∆v)2 dx ≥ cN

ˆ
RN

|∇v|2

r2 dx, for v ∈ H2
0 (BN ,R) where cN :=



N2

4 if N ≥ 5
3 if N = 4
25
36 if N = 3,
0 if N = 2.

(1.16)
For the general case ϵ > 0, we combine the above idea with the machineries in [39, 40]
and [34], based on the Hardy decomposition method.

Unfortunately, the above strategy does not work in dimension N = {2, 3} (for the
proof, see Appendix A):

Proposition 4. In dimension N ∈ {2, 3}, there exists a function v ∈ C2
c (BN \ {0}) ⊂

H2
0 (BN) such that Fϵ(∇v) < 0 when ϵ is sufficiently small.

Method 2

As mentioned above, the second method of proof uses a symmetrization procedure. For
that, we use the spherical coordinates: for every x ∈ BN , we write x = rθ with r = |x|
and θ ∈ SN−1. For v ∈ H1(BN ,R), we associate the radial function v̌ = v̌(r) given by
the formula

v̌(r) = −
ˆ 1

r

(  
SN−1

|∇v(sθ)|2dσ(θ)
)1/2

ds ≤ 0, r ∈ (0, 1). (1.17)

One can think of this as a kind of rearrangement in the spherical harmonic decomposition
of v (see Section 3.2 for more detailed discussion).

We prove the following.

Theorem 5. Let N ≥ 2, v ∈ H1(BN ,R) and v̌ be associated to v by (1.17). The
following conclusions hold.

(i) The map v 7→ v̌ is a Lipschitz continuous map from H1(BN ,R) into H1
0 (BN ,R).

Moreover,
ˆ
SN−1

|∇v̌(rθ)|2 dσ(θ) =
ˆ
SN−1

|∇v(rθ)|2 dσ(θ) for a.e. r ∈ (0, 1). (1.18)
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(ii) Let G : [0,∞) × [0,∞) → [0,∞) be continuous. If G is convex in the second
variable, then

ˆ
BN

G(r, |∇v̌|2) dx ≤
ˆ

BN

G(r, |∇v|2) dx. (1.19)

In particular, for any 2 < p < ∞,
ˆ

BN

|∇v̌|p dx ≤
ˆ

BN

|∇v|p dx. (1.20)

(iii) If v ∈ H1
0 (BN), i.e. if v = 0 on ∂BN and 1 ≤ p ≤ 2, then
ˆ
SN−1

|v̌(rθ)|p dσ(θ) ≥
ˆ
SN−1

|v(rθ)|p dσ(θ) for a.e. r ∈ (0, 1). (1.21)

(iv) Assume in addition that v ∈ H2(BN ,R) with the boundary condition ∇v(x) = cx
on ∂BN (in the H1/2(∂B) sense) for some constant c ∈ R. Then v̌ ∈ H2(BN ,R)
and ∇v̌(x) = |c|x on ∂BN . If N ≥ 5, then

ˆ
BN

(∆v̌)2 dx ≤
ˆ

BN

(∆v)2 dx. (1.22)

If N ∈ {2, 3, 4}, (1.22) continues to hold provided that
´
SN−1 v(rθ)θ dσ(θ) = 0 for

a.e. r ∈ (0, 1). In either case, equality is attained if and only if v is radially
symmetric and |v′| = v̌′ in (0, 1).

To apply Theorem 5 to prove Theorem 1, we only need to note that for ∇u ∈ AGL,
by integrating by parts using ∇u(x) = x on ∂BN ,

ˆ
BN

|∇2u|2 dx =
ˆ

BN

(∆u)2 dx−
ˆ
SN−1

N∑
i,j=1

∂i∂ju(θ)(δij − θiθj)︸ ︷︷ ︸
∇2u:(IN −θ⊗θ)

dσ(θ)

=
ˆ

BN

(∆u)2 dx−
ˆ
SN−1

[
(N − 1)∂ru(θ) + ∆SN−1u(θ)

]
dσ(θ)

=
ˆ

BN

(∆u)2 dx− (N − 1)|SN−1|. (1.23)

(Here we have used the fact that IN −θ⊗θ is the projection onto the tangent hyperplane
TθSN−1.) Therefore, in dimension N ≥ 5, Theorem 5 immediately implies that minimiz-
ers of EGL

ϵ in {U = ∇u ∈ AGL} are radially symmetric. Thanks to the characterization
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of radially symmetric critical points in [34], Theorem 1 follows. Theorem 2 also follows
in a similar manner. For Theorem 3, we need an extra symmetrization for the UN+1
component; see Section 3.1.

In Theorem 5(iv), the requirement
´
SN−1 v(rθ)θ dσ(θ) = 0 in dimension N ∈ {2, 3, 4}

cannot simply be dropped due to existence of counter-examples. (For examples of sym-
metry breaking phenomena in the context of Hardy’s inequality for gradient fields in
dimension N ∈ {3, 4}, see e.g. [12].)

Our rearrangement is related to a vectorial rearrangement in Lieb and Loss [47]. For
V ∈ H1(BN ,RN), one associates the radially symmetric vector field V̌ defined by

V̌ (x) =
( 

SN−1
|V (rθ)|2dσ(θ)

) 1
2 x

r
. (1.24)

It was shown in [47] that, provided V (x) = x on ∂BN and
´
SN−1 V (rθ)dσ(θ) = 0 for a.e.

r ∈ (0, 1), ˆ
BN

|∇V̌ |2 dx ≤
ˆ

BN

|∇V |2 dx.

It is readily seen that if V = ∇v, then V̌ = ∇v̌. Thus, when N ∈ {2, 3, 4}, the conclusion
(1.22) in Theorem 5 can be deduced from the above result in [47].

Fewer rearrangement methods are known to prove symmetry of solutions of higher
order elliptic equations than for second order ones. This can be partly explained by the
absence of a maximum principle for higher order elliptic equations or systems, which
makes Schwarz symmetrization methods inapplicable in general. There are some ex-
ceptions, see for instance the two papers of Nadirashvili [55] and Talenti [62] where
it is shown by rearrangement arguments that minimizers of |{u̸=0}|2

´
R2 (∆u)2´

R2 u2 are radially
symmetric.4

More recently, a rearrangement principle developed in Lenzmann and Sok [45] deals
with the radial symmetry of optimizers of Gagliardo–Nirenberg type inequalities of ar-
bitrarily high orders, as well as ground states of higher order non-linear Schrödinger
equations of the form

Lv + ωv = v|v|p−2 in RN

where L is a certain pseudodifferential operator, ω > 0 and p ∈ (2, p∗) for some critical
exponent p∗ > 2 depending only on the dimension N and the operator L. The rear-
rangement principle here is based on Schwarz rearrangement of the Fourier transform:
any function v : RN → C is symmetrized as v♯ = F−1 [|F [v]|∗], where F is the Fourier
transform and w∗ designates the radially decreasing Schwarz rearrangement of w.

