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Abstract. Users of social networks and Internet sites face numerous
challenges. Problems such as fake news, satire, rumors, misinformation,
misleading information, cyberbullying, spam content, offensive language,
hate, and offensive speech fall under the category of harmful online con-
tent (HOC). This danger has taken advantage of social media’s popular-
ity and the abundance of news that spreads quickly, causing problems for
individuals and society. Moreover, to combat this danger, researchers in
the AI domain have persistently advanced and proposed novel approaches
across various domains. Given the progress made in this work, choosing
data to evaluate their approaches was always a challenge. Our contribu-
tion aims to identify the process and criteria for creating a high-quality
dataset for HOC detection, primarily in the Arabic news domain. There-
fore, we have collected a list of existing and available Arabic datasets,
identified their characteristics, and determined the purpose of their cre-
ation. Researchers can use our study’s results as a reference to choose an
appropriate dataset for their future research.

Keywords: Harmful online content, Fake news, Offensive language, NLP,
Arabic datasets

1 Introduction

The digital environment, particularly social media and online platforms, has a
profound influence on individuals’ everyday existence and society as a whole.
It has given us great chances to communicate with individuals all over the
world, have access to a wealth of knowledge, and debate a wide variety of issues.
However, cyberspace suffers from several malicious activities, such as toxic lan-
guage, cyberbullying, online harassment, and the dissemination of rumors and
fake news. Many people spread harmful content throughout society due to the
ease and speed of news and information dissemination, which can have devas-
tating economic, social, and political consequences [45]. Fact-checking sites aim
to combat the dissemination of harmful and misleading information online by
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verifying the accuracy of claims made in online content. They gather informa-
tion from reliable sources and seek out primary sources whenever possible. It
takes a lot of effort and time, so it is essential to have early verification systems
in place. Researchers use machine learning models, deep learning approaches,
and natural language processing methods to build early detection systems for
HOC. To enhance the effectiveness of these models, selecting good datasets is
an essential step in the detection process. Researchers have created different
datasets for HOC detection, which vary in language, dimension, domain, news
source, HOC types, news content, and application uses. Analysing and categoris-
ing such datasets according to these characteristics can offer practical advantages
to researchers and professionals involved in HOC detection.

To select works on HOC detection, we used the Scopus database and numerous
keywords, such as "harmful online content detection”, "fake news detection”, "hate
speech detection”, and "offensive language detection”. We can see in the figure 1
that the number of works is constantly increasing. The Arab world, too, is not
exempt from this danger. When we compare work in English and Arabic, we
observe a significant discrepancy that suggests a shortage of workers in Arabic.
Therefore, our work aims to collect and study datasets used for the automatic
detection of harmful Arabic online content (HAOC).
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Fig. 1. Searches by year why starting at 2011

We organise the paper as follows: Section 2 delves into concepts that intersect
with harmful content. Subsequently, in Section 3, we provide a discussion of the
different stages that went into creating the dataset. Section 4 summarises the
paper’s conclusion.
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2 Related Work

There are several literature reviews on HOC identification. Firstly, we start
with studies conducted in English language. The authors [48,44] aim to expand
the study on identifying and detecting false information on social media plat-
forms. They achieve this by defining and characterising fake news, examining
existing models that utilise various news features, compiling a list of relevant
datasets, establishing performance criteria for these models, and proposing fu-
ture research paths for analysing fake news on the internet. [19] compare 27 fake
news detection datasets and identifies factors for selecting appropriate ones,
including language, domain, source, content type, size, false information type,
rating scale, application purpose, extraction period, and spontaneity. The re-
view article from [23] highlights issues such as datasets, overfitting, and machine
learning, and suggests future research to improve them to mitigate their impact
on policy, economy, health, and societal stability. The study by [4] examines the
effectiveness of hate speech detection systems by evaluating different datasets.
The findings suggest these datasets are small and do not provide reliable data
for identifying numerous forms of hate speech, including racism, sexism, and
aggressive content. The authors [49] discuss recent advancements in hate speech
detection and opinion mining, utilising machine learning, deep learning, and
transformer models, and provide a comprehensive dataset collection. [47] The
survey explores various research methods for identifying cyberbullying, dividing
them into four main groups: machine learning models, lexicon-based methods,
text rule-based methods, and mixed-initiative approaches. The challenges in-
clude the creation of datasets that stimulate additional tasks to identify indirect
bullying, taking into account the role and type of bullying as determined by
researchers. The author’s survey, [33], delves into cyberbullying, its forms, de-
tection methods, dataset analysis, preprocessing techniques, and textual analysis
methodologies. It categorises approaches like machine learning and deep learn-
ing, identifying limitations and challenges. According to [11], the proliferation
of HOC platforms is a significant societal issue, affecting various aspects such as
spam, misinformation, hate speech, harassment, offensive language, bullying, vi-
olence, graphic content, sexual abuse, self-harm, and many others. Researchers
have developed various methods to identify harmful content, yet the types of
content and research efforts diverge. The study surveys existing methods and
content moderation policies, suggesting future directions.