4For other results on symmetry of solutions of higher order elliptic equations or systems which do
not use rearrangement inequalities, see e.g. [5, 15, 22, 25] and the references therein.
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We make a comparison between the rearrangement v̌ in Theorem 5 and the rear-
rangement v♯ of [45] in the following table.

v̌ on BN v♯ on RN

L2-norm ∥v̌∥L2 ≥ ∥v∥L2 ∥v♯∥L2 = ∥v∥L2

Lp-norm, 1 ≤ p < 2 ∥v̌∥Lp ≥ ∥v∥Lp ?
Lp-norm, even integer p > 2 ? ∥v♯∥Lp ≥ ∥v∥Lp

Ḣ1-norm ∥∇v̌∥L2 = ∥∇v∥L2 ∥∇v♯∥L2 ≤ ∥∇v∥L2

Ẇ 1,p-norm, p > 2 ∥∇v̌∥Lp ≤ ∥∇v∥Lp ?
Ḣ2-norm ∥∆v̌∥L2 ≤ ∥∆v∥L2 ∥∆v♯∥L2 ≤ ∥∆v∥L2

Ḣs-norm, s > 0 ? ∥v♯∥Ḣs ≤ ∥v∥Ḣs

As an application Theorem 5, we consider the radial symmetry of ‘ground state’
solutions to the nonlinear eigenvalue problem∆2v = λv + |v|p−2v on BN ,

v = ∂rv = 0 on ∂BN ,
(1.25)

where 1 ≤ p < 2. See Section 3.4.
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0004 and ANR-22-CE40-0006-01. L.N. was partially supported by the ANR LabEx
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d’Avenir” during his visit to Université Toulouse III – Paul Sabatier. Part of this work
was done while all authors visited the Hausdorff Research Institute for Mathematics in
Bonn, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy – EXC-2047/1 – 390685813, as part of the
Trimester Program on “Mathematics of Complex Materials”.

2 First proof of main results

2.1 Proof of Theorem 3
In this section we give the first proof of Theorem 3 based on the strategy in [39, 40] and
exploiting the additional structure of a gradient field for the first N -components of the
current admissible configurations.

Recall that ℓ(ϵ) is the first eigenvalue of the operator Lϵ = −∆ − 1
ϵ2W

′(1 − f 2
ϵ ) and

that the escaping radially symmetric critical points U±
ϵ,η with gϵ,η > 0 exist if and only
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if W ′(1) > 0 and ℓ(ϵ) + 1
η2 W̃

′(0) < 0 (equivalently 0 < ϵ < ϵ0 and η > η0(ϵ)). For fixed
ϵ > 0, η > 0, we let

Φ =
U

+
ϵ,η if W ′(1) > 0 and ℓ(ϵ) + 1

η2 W̃
′(0) < 0 (i.e. there is an escaping solution),

Ūϵ otherwise (i.e. there is no escaping solution),

and

(f, g) =
(fϵ,η, gϵ,η) if W ′(1) > 0 and ℓ(ϵ) + 1

η2 W̃
′(0) < 0,

(fϵ, 0) otherwise,

so that Φ(x) = (f(r)x
r
, g(r)).

We consider the differential operators Lϵ,η and Tϵ,η:

Lϵ,η = −∆ − 1
ϵ2W

′(1 − f 2 − g2), Tϵ,η = −∆ − 1
ϵ2W

′(1 − f 2 − g2) + 1
η2 W̃

′(g2).

Then the criticality condition of Φ(x) = (f(r)x
r
, g(r)) in BN with respect to Eϵ,η is ex-

actly Lϵ,ηf = 0, Tϵ,ηg = 0.

For any v ∈ H2
0 (BN ,R), we let

Fϵ,η[∇v] =
ˆ

BN

(
(∆v)2 − 1

ϵ2W
′(1 − f 2 − g2)|∇v|2

)
dx =

ˆ
BN

Lϵ,η(∇v) : (∇v) dx.
(2.1)

Note that
´

BN |∇2v|2 dx =
´

BN (∆v)2 dx since v ∈ H2
0 (BN). Note also that, in the non-

escaping case, Φ = Ūϵ, Lϵ,η = Lϵ, Tϵ,η = T̄ϵ,η and Fϵ,η = Fϵ introduced in sections 1.3
and 1.4.

As in [39, 40], the starting point of the proof is the following consequence of the
convexity of W and W̃ :

Lemma 6. For any v ∈ H2
0 (BN ,R) and p ∈ H1

0 (BN ,R),

Eϵ,η

[
Φ + (∇v, p)

]
− Eϵ,η[Φ] ≥ 1

2Fϵ,η[∇v] + 1
2

ˆ
BN

Tϵ,ηp · p dx.

Proof. We have

Eϵ,η

[
Φ + (∇v, p)

]
− Eϵ,η[Φ] = 1

2

ˆ
BN

{
2∇Φ : ∇(∇v, p) + |∇2v|2 + |∇p|2

+ 1
ϵ2 [W (1 − |Φ + (∇v, p)|2) −W (1 − |Φ|2)]

+ 1
η2 [W̃ ((g + p)2) − W̃ (g2)]

}
dx. (2.2)
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By the convexity of W and W̃ , we have

W (1 − |Φ + (∇v, p)|2) −W (1 − |Φ|2) ≥ W ′(1 − |Φ|2)
(
|Φ|2 − |Φ + (∇v, p)|2

)
= −W ′(1 − |Φ|2)

(
2Φ · (∇v, p) + |∇v|2 + p2

)
W̃ ((g + p)2) − W̃ (g2) ≥ W̃ ′(g2)

(
(g + p)2 − g2

)
= W̃ ′(g2)

(
2gp+ p2

)
.

Since Φ is a critical point of Eϵ,η, we also have
ˆ

BN

{
∇Φ : ∇(∇v, p) − 1

ϵ2W
′(1 − |Φ|2)Φ · (∇v, p) + 1

η2 W̃
′(g2)gp

}
dx = 0.

Inserting the last two estimates into (2.2) we arrive at

Eϵ,η [Φ + (∇v, p)] − Eϵ,η[Φ]

≥ 1
2

ˆ
BN

(
|∇2v|2 + |∇p|2 − 1

ϵ2W
′(1 − f 2 − g2)

(
|∇v|2 + p2

)
+ 1
η2 W̃

′(g2)p2
)
dx,

which is precisely the conclusion.

We will frequently make use of the following Hardy decomposition:

Lemma 7 ([37, Lemma A.1]). Let A : BN → RN×N be a C1 non-negative semi-definite
symmetric form, i.e. A(x)ξ ·ξ ≥ 0 for every x ∈ BN and ξ ∈ RN . We define the operator

L := −∇ · (A∇)

and consider a smooth positive function ψ : BN → R. Then for every u ∈ C∞
c (BN ,R),

we have the following Hardy decomposition:
ˆ

BN

Lu · u dx =
ˆ

BN

ψ2A(x)∇(u
ψ

) · ∇(u
ψ

) dx+
ˆ

BN

u2

ψ2Lψ · ψ dx.

Before moving on with the proof, let us make a simple observation on the non-
negativity of Tϵ,η.

Lemma 8. The first eigenvalue of Tϵ,η on H1
0 (BN ,R) is

(
ℓ(ϵ) + 1

η2 W̃
′(0)

)
+

and the
corresponding first eigenspace of Tϵ,η

• coincides with the first eigenspace of Lϵ when ℓ(ϵ)+ 1
η2 W̃

′(0) ≥ 0 (i.e. when g ≡ 0),
and
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• is generated by g when ℓ(ϵ) + 1
η2 W̃

′(0) < 0 (i.e. when g > 0).

In particular Tϵ,η is non-negative semi-definite on H1
0 (BN ,R) and

ˆ
BN

Tϵ,ηp · p dx ≥
ˆ

BN

[
h2
∣∣∣∣∇(p

h
)
∣∣∣∣2 +

(
ℓ(ϵ) + 1

η2 W̃
′(0)

)
+
p2
]
dx ≥ 0,

where h is any first eigenfunction of Tϵ,η.

Proof. Recall that, by [34, Theorem 2.4] on escaping and non-escaping critical points of
Eϵ,η, when g ≡ 0, we have ℓ(ϵ) + 1

η2 W̃
′(0) ≥ 0, while, when g > 0, ℓ(ϵ) + 1

η2 W̃
′(0) < 0.

The first bullet point is then clear as Tϵ,η = Lϵ + 1
η2 W̃

′(0) and the first eigenvalue of
Lϵ is ℓ(ϵ). Next, note that since Φ(x) = (f(r)x

r
, g(r)) is a critical point of Eϵ,η, we

have Tϵ,ηg = 0. Thus, when g > 0, g must be a first eigenfunction of Tϵ,η and the first
eigenvalue of Tϵ,η must be zero. The second bullet point follows. The last assertion
follows from the Hardy decomposition Lemma 7 with the decomposition p = h p

h
.

The last ingredient for the proof of Theorem 3 is:

Proposition 9. Suppose N ≥ 4. For any v ∈ H2
0 (BN ,R) we have

Fϵ,η[∇v] ≥ (N − 2)2

4

ˆ
BN

(∂rv)2

r2 dx+
(
N2

2 − 2N
)ˆ

BN

|∇v|2 − (∂rv)2

r2 dx ≥ 0.

Remark 10. Note that for general V ∈ H1
0 (BN ,RN) which is not necessarily a gradient

field, it was shown in [39, 40] in dimension N ≥ 7 that Fϵ,η[V ] = Fϵ[V ] ≥ 0.

Before giving the proof of the above proposition, let us prove Theorem 3.

First proof of Theorem 3. Indeed, as N ≥ 4, we have by Proposition 9 that Fϵ,η[∇v] ≥ 0
for every v ∈ H2

0 (BN ,R) with equality if and only if ∂rv = 0 a.e., which implies v = 0.
Therefore, by Lemmas 6 and 8, Φ is a minimizer of our problem. If Φ̃ is another minimizer
of Eϵ,η, then Eϵ,η[Φ̃] = Eϵ,η[Φ]. By Lemmas 6, 8 and Proposition 9, this is possible only
if Φ̃ − Φ = (0, h) for some radially symmetric h in the first eigenspace of Tϵ,η (because
Tϵ,η is rotationally invariant). We thus have that Φ̃ is a radially symmetric minimizer of
Eϵ,η. [34, Therorem 2.4] then gives the desired uniqueness for minimizer(s).

Proof of Proposition 9. It is enough to prove the estimate for v ∈ C∞
c (BN \ {0},R).

The general case follows from Fatou’s lemma and the density of C∞
c (BN \ {0},R) in

H2
0 (BN ,R) (note N ≥ 4).

16



We denote by (ϕk)k∈N an orthonormal basis of L2(SN−1) given by eigenfunctions of
the Laplace-Beltrami operator on the unit sphere, meaning that for any k ∈ N we have

−∆SN−1ϕk = λkϕk

where 0 = λ0 < N − 1 = λ1 = . . . = λN < 2N = λN+1 ≤ · · · −→ +∞. In particular we
have ˆ

SN−1
ϕkϕl dσ(θ) = δkl and

ˆ
SN−1

∇SN−1ϕk · ∇SN−1ϕl dσ(θ) = λkδkl. (2.3)

Consider the decomposition of v in spherical harmonics: we write

v(rθ) =
∑
k≥0

vk(r)ϕk(θ) for r ∈ (0, 1), θ ∈ SN−1

where vk ∈ C∞
c ((0, 1),R). We have

∇v =
∑
k≥0

(
v′

kϕk
x

r
+ 1
r
vk∇SN−1ϕk

)
, ∆v =

∑
k≥0

(
v′′

k + N − 1
r

v′
k − λk

r2 vk

)
ϕk.

Using the orthogonality relations (2.3) and the identities
ˆ 1

0
rN−2v′′

kv
′
k dr = −N − 2

2

ˆ 1

0
rN−3(v′

k)2 dr,

ˆ 1

0
rN−4v′

kvk dr = −N − 4
2

ˆ 1

0
rN−5v2

k dr for k ≥ 1,
ˆ 1

0
rN−3v′′

kvk dr =
ˆ 1

0

[
− rN−3(v′

k)2 + (N − 3)(N − 4)
2 rN−5v2

k

]
dr for k ≥ 1,

we get
ˆ

BN

(∆v)2dx =
∑
k≥0

ˆ
BN

(
v′′

k + N − 1
r

v′
k − λk

r2 vk

)2

ϕ2
kdx

=
∑
k≥0

ˆ 1

0

(
rN−1(v′′

k)2 + (N − 1 + 2λk)rN−3(v′
k)2 + λk(λk + 2N − 8))rN−5v2

k

)
dr,

(2.4)

and
ˆ

BN

W ′(1 − f 2 − g2)|∇v|2dx =
∑
k≥0

ˆ 1

0
W ′(1 − f 2 − g2)

(
rN−1(v′

k)2 + λkr
N−3v2

k

)
dr.
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Inserting these into (2.1), we split Fϵ,η into three terms as follows:

Fϵ,η[∇v] =
∑
k≥0

{ˆ 1

0
rN−1

(
(v′′

k)2 − 1
ϵ2W

′(1 − f 2 − g2)(v′
k)2
)
dr︸ ︷︷ ︸

Ik

+
ˆ 1

0
λkr

N−1
(
r−2(v′

k)2 − 1
ϵ2W

′(1 − f 2 − g2)r−2v2
k

)
dr︸ ︷︷ ︸

IIk

+
ˆ 1

0

(
(N − 1 + λk)rN−3(v′

k)2 + λk(λk + 2N − 8)rN−5v2
k

)
dr︸ ︷︷ ︸

IIIk

}
.

For terms Ik and IIk we will apply the Hardy decomposition Lemma 7 using

Lϵ,ηf = −N − 1
r2 f.

More precisely, for any function w ∈ C∞
c (BN ,R) we have the identity

ˆ
BN

Lϵ,η(fw) · (fw) dx =
ˆ

BN

(
f 2|∇w|2 + w2Lϵ,ηf · f

)
dx

=
ˆ

BN

f 2
(

|∇w|2 − N − 1
r2 w2

)
dx. (2.5)

• Estimate of Ik: For the first term we use the decomposition v′
k = f

v′
k

f
, i.e.

w = v′
k

f
∈ C∞

c (BN \ {0},R) in (2.5):

Ik =
ˆ 1

0
rN−1Lϵ,η(v′

k) · (v′
k)dr =

ˆ 1

0

[
rN−1f 2

∣∣∣∣∣
(
v′

k

f

)′∣∣∣∣∣
2

− (N − 1)rN−3(v′
k)2
]
dr.

We let ζ(r) = r− N−2
2 so that, when seen as a radial function in RN \ {0}, ζ verifies

−∇ · (f 2∇ζ) = −f 2∆ζ − 2ff ′ζ ′ = (N − 2)2

4r2 f 2ζ − 2ff ′ζ ′ ≥ (N − 2)2

4r2 f 2ζ,

since ζ ′ < 0 and f, f ′ > 0 in (0, 1). By the Hardy decomposition Lemma 7 for the
operator ∇ · (f 2∇) and the decomposition v′

k

f
= ζ

v′
k

fζ
, we thus have

Ik ≥
ˆ 1

0
rN−1

f 2ζ2
∣∣∣∣∣
(
v′

k

fζ

)′∣∣∣∣∣
2

+
(

(N − 2)2

4 − (N − 1)
)
rN−3(v′

k)2

 dr. (2.6)
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• Estimate of IIk: First notice the elementary identity
ˆ 1

0
rN−3(v′

k)2dr =
ˆ 1

0

(
rN−1

((
vk

r

)′ )2
+ 2rN−4vkv

′
k − rN−5v2

k

)
dr

=
ˆ 1

0

(
rN−1

((
vk

r

)′ )2
− (N − 3)rN−5v2

k

)
dr

so
IIk = λk

ˆ 1

0

(
rN−1Lϵ,η(vk

r
) · (vk

r
) − (N − 3)rN−5v2

k

)
dr.