Secondly, we can mention works in Arabic language: The goal is to identify
and halt the dissemination of misleading information. Particularly on Twitter,
a popular platform in the Arab world, [35] reviews recent Arab efforts in truth
detection, presenting steps for detecting truth in Arabic tweets and surveys on
content credibility. However, research on the Arabic language in this field is now
at an early stage and needs more development. [27] explores advanced NLP tech-
niques for Arabic offensive language detection, focusing on machine learning and
deep learning methods. It discusses challenges, linguistic resources, new develop-
ments, targeted offensive language types, data sources, and efficiency of classifi-
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cation models. The study [10] compares seven optimizers for identifying rumors
in the ArCOV19-Rumors dataset from Twitter. It found that oversampling data
doesn’t improve machine learning and deep learning models’ efficiency. Ensemble
learning, including stacking, enhances logical and realistic nature. Long Short
Short-Term Memory and Bidirectional Memory LSTM with RMSprop optimiz-
ers yield best results. [21] The author reviews various techniques for identifying
false information related to COVID-19 and examines datasets collected during
this period in multiple languages, including Arabic. [9] The study reviews Ara-
bic cyberbullying detection techniques, focusing on Twitter’s accessibility and
Arabic content. While classifiers showed good performance, imbalanced datasets
were observed. Future work should explore pre-processing techniques and estab-
lish a standard Arabic CB dataset. [8] This research aims to study the appli-
cations of artificial intelligence, including machine learning, deep learning, and
natural language processing, to texts to build models for detecting false informa-
tion. The complexity of Arabic and the diversity of its dialects pose significant
challenges when applying these models to Arabic text. [14] The study examines
49 Arabic datasets on toxic language, including their tasks, annotation methods,
and potential reuse for future research.

Our study on related works for HOC detection highlights two key points: firstly,
the limited number of works focusing on the Arabic language, and secondly, the
absence of dedicated work for dataset building for the automatic detection of
harmful Arabic online content (HAOC) and its various forms. Furthermore, there
is a lack of dedicated datasets for researchers, which will serve as a reference for
them to carry out their work.

3 Various Forms of HOC

Harmful Online Content (HOC) means content published on social media plat-
forms or Internet pages that causes harm, distress, or adverse consequences to
individuals or groups. It can include disseminating fake news, such as satire,
hoaxes, rumors, disinformation, misinformation, spam content, and phishing, or
using toxic language, such as hate speech, abusive speech, offensive language, cy-
berbullying, extremism, misogyny, and threats against individuals and groups.
Researchers face difficulties in classifying harmful online content and identifying
related concepts, which often overlap and can be understood differently [18].

* Fake News: False news has evolved in three key ways: volume, velocity,
and variety. It has become more widespread due to the ease of posting news
without verification procedures, with most fake news on social media focusing
on trending events. Many terms overlap with the concept of fake news, such
as satire, rumor, misinformation, cyberbullying, spam content, phishing, etc.
[50]. They can be identified based on three main characteristics: authenticity,
intent, and whether the information is news or not [48]. Some concepts can
be defined in this paragraph.
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Satire: stories classified as false news aim to entertain the reader, not mis-
lead him, and their tricks are exposed [48]. Example from the dataset [46].

Jl {_pall M‘ s e C;a.‘ M‘ ), President Sisi puts

hzs picture on the FEgyptian currency to raise its value.

Hoaxes: stories that are only meant to amuse people or deceive specific
people [48].

Misinformation: false information accidentally produced and disseminated
without malicious intent [21]. Example from the dataset [24]. Jolo aslug
Ola! G oldl Lgad Uy, ey LYl P j.J\
FEating ggﬁjc hélps prevent infection with the Coronavirus l%t*trengthemng
immunity in the human body.

Disinformation: information intentionally created and disseminated, mis-
leading information in order to harm people [21]. Example from the dataset
[1] rUa.J‘ Oled fw SPTRNPS- AL AR VR NVON | h)‘ Ll ol Sl
s O oi>, Lebanese Shiite wvisits to Ms. Zainab are active after regime
forces advance south of Damascus.

Rumor: stories that do not originate from news events are characterised by
uncertainty at the time of publication. Its credlblhty may be true, false, or

unverified [48]. Example oy Sog sow S 00 \.@.Lh‘j §,9d! doud) lais) (’-G'U‘
o, dl auudl o)) oys, God save Medina, and its people from all evil.

Earthquake in Medina.

Propaganda: news is crafted to sway a specific audience’s emotions, view-
points, and behaviors through dishonest methods, providing biased informa-
tion for religious, political, or ideological reasons [20]. Example: <533
Lols Lage 8 Lo J) el ud) 5uay, Long-range bombers
were sent to Syiia on a special mission.