This time we use the decomposition vk

r
= f vk

rf
(i.e. w = vk

rf
in (2.5)) to obtain

IIk = λk

ˆ 1

0

rN−1f 2
∣∣∣∣∣
(
vk

rf

)′∣∣∣∣∣
2

− 2(N − 2)rN−5v2
k

 dr.
By the Hardy decomposition Lemma 7 for the operator ∇ · (f 2∇) and the decom-
position vk

rf
= ζ vk

rfζ
as above we get the estimate

IIk ≥ λk

ˆ 1

0

rN−1f 2ζ2
∣∣∣∣∣
(
vk

rfζ

)′∣∣∣∣∣
2

+
(

(N − 2)2

4 − 2(N − 2)
)
rN−5v2

k

 dr. (2.7)

• Estimate of IIIk: For the last term we simply apply the Hardy inequality once:
for any v ∈ C∞

c ((0, 1),R),
´ 1

0 r
N−3(v′)2dr ≥ (N−4)2

4

´ 1
0 r

N−5v2dr. This gives

IIIk ≥
ˆ 1

0

(
(N − 1)rN−3(v′

k)2 + λk

(
λk + 2N − 8 + (N − 4)2

4

)
rN−5v2

k

)
dr. (2.8)

Summing the estimates (2.6), (2.7), (2.8) we get

Fϵ,η[∇v] ≥
∑
k≥0

ˆ 1

0

(
(N − 2)2

4 rN−3(v′
k)2 + λk

(
N2

2 − 3N + 1 + λk

)
rN−5v2

k

)
dr

≥
∑
k≥0

ˆ 1

0

(
(N − 2)2

4 rN−3(v′
k)2 + λk

(
N2

2 − 2N
)
rN−5v2

k

)
dr

= (N − 2)2

4

ˆ
BN

(∂rv)2

r2 dx+
(
N2

2 − 2N
)ˆ

BN

|∇v|2 − (∂rv)2

r2 dx.

where the second inequality follows from λ2
k ≥ (N − 1)λk. The result is proved.
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2.2 Proof of Theorems 1 and 2
Theorem 1 for the Aviles–Giga model is a simple consequence of Theorem 3 for the
extended model.

Proof of Theorem 1. Fix ϵ > 0. Pick any convex C2 function W̃ : [0,∞) → [0,∞) with
W̃ (0) = 0 and W̃ ′(0) > 0, e.g. W̃ (t) = t. By [34, Theorem 2.4], there exists a small
η > 0 such that Eϵ,η has no escaping radially symmetric critical points. By Theorem 3,
Ūϵ = (Uϵ, 0) is the unique minimizer of Eϵ,η in A. It follows that

EGL
ϵ [∇u] = Eϵ,η[(∇u, 0)] ≥ Eϵ,η[Ūϵ] = Eϵ[Uϵ] for all ∇u ∈ AGL.

This means that Uϵ is a minimizer of EGL
ϵ in {∇u ∈ AGL}. Conversely, if ∇ũ is a

minimizer of EGL
ϵ in {∇u ∈ AGL}, then

Eϵ,η[(∇ũ, 0)] = EGL
ϵ [∇ũ] = EGL

ϵ [Uϵ] = Eϵ,η[Ūϵ],

i.e. (∇ũ, 0) is also a minimizer of Eϵ,η in A. By Theorem 3, ∇ũ = Uϵ as desired.

We next prove Theorem 2 for the SN -valued Ginzburg–Landau model.

Proof of Theorem 2. Set W (t) = t2 and fix some η > 0. As 4 ≤ N ≤ 6 and W ′(1) > 0,
we know by [34, Theorem 2.4] that for ϵ > 0 small enough, there exists a unique escaping
radially symmetric critical point of the form

Uϵ,η = (fϵ,η(r)x
r
, gϵ,η(r)) ∈ A, gϵ,η > 0 in (0, 1)

of the energy Eϵ,η. Pick an arbitrary M = (∇m,MN+1) ∈ AMM (in particular, |M | = 1)
and set

(∇vϵ,η, pϵ,η) := M − Uϵ,η.

Then by Section 2, we know that

EMM
η [M ] = Eϵ,η

[
Uϵ,η + (∇vϵ,η, pϵ,η)

]
≥ Eϵ,η[Uϵ,η] + 1

2Fϵ,η[∇vϵ,η] + 1
2

ˆ
BN

Tϵ,ηpϵ,η · pϵ,η dx

with

Fϵ,η[∇vϵ,η] ≥ (N − 2)2

4

ˆ
BN

(∂rvϵ,η)2

r2 dx+
(
N2

2 − 2N
)ˆ

BN

|∇SN−1vϵ,η|2

r4 dx,

ˆ
BN

Tϵ,ηpϵ,η · pϵ,η dx ≥
ˆ

BN

g2
ϵ,η

∣∣∣∣∇(pϵ,η

gϵ,η

)∣∣∣∣2 dx.
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By [34, Remark 2.17], for a subsequence ϵ → 0, we have that Uϵ,η → M+
η in H1(BN)

(in particular, ∇Uϵ,η → ∇M+
η and Uϵ,η → M+

η a.e. in BN) and Eϵ,η(Uϵ,η) → EMM
η [M+

η ]
where M+

η = (f̃η
x
r
, gη) is the unique escaping radially symmetric critical point of EMM

η

with gη > 0 in (0, 1). Therefore,

(∇vϵ,η, pϵ,η) → M −M+
η =: (∇ṽη, p̃η)

in H1(BN) and a.e. in BN as well as ∇(∇vϵ,η, pϵ,η) → ∇(∇ṽη, p̃η) a.e. in BN for a
subsequence ϵ → 0. Putting the above inequalities together and using Fatou’s lemma,
it follows for a subsequence ϵ → 0:

EMM
η [M ] = EMM

η [M+
η + (∇ṽη, p̃η)]

≥ EMM
η [M+

η ] + 1
2

ˆ
BN

g2
η

∣∣∣∣∇( p̃η

gη

)∣∣∣∣2 dx
+ (N − 2)2

8

ˆ
BN

(∂rṽη)2

r2 + 1
2

(
N2

2 − 2N
)ˆ

BN

|∇SN−1 ṽη|2

r4 .

We conclude to the minimality of M+
η . If M is another minimizer, within the above

notations, then EMM
η [M ] = EMM

η [M+
η ] and so ∂rṽη = 0 in BN yielding ṽη = 0 (as ṽη = 0

on ∂BN); also, p̃η = αgη for some constant α ∈ R. Since |M | = 1 and M = (0, p̃η) +Mη,
we deduce that (p̃η + gη)2 = g2

η yielding α = 0 or −2, i.e. M = M+
η or M = M−

η .

3 Symmetrization and second proof of main results
in dimension N ≥ 5

3.1 A symmetrization of scalar functions
In this section, we consider a spherical average rearrangement which is probably known
to the experts. See e.g. [64, Chapter 1, Section 9] for a similar rearrangement in the
context of the Laplace operator. Let 1 ≤ q < ∞. For a function g ∈ Lq(BN ,R), define
a radial symmetrization g♭ of g by

g♭(r) =
{  

SN−1
|g(rθ)|q dσ(θ)

}1/q

≥ 0, r ∈ (0, 1). (3.1)

This symmetrization depends on the parameter q. When q = 2, we can also think of this
as a rearrangement in the spherical harmonic decomposition of g.

Theorem 11. Let N ≥ 2, 1 ≤ q < ∞, g ∈ Lq(BN ,R) and g♭ be associated to g by (3.1).
We have the following conclusions.
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(i) The map g 7→ g♭ is a 1-Lipschitz continuous map from Lq(BN ,R) into itself:

∥g♭ − h♭∥Lq(BN ,R) ≤ ∥g − h∥Lq(BN ,R).

Moreover,
´
SN−1 |g♭(rθ)|q dσ(θ) =

´
SN−1 |g(rθ)|q dσ(θ) for a.e. r ∈ (0, 1).

(ii) Let G : [0,∞) × [0,∞) → [0,∞) be continuous. If G is convex in the second
variable, then

ˆ
BN

G(r, |g♭(x)|q) dx ≤
ˆ

BN

G(r, |g(x)|q) dx.

In particular, for any q < p < ∞,
ˆ

BN

|g♭|p dx ≤
ˆ

BN

|g|p dx.

(iii) Assume in addition that g ∈ W 1,q(BN ,R). Then g♭ ∈ W 1,q(BN ,R) and
ˆ

BN

|∇g♭|q dx ≤
ˆ

BN

|∇g|q dx. (3.2)

Equality is attained if and only if g is radially symmetric and |g| = g♭ in (0, 1).

Proof. Proof of (i): From the definition of the radial function g♭(x) = g♭(r) we have
ˆ
SN−1

|g♭(rθ)|q dσ(θ) =
ˆ
SN−1

|g(rθ)|qdσ(θ) for a.e. r ∈ (0, 1),

which implies g♭ ∈ Lq(BN). Also, by the reverse triangle inequality, we have for g, h ∈
Lq(BN) that

∥g♭ − h♭∥q
Lq(BN ) = |SN−1|

ˆ 1

0
|g♭(r) − h♭(r)|q rN−1 dr

=
ˆ 1

0

∣∣∣∥g(r·)∥Lq(SN−1) − ∥h(r·)∥Lq(SN−1)

∣∣∣q rN−1 dr

≤
ˆ 1

0
∥g(r·) − h(r·)∥q

Lq(SN−1) r
N−1 dr = ∥g − h∥q

Lq(BN ).

Therefore g 7→ g♭ is a 1-Lipschitz continuous map on Lq(BN).
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Proof of (ii): By Jensen inequality,
 
SN−1

G(r, |g♭(rθ)|q) dσ(θ) = G

(
r,

 
SN−1

|g♭(rθ)|q dσ(θ)
)

= G

(
r,

 
SN−1

|g(rθ)|q dσ(θ)
)

≤
 
SN−1

G(r, |g(rθ)|q) dσ(θ).

Integrating in r gives the desired inequality. In particular, with G(r, s) = sp/q with
p > q, we see that the Lp-norm of g♭ is no more than that of g.
Proof of (iii): Consider first the case g belongs to C∞(B̄N), which is a dense subset of
W 1,q(BN). For technical reasons, we introduce, for µ > 0,

g♭
µ(r) =

{  
SN−1

(g(rθ)2 + µ)q/2 dσ(θ)
}1/q

≥ µ1/2, r ∈ (0, 1).

Note that g♭
µ → g♭ in Lq(BN) as µ → 0. We have, by Hölder’s inequality,

|g♭
µ(r)|q−1|(g♭

µ)′(r)| ≤
 
Sn−1

(g(rθ)2 + µ)(q−1)/2|∂rg(rθ)| dσ(θ)

≤ |g♭
µ(r)|q−1

{ 
Sn−1

|∂rg(rθ)|q dσ(θ)
}1/q

.

As g♭
µ ≥ µ1/2 > 0, this implies

 
SN−1

|∇g♭
µ(rθ)|q dσ(θ) = |(g♭

µ)′(r)|q ≤
 
SN−1

|∂rg(rθ)|q dσ(θ).

Integrating over r ∈ (0, 1) givesˆ
BN

|∇g♭
µ|q dx ≤

ˆ
BN

|∂rg|qdx ≤
ˆ

BN

|∇g|qdx.

This implies g♭
µ is bounded in W 1,q(BN) and hence converges weakly to g♭ in W 1,q(BN)

as µ → 0. Hence ˆ
BN

|∇g♭|q dx ≤
ˆ

BN

|∂rg|qdx ≤
ˆ

BN

|∇g|qdx, (3.3)

which proves (3.2) for g ∈ C∞(B̄N).
Suppose now g ∈ W 1,q(BN). Pick {g(j)} ⊂ C∞(B̄N) such that g(j) → g in W 1,q(BN).

By (i), g♭
(j) → g♭ in Lq(BN). Also, by (3.3),

ˆ
BN

|∇g♭
(j)|q dx ≤

ˆ
BN

|∂rg(j)|qdx ≤
ˆ

BN

|∇g(j)|qdx. (3.4)
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This implies that g♭
(j) is bounded in W 1,q(BN) and hence converges weakly in W 1,q(BN)

to g♭. Sending j → ∞ we see that (3.3) remains valid for g ∈ W 1,q(BN), which proves
(3.2). Moreover, equality holds in (3.2) if and only if |∇g| = |∂rg| a.e., i.e. g is radially
symmetric.

3.2 A symmetrization of gradient fields and proof of Theorem
5

Recall the symmetrization v̌ for a function v ∈ H1(BN ,R) is given by the formula (1.17):

v̌(r) = −
ˆ 1

r

{  
SN−1

|∇v(sθ)|2dσ(θ)
}1/2

ds ≤ 0, r ∈ (0, 1).

We will use the following density result.

Lemma 12. For N ≥ 2, the set S of functions in C∞(B̄N) which are constant in
a neighborhood of the origin is dense in H2(BN). Moreover, if v ∈ H2(BN) verifies´
SN−1 v(rθ)θdσ(θ) = 0 for almost every r ∈ (0, 1), then its approximation sequence in S

may be chosen with the same property.

Proof. It is well known that C∞(B̄N) is dense in H2(BN). Thus, to show that S is dense
in H2(BN), we only need to show that a given v ∈ C∞(B̄N) can be approximated by a
sequence of functions in S. In the proof, C denotes a constant that can change between
lines but depends only on the dimension N . Pick a cut-off function φ ∈ C∞(R) with
φ ≡ 1 in (−∞, 1/2], φ ≡ 0 in [1,∞). For j ≥ 10 and x ∈ BN , let

φ(j)(x) =
φ(j|x|) if N ≥ 3,

1 − φ( ln ln 1
|x|

2 ln ln j
) if N = 2.

Note that φ(j)(x) = 0 for |x| ≥ 1
j

and φ(j)(x) = 1 when |x| is small enough. Define

v(j) = v(0)φ(j) + v(1 − φ(j)) = v − (v − v0)φ(j) ∈ S, j ≥ 1.

We estimate

|v(x) − v(0)| ≤ ∥∇v∥L∞(BN )|x|,
∥φ(j)∥L2(BN ) ≤ Cj−N/2,

∥∇φ(j)∥L2(BN ) + ∥r∇2φ(j)∥L2(BN ) ≤ CωN(j) with ωN(j) =
Cj

−(N−2)/2 if N ≥ 3,
C

(ln j ln ln j)1/2 if N = 2.
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We thus have

∥(v − v(0))φ(j)∥L2(BN ) ≤ Cj−N/2∥v∥L∞(BN ),

∥∇[(v − v(0))φ(j)]∥L2(BN ) ≤ Cj−N/2∥∇v∥L∞(BN ) + CωN(j)∥v∥L∞(BN ),

∥∇2[(v − v(0))φ(j)]∥L2(BN ) ≤ Cj−N/2∥∇2v∥L∞(BN ) + CωN(j)∥∇v∥L∞(BN ).

Clearly, these estimates imply that v(j) → v in H2(BN). We have proved that S is dense
in H2(BN)

Now suppose v ∈ H2(BN) and
´
SN−1 v(rθ)θdσ(θ) = 0. Let v(j) ∈ S be such that

v(j) → v in H2(BN). Define ṽ(j)(rθ) = v(j)(rθ) − ∑N
k=1 v(j),k(r)ϕk(θ) where v(j),k(r) =´

SN−1 v(j)(rθ)ϕk(θ)dσ(θ). It is clear that
´
SN−1 ṽ(j)(rθ)θdσ(θ) = 0. Since v(j) is constant

near 0, v(j),k is supported away from 0, and so ṽ(j) ∈ S. Finally, since the map w ∈
H2(BN) 7→ (rθ 7→ wk(r)ϕk(θ)) is continuous in H2(BN) and vk ≡ 0 for k = 1, . . . , N we
have

lim
j→∞

∥ṽ(j) − v∥H2(BN ) ≤ lim
j→∞

∥v(j) − v∥H2(BN ) + lim
j→∞

∥∥∥∥ N∑
k=1

v(j),k(r)ϕk(θ)
∥∥∥∥

H2(BN )
= 0.