Clickbait: refers to online content that uses sensational or misleading head-
lines designed to attract attention and encourage visitors to click on a link
to benefit from advertising revenue [44].

Toxic Language: under the umbrella term “toxic language” are several
forms of harmful language, such as :

Hate Speech: A speech targets individuals or groups based on their view-
points, skin colour, religion, sex, race, or other distinguishing traits, which
contain expressions that incite hostility or violence, lead to division among
the people of the same society and threaten to destroy their lives [18]. Ex-
ample from the dataset [22]. Q}_-.éj O3, Jldl LI sl O ol
Ulgass Lol Jd1 r)L.AH , The Brotherhood are dogs, people of hell
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sandals they fight raising the slogan of Islam: the solution is injustice and
aggression.

e Offensive Language: using vulgar terms and profanity without the inten-

tion of causing damage to others. Example from the dataset [13]. dul | >
Py L, Free your country, pig.

e Abusive Language: intentional use of vulgar terms and profanity to cause

damage to others. Example from the dataset [22] & 0425 W ate 2, She
looks bad, bitch.

e Cyberbullying: An intentional act in which private information is shared,
and offensive comments are posted via online media against a victim who is
unable to protect herself. It is also more prevalent among teenagers. Example
from the dataset [29] Sl ey ae i) aidbg p A= ASs NEEI Y
J= ij S U, He was impolite and disrespectful and his ex-wife was
relieved of him and of life with a petty impure person not a man.

e Misogyny: using discriminatory language against women that violates them,
marginalizes them, and places them at the base of society. Example from the
dataset [38]. aalsdl ol ollie e o @oze, T couldn’t comprehend
the mentalities of certain retarded girls.

¢ Extremism: using political, religious, and/or social topics to segment soci-
ety according to hateful ideologies.

4 Data Construction And Discussion

Our survey’s goal is to analyse the steps involved in constructing a dataset and
identify the challenges in obtaining a qualitative and quantitative dataset. We
investigated a list of datasets on harmful Arabic content on the Internet and
social networks, which will serve as a reference for researchers in this particular
area of study.

4.1 Data Collection

Two primary types of digital environments can disseminate and circulate HAOC,
such as public websites for news articles and social networks like Twitter, Insta-
gram, Facebook, WhatsApp, and YouTube for posts and comments. Several
techniques are available to collect data from the internet, including the use of
search APIs and Python libraries for periodic scraping and the compilation of
a list of relevant keywords or trending hashtags [1,15]. Additionally, the author
collects real news from reliable websites such as AlJazeera, AlArabiya, CNN,
BBC, and SkyNews. They can also use online fact-checking platforms like Mis-
bar, Falsoo, Fatabayyano, and PolitiFact to verify the veracity of news [24,28].
The Yellow Press and Untrustworthy page websites are excellent places to get
fake news [46,25,30,26]. Furthermore, we can construct the dataset using both
automatic and manual methods to generate real and fake news. Native anno-
tators can paraphrase the original content while maintaining the information’s
integrity by modifying its syntax [31,40]. An alternative method for gathering
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HOC is manual collection, which is direct but time consuming and requires a
great deal of effort. It also involves identifying and analysing the information
that has been shared [12]. Most of the works cited in Table 1 use Twitter or
public websites to collect data. Obtaining data from social networking platforms
such as Facebook and Messenger has become increasingly challenging due to
their policies and the various security measures they implement to protect users’
privacy.

HOC impacts several domains, including politics, sports, health, business, and
technology. Therefore, data collection that examines several topics is required.
As we see in the table 1 the political and sport domains are the most used.
Even in the case of various topics, the size of the political sub-topic is larger.
This can be justified by the fact that political news is often highly polarised,
which means that it can easily arouse strong emotions. This polarisation may
encourage the production and dissemination of misinformation to manipulate
people’s opinions.

4.2 Data Language

Data language refers to the language of the news collected in the dataset,
which may vary depending on the sources from which it was obtained and the
authors’ task targets [19]. The majority of dataset reviewers in this study use
the modern Arabic standard (MSA) [1,31,40,46,24,32,30,25,28]. However, social
media networks are characterised by the dissemination of news by everyone and
in local dialects, which produces a large amount of information in different di-
alects, which poses a challenge to researchers in detecting harmful content. There
are works that are interested in the local dialect [22,6], and others in the var-
ious dialects like the Middle East (Jordanian, Gulf, Syrian, Lebanese), North
Africa (Egyptian, Algerian, Tunisian) [37,7,17,38,42,13,36,41,5,29,2,3]. Another
challenge social platforms pose is “Arabizi” a language that transcribes Arabic
phonetically using a combination of the Latin alphabet and numbers, widely
used in Internet conversations and social networks. This particular obstacle has
received little research or attention. [16].