The proof is complete.

Proof of Theorem 5. Proof of (i): By Cauchy-Schwarz’ inequality,

v̌(r)2 =
{ˆ 1

r

[  
SN−1

|∇v(sθ)|2dσ(θ)
]1/2

ds
}2

≤
{ ˆ 1

r

s1−Nds
}{ ˆ 1

r

sN−1
 
SN−1

|∇v(sθ)|2dσ(θ) ds
}
.

Hence v̌(r) is well-defined and finite in (0, 1); in fact, |v̌(r)| ≤ CNr
− N−2

2 ∥∇v∥L2(BN ) for
N ≥ 3 (resp. |v̌(r)| ≤ C

√
log(1/r)∥∇v∥L2(B2) when N = 2). In particular, v̌ ∈ L2(BN).

Moreover, by the definition of v̌ we have
´
SN−1 |∇v̌(r, θ)|2 dσ(θ) =

´
SN−1 |∇v(rθ)|2dσ(θ)

for a.e. r ∈ (0, 1). As v̌(1) = 0, these imply that v̌ ∈ H1
0 (BN).

As in the proof of (i) in Theorem 11, the map ∇v 7→ ∇v̌ is a 1-Lipschitz continuous
map from L2(BN ,RN) into itself. By Poincaré’s inequality, the map v 7→ v̌ is a Lipschitz
continuous map from H1(BN) into H1

0 (BN).
Proof of (ii): This is similar to that in the proof of Theorem 11 and is omitted.
Proof of (iii): By density and (i), it suffices to consider v ∈ C∞

c (BN).
Let A(r) =

ffl
SN−1 |v(rθ)|p dσ(θ). We have, by Hölder’s inequality

|A′(r)| ≤ p

 
SN−1

|v(rθ)|p−1|∂rv(rθ)| dσ ≤ p
{  

SN−1
|v(rθ)|2(p−1) dσ

}1/2
v̌′(r)

≤ pA(r)
p−1

p v̌′(r),
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where we have used 2(p− 1) ≤ p when 1 ≤ p ≤ 2.
Fix some µ > 0. Then | d

dr
(µ+ A(r))1/p| ≤ v̌′(r). This together with A(1) = 0 (since

v = 0 on ∂BN) implies

(µ+ A(r))1/p ≤ µ1/p +
ˆ 1

r

v̌′(r) dr = µ1/p − v̌(r) = µ1/p + |v̌(r)|.

Sending µ → 0, we get the conclusion.
Proof of (iv): Note that on ∂BN , ∇v(x) = cx is normal to ∂BN and so the tangent
derivatives of v along ∂BN are zero. Hence v is constant on ∂BN . Without loss of
generality, we can assume that v = 0 on ∂BN . Let (ϕk)∞

k=0 be an orthonormal basis of
L2(SN−1) consisting of eigenfunctions of the Laplace-Beltrami operator on SN−1 corre-
sponding to eigenvalues 0 = λ0 < N − 1 = λ1 = . . . = λN < 2N = λN+1 ≤ . . . → ∞.
We decompose

v(rθ) =
∞∑

k=0
vk(r)ϕk(θ) where vk(r) =

ˆ
SN−1

v(rθ)ϕk(θ) dσ(θ).

Note that vk ∈ H2
loc(0, 1), v̌ = v̌0ϕ0 and

(v̌′
0)2 =

∞∑
k=0

[
(v′

k)2 + λk

r2 v
2
k

]
, (3.5)

ˆ
BN

(∆v)2 dx =
∞∑

k=0

ˆ 1

0
rN−1

(
v′′

k + N − 1
r

v′
k − λk

r2 vk

)2
dr. (3.6)

Note also that our hypotheses give in the case N ∈ {3, 4} that v1 = . . . = vN = 0.
We first prove inequality (1.22) when v belongs to the set S defined in Lemma 12.

Then v0 ∈ C∞([0, 1]), v0 is constant near 0, vk ∈ C∞
c ((0, 1]) for k ≥ 1,

v0(1) = 0, v′
0(1) = c

ϕ0
and vk(1) = v′

k(1) = 0 for k ≥ 1.

This implies ∇v̌(x) = |c|x on ∂BN (recall that, by definition, v̌′ ≥ 0 in (0, 1)). Also,
ˆ 1

0
rN−2v′′

kv
′
k dr = −N − 2

2

ˆ 1

0
rN−3(v′

k)2 dr +


c2

2ϕ2
0

if k = 0,
0 if k ≥ 1,ˆ 1

0
rN−4v′

kvk dr = −N − 4
2

ˆ 1

0
rN−5v2

k dr for k ≥ 1,
ˆ 1

0
rN−3v′′

kvk dr =
ˆ 1

0

[
− rN−3(v′

k)2 + (N − 3)(N − 4)
2 rN−5v2

k

]
dr for k ≥ 1.

26



Inserting the above identities in (3.6), we obtain
ˆ

BN

(∆v)2 dx = (N−1) c
2

ϕ2
0
+

∞∑
k=0

ˆ 1

0
rN−1

[
(v′′

k)2+2λk +N − 1
r2 (v′

k)2+λk(λk + 2(N − 4))
r4 v2

k

]
dr.

(3.7)
Next, note that, when v ∈ S, the right hand side of (3.5) is a smooth non-negative

function and so v̌′ is Lipschitz continuous. Applying (3.7) to v̌, we get
ˆ

BN

(∆v̌)2 dx = (N − 1) c
2

ϕ2
0

+
ˆ 1

0
rN−1

[
(v̌′′

0)2 + N − 1
r2 (v̌′

0)2
]
dr. (3.8)

To continue, we need to estimate v̌′′
0 . For technical reasons, we consider for small µ > 0

a regularized version of v̌0:

v̌′
µ =

{
µ+

∞∑
k=0

[
(v′

k)2 + λk

r2 v
2
k

]}1/2
≥ µ1/2.

Clearly v̌′
µ is smooth and v̌′

µ → v̌′
0 pointwise in (0, 1) as µ → 0. Now, for some tk ∈ R to

be chosen later, we have by (3.5) that

|v̌′
µ||v̌′′

µ| =
∣∣∣∣ ∞∑

k=0

[
v′

kv
′′
k + λk

r2 vkv
′
k − λk

r3 v
2
k

]∣∣∣∣
≤ |v′

0||v′′
0 | +

∣∣∣∣ ∞∑
k=1

[
v′

k(v′′
k + tk

r2vk) + 1
r
vk(λk − tk

r
v′

k − λk

r2 vk)
]∣∣∣∣

≤ |v′
0||v′′

0 | +
∞∑

k=1

[
(v′

k)2 + λk

r2 v
2
k

]1/2[
(v′′

k + tk
r2vk)2 + 1

λk

(λk − tk
r

v′
k − λk

r2 vk)2
]1/2

≤ |v̌′
µ|
{

|v′′
0 |2 +

∞∑
k=1

[
(v′′

k + tk
r2vk)2 + 1

λk

(λk − tk
r

v′
k − λk

r2 vk)2
]}1/2

.

Since v̌′
µ ≥ µ1/2 > 0, this implies

|v̌′′
µ| ≤

{
|v′′

0 |2 +
∞∑

k=1

[
(v′′

k + tk
r2vk)2 + 1

λk

(λk − tk
r

v′
k − λk

r2 vk)2
]}1/2

.

This implies that {v̌′
µ} is bounded in W 1,∞((0, 1)) and converges weakly* in W 1,∞((0, 1))

to v̌′
0 as µ → 0 (since v̌′

µ → v̌′
0 pointwise), and

|v̌′′
0 | ≤

{
|v′′

0 |2 +
∞∑

k=1

[
(v′′

k + tk
r2vk)2 + 1

λk

(λk − tk
r

v′
k − λk

r2 vk)2
]}1/2

.
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Returning to (3.8), we get
ˆ

BN

(∆v̌)2 dx ≤ (N − 1) c
2

ϕ2
0

+
ˆ 1

0
rN−1

[
(v′′

0)2 + N − 1
r2 (v′

0)2
]
dr

+
∞∑

k=1

ˆ 1

0
rN−1

[
(v′′

k + tk
r2vk)2 + 1

λk

(λk − tk
r

v′
k − λk

r2 vk)2 + N − 1
r2 (v′

k)2 + (N − 1)λk

r4 v2
k

]
dr

= (N − 1) c
2

ϕ2
0

+
ˆ 1

0
rN−1

[
(v′′

0)2 + N − 1
r2 (v′

0)2
]
dr

+
∞∑

k=1

ˆ 1

0
rN−1

[
(v′′

k)2 + λ−1
k (λk − tk)2 − 2tk +N − 1

r2 (v′
k)2

+ 2λk(N − 2) + t2k + tk(N − 4)2

r4 v2
k

]
dr.

Recalling (3.7), we get
ˆ

BN

(∆v)2 dx−
ˆ

BN

(∆v̌)2 dx ≥
∞∑

k=1

ˆ 1

0
rN−1

[
λk − λ−1

k t2k + 4tk
r2 (v′

k)2

+ λ2
k − 4λk − t2k − tk(N − 4)2

r4 v2
k

]
dr. (3.9)

Case 1: IfN ≥ 5, we choose tk = 0, and using the sharp Hardy inequality
´ 1

0 r
N−3(v′

k)2 dr ≥
(N−4)2

4

´ 1
0 r

N−5v2
k dr to obtain from (3.9) the inequality
ˆ

BN

(∆v)2 dx ≥
ˆ

BN

(∆v̌)2 dx+
∞∑

k=1
λksk

ˆ 1

0
rN−5v2

k dr, (3.10)

where, for k ≥ 1,

sk = λk + (N − 4)2

4 − 4 > 0 (since λk ≥ N − 1 ≥ 4).

Inequality (1.22) thus follows.
Case 2: If N ∈ {2, 3, 4}, recall that our hypotheses give v1 = . . . = vN = 0. We

choose tk = (2 −
√

5)λk in (3.9) so that the term involving v′
k vanishes, and arrive again

at (3.10) but with

sk =
0 if 1 ≤ k ≤ N,

(
√

5 − 2)(4λk + (N − 4)2) − 4 if k ≥ N + 1.

As λk ≥ 2N for k ≥ N + 1, we have

sk ≥ (
√

5 − 2)(N2 + 16) − 4 ≥ 20
√

5 − 44 > 0 for N ∈ {2, 3, 4}, k ≥ N + 1.
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Inequality (1.22) thus follows from (3.10).
Consider now the general case v ∈ H2(BN). By Lemma 12 we can select {v(j)} ⊂ S

such that v(j) → v in H2(BN) as j → ∞. Moreover, in case N ∈ {2, 3, 4}, it holds also
that

´
SN−1 v(j)(rθ)θ dσ(θ) = 0. By Fubini’s theorem, after passing to a subsequence, we

have (v(j))k → vk a.e. in (0, 1) for the spherical harmonic coefficients of v(j) and v. Also,
by (i), ∇v̌(j) → ∇v̌ in L2(BN ,RN). Since v(j) ∈ S, we have by (3.10)

ˆ
BN

(∆v(j))2 dx ≥
ˆ

BN

(∆v̌(j))2 dx+
∞∑

k=1
λksk

ˆ 1

0
rN−5(v(j))2

k dr. (3.11)

This implies that {v̌(j)} is bounded in H2(BN). As ∇v̌(j) → ∇v̌ in L2(BN ,RN), this
implies ∆v̌(j) converges weakly in L2(BN) to ∆v̌; in particular, v̌ ∈ H2(BN). Sending
j → ∞ in (3.11), using the convergence of v(j) to v in H2(BN) on the left hand side,
the weak convergence of ∆v̌(j) to ∆v̌ in L2(BN) and Fatou’s lemma for the infinite sum
on the right hand side, we see that (3.10) remains valid for v ∈ H2(BN). This proves
(1.22) for v ∈ H2(BN). Also, equality occurs in (1.22) if and only if vk = 0 for all k ≥ 1,
meaning v is radially symmetric and |v′| = v̌′ in (0, 1).

3.3 Second proof of Theorems 1, 2 and 3 in dimension N ≥ 5
Second proof of Theorem 1 in dimension N ≥ 5. As s 7→ W (1−s) is convex, we deduce
from Theorem 5 and (1.23) that

EGL
ϵ [∇u] ≥ EGL

ϵ [∇ǔ] for all ∇u ∈ AGL,

where equality holds if and only if u is radially symmetric. In particular, if ∇u ∈ AGL

is a minimizer of EGL
ϵ among gradient field configurations in AGL, then so is ∇ǔ with

EGL
ϵ [∇u] = EGL

ϵ [∇ǔ] and hence u is radially symmetric. The conclusion then follows
from [34, Theorem 2.1] on the uniqueness of radially symmetric critical point of EGL

ϵ in
AGL.

Second proof of Theorem 2 in dimension N ≥ 5. Observe that if (∇m,MN+1) ∈ AMM

and if m̌ denotes the symmetrization of m by (1.17) and M ♭
N+1 denotes the symmetriza-

tion of MN+1 by (3.1) with the parameter q = 2, then (∇m̌,M ♭
N+1) ∈ AMM because

|∇m̌|2(r) + (M ♭
N+1(r))2 =

 
SN−1

(
|∇m|2(rθ) +M2

N+1(rθ)
)
dσ(θ) = 1.

Thus, by Theorems 5 and 11 as well as (1.23), if (∇m,MN+1) ∈ AMM is a minimizer of
EMM

η in AMM , then (∇m̌,M ♭
N+1) is also a minimizer of EMM

η in AMM and (∇m,MN+1)
is radially symmetric. The conclusion then follows from [34, Theorem 2.6] on the clas-
sification of radially symmetric minimizers of EMM

η .

29



Second proof of Theorem 3 in dimension N ≥ 5. Let U = (∇v, g) ∈ A be a minimizer
of Eϵ,η in A. Define the symmetrization v̌ and g♭ of v and g as in the previous two
sections with q = 2, and let Ũ = (∇v̌, g♭). By Theorems 5 and 11, we have

ˆ
SN−1

|∇v̌(rθ)|2 dσ(θ) =
ˆ
SN−1

|∇v(rθ)|2 dσ(θ) for a.e. r ∈ (0, 1), by (1.18)
ˆ
SN−1

g♭(rθ)2 dσ(θ) =
ˆ
SN−1

g(rθ)2 dσ(θ) for a.e. r ∈ (0, 1),
ˆ

BN

W̃ ((g♭)2) dx ≤
ˆ
SN−1

W̃ (g2) dx,
ˆ

BN

(∆v̌)2 dx ≤
ˆ

BN

(∆v)2 dx, by (1.22).

The first two identities and the convexity of W give
 
SN−1

W (1 − |Ũ |2)(rθ) dσ(θ) = W
( 

SN−1
(1 − |Ũ |2)(rθ) dσ(θ)

)
= W

( 
SN−1

(1 − |U |2)(rθ) dσ(θ)
)

≤
 
SN−1

W (1 − |U |2)(rθ) dσ(θ).

These estimates together with (1.23) imply that Eϵ,η[Ũ ] ≤ Eϵ,η[U ] and so Ũ is also
a minimizer of Eϵ,η in A with Eϵ,η[Ũ ] = Eϵ,η[U ]. Returning to the equality cases in
Theorems 5 and 11, we have that v and g are radially symmetric, i.e. U is a radially
symmetric minimizer of Eϵ,η. The conclusion follows from [34, Theorem 2.4] on the
classification of radially symmetric minimizer of Eϵ,η.

3.4 Symmetry for solutions to a nonlinear eigenvalue problem
For d > 0, 1 ≤ p < 2 and λ ∈ R, consider the energy functional

J [v] = 1
2∥∆v∥2

L2(BN ) − λ

2 ∥v∥2
L2(BN )

on the set
Sp,d =

{
v ∈ H2

0 (BN) : ∥v∥Lp(BN ) = d
}
.

Let λ1(∆2) denote the first eigenvalue of the bi-Laplacian in H2
0 (BN). When λ < λ1(∆2),

after adjusting by a scaling factor to remove the Lagrange multiplier, minimizers of J
on Sp,d correspond to solutions of the elliptic problem (1.25):∆2v = λv + |v|p−2v on BN ,

v = ∂rv = 0 on ∂BN .
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(For λ ≥ λ1(∆2), the partial differential equation is different due to the different sign of
the Lagrange multiplier, namely

∆2v =
λ1(∆2)v if λ = λ1(∆2),
λv − |v|p−2v if λ > λ1(∆2),

we do not consider these cases here for simplicity.)

Problem (1.25) has been studied by many authors and a summary of known results
would go beyond the scope of the present paper. We refer the reader to e.g. [6, 9, 21,
23, 24, 45] and the references therein.

We prove:

Corollary 13. Let N ≥ 5 and 1 ≤ p < 2. For λ < λ1(∆2), minimizers of J over
Sp,d are radially symmetric, do not change sign and are either radially non-decreasing
or radially non-increasing.

Proof. Note that as λ < λ1(∆2), J is coercive on H2
0 (BN). By the compactness embed-

ding theorem, J has a minimizer over Sp,d.
Let v be a minimizer of J over Sp,d; in particular, J [v] ≥ 0. By Theorem 5, we have

∥∆v̌∥L2(BN ) ≤ ∥∆v∥L2(BN ),

∥v̌∥Lp(BN ) ≥ ∥v∥Lp(BN ) = d,

∥v̌∥L2(BN ) ≥ ∥v∥L2(BN ).

(3.12)

Let
v̄ = µv̌ where µ = d∥v̌∥−1

Lp(BN )

(3.12)
≤ 1

so that v̄ ∈ Sp,d. We compute, keeping in mind that µ ≤ 1,

J [v̄] = µ2J [v̌]
(3.12)
≤ µ2J [v] ≤ J [v],

where for the last inequality we use the fact that J [v] ≥ 0. It follows that v̄ is also a
minimizer of J over Sp,d, which in turn implies J [v̌] = J [v] and all inequalities in (3.12)
are saturated. Appealing to the equality case in Theorem 5(iv), we see that v is radially
symmetric and v̌′ = |v′|.

It remains to prove that v and ∂rv do not change sign. Indeed, we have

|v(r)| = |v(r) − v(1)| =
∣∣∣∣
ˆ 1

r

v′(s) ds
∣∣∣∣ ≤

ˆ 1

r

|v′(s)| ds =
ˆ 1

r

v̌′(s) ds = |v̌(r)|.

As ∥v̌∥L2(BN ) = ∥v∥L2(BN ), it follows that equality is attained in the above inequality,
i.e. v′ does not change sign. As v(1) = 0, it follows also that v does not change sign.
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A The negativity of Fϵ in dimension N ∈ {2, 3}
We now give the proof of Proposition 4 on the negativity of Fϵ in dimension N ∈ {2, 3}.

Proof of Proposition 4. We follow ideas from e.g. the proof of [34, Lemma 2.3], [35,
Proposition 4.1], [38, Theorem 1.7]. The main task is to show that there exists v ∈
C2

c (BN \ {0}) such that5

F∗[∇v] :=
ˆ

BN

[
(∆v)2 − N − 1

r2 |∇v|2
]
dx < 0. (A.1)

Supposing for the moment that such a v has been found, we proceed to show that
Fϵ[∇v] < 0 for this particular v and for sufficiently small ϵ > 0. Indeed, using the
Hardy decomposition Lemma 7 with the decomposition ∇v = fϵ

∇v
fϵ

, noting that ∆fϵ =
N−1

r2 fϵ − 1
ϵ2W

′(1 − f 2
ϵ )fϵ, we find

Fϵ[∇v] =
ˆ

BN

f 2
ϵ

[∣∣∣∣∇(∇v
fϵ

)∣∣∣∣2 − N − 1
r2

|∇v|2

f 2
ϵ

]
dx.

Since fϵ → 1 in C1
loc(BN \ {0}) and v ∈ C2

c (BN \ {0}, we deduce that

lim
ϵ→0

Fϵ[∇v] =
ˆ

BN

[
|∇2v|2 − N − 1

r2 |∇v|2
]
dx = F∗[∇v] < 0,

which gives the conclusion.
It remains to find v ∈ C2

c (BN \{0}) satisfying (A.1). The proof of Theorem 5 suggests
the ansatz

v(x) = a(r)x1

r
,

so that the restriction of v to each sphere centered at the origin is a first eigenfunction
of the Laplace-Beltrami operator on the sphere. Using (3.7) with λ1 = N − 1, we are
thus led to searching for a ∈ C2

c ((0, 1)) such that
ˆ 1

0
rN−1

[
(a′′)2 + 2(N − 1)

r2 (a′)2 + 2(N − 1)(N − 4)
r4 a2

]
dr < 0.

5Note that C2
c (BN \ {0}) is not a dense subspace of H2

0 (BN ) in dimension N ∈ {2, 3}, hence the
existence of such v does not follow immediately from the sharpness of the Hardy inequality (1.16).
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We decompose a(r) = r− N−4
2 b(r) and compute

ˆ 1

0
rN−1(a′′)2 dr =

ˆ 1

0
r3
(
b′′ − N − 4

r
b′ + (N − 2)(N − 4)

4r2 b
)2
dr

=
ˆ 1

0

(
r3(b′′)2 + (N − 2)(N − 4)

2 r(b′)2 + (N − 2)2(N − 4)2

16r b2
)
dr,

ˆ 1

0
rN−3(a′)2 dr =

ˆ 1

0
r
(
b′ − N − 4

2r b
)2
dr

=
ˆ 1

0

(
r(b′)2 + (N − 4)2

4r b2
)
dr

We thus need to find b ∈ C2
c ((0, 1)) such that

ˆ 1

0

(
r3(b′′)2 + N2 − 2N + 4

2 r(b′)2 + (N − 4)(N3 + 12N − 16)
16r b2

)
dr < 0. (A.2)

To this end, we fix a cut-off function φ ∈ C∞
c ([0,∞)) with φ ≡ 1 in [0, 1/4], φ ≡ 0 in

[1/2,∞). For j > 20 large to be fixed, we let

b(r) =
φ(r) if r ≥ 1/8,
φ
( ln ln 1

r

4 ln ln j

)
if 0 < r < 1/8.

Then, for some constant C independent of j, we have
ˆ 1

0

1
r
b2 dr ≥

ˆ 1/4

1/j

dr

r
= ln j4 ,ˆ 1

0

(
r3(b′′)2 + r(b′)2

)
dr ≤ C.

Therefore, as (N − 4)(N3 + 12N − 16) < 0 for N ∈ {2, 3}, we can select a sufficiently
large j so that (A.2) is satisfied.
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