4.3 Data Annotation

The annotation process plays a crucial role in the development of machine learn-
ing models. It directly influences their accuracy and performance. Accurate an-
notations can lead to good model performance and reliable predictions. Data
annotation is a complex and costly task. It can be done manually by two to
three expert annotators who are native speakers. Two annotators performed the
annotation, while the third reviewed their output and resolved conflicts [2]. We
can use statistical methods to evaluate the level of agreement between annotators
such as Cohen’s Kappa and Fleiss’ Kappa [1,7,12]. On the other hand, automatic
annotation is used to classify news into different categories using different ma-
chine learning algorithms [32]. Another way to annotate data is to use a single
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annotator with the aim of reducing time and cost [24], The authors justified this
by stating that the annotator was well-experienced with the task. However, this
isn’t always the case. Overall, most of the papers referenced in Table 1 choose
manual annotation due to the complex specifications of the Arabic language and
its variety of dialects.

4.4 News Content

Artificial intelligence (AI) algorithms that detect HOC require critical features
derived from news stories, such as content, network, and user profile features.
Content-based features concentrate on text, image, or video content, while social
context features derive information from users, generated posts, and networks
[48]. Textual features play a critical role in detecting HOC by analysing news
articles’ content, including their titles and main text. Natural Language Process-
ing (NLP) is instrumental in extracting and analysing these features to identify
patterns and characteristics indicative of HOC. Sentiment features are used to
determine the emotional tone of a text. HOC articles often exhibit extreme sen-
timents to evoke strong reactions from readers. Models can identify potential
HOC stories that attempt to manipulate readers’ emotions by analysing the
text’s sentiment. Fabricated news, frequently generated for financial or polit-
ical purposes, uses misleading language and sensational headlines. Evaluating
emotional features to detect fake news improves the prediction model’s perfor-
mance [1,22,25.46]. With its rich and complex structure, text content provides
a wealth of information for evaluating and training machine learning (ML) and
deep learning (DL) algorithms. Which was used in most of the works mentioned
in Table 1 like [39,22,31,40,6,7,17,15,32,16,34,13,2,3,29,36]. The social context
of the news, such as posts, likes, shares, replies, followers, and their activities,
can provide helpful information on fake news detection. Each social context is
represented by a post (comment, review, reply) and the corresponding side in-
formation (metadata) [24,28].

4.5 Dataset Lengths

Typically, we use the number of news stories in the dataset to calculate its size.
You can also express it in terms of the total archive’s kilobytes or megabytes.
The size of the data set in Table 1 varies from large to small. Content length
poses various challenges in the context of machine learning (ML), deep learning
(DL), and data analysis. Each model requires specific strategies for effective data
handling and model training. Small datasets pose challenges in model evaluation
due to underfitting and generalization, which necessitates other techniques to
address this issue, such as data augmentation. On the other hand, large datasets
can be more challenging due to overfitting and class imbalance. Large datasets
are necessary for complex models to train effectively, while small datasets might
not have sufficient details to allow for accurate training.
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4.6 Balanced Dataset

A balanced dataset presents a uniform, or nearly uniform, range for the number
of examples belonging to each class. Unbalanced datasets pose challenges for
machine learning algorithms, particularly in terms of biassed predictions and
evaluation metrics. However, various techniques exist to address these challenges
and improve the performance of models trained on imbalanced data [23].

4.7 Dataset Homogeneity

The homogeneity of datasets can be determined at four levels [19]: first, homo-
geneity of new length: this refers to datasets containing news items of a similar
length; Second, homogeneity in the news domain: this refers to having a corpus
of texts that correspond to the subjects (politics, sport, economy, etc.); Third,
homogeneity in the type of misinformation: this means that the texts in the cor-
pus correspond to the type of disinformation (Satire, rumors, hate speech, etc.)
Finally, application purpose homogeneity: the dataset’s creation goal (such as
satire detection, spam detection, rumor detection, cyberbullying detection, etc.)
facilitates understanding of The circumstances.

4.8 Dataset effectiveness

The dataset’s quality means improved data annotation, analysis of class distribu-
tion, sufficient dataset size, and other characteristics. The final step in construct-
ing a dataset is to test its quality. Automatic HOC detection is a classification
task that usually involves classifying textual content as harmful or no harm, de-
pending on the harmful content type. We propose different models to assess the
quality of the constructed dataset. Traditional machine learning: SVM, NB, LR,
and DT; deep learning models: CNN, RNN, and LSTM; and transformer mod-
els: Bert, AraBERT and marBERT. We can conclude from this survey’s work
that traditional classifiers perform better with smaller datasets. Deep learning
models also need large datasets. To address small-size problems, we can use aug-
mentation or transfer learning. For unbalanced classes, we can use resampling
techniques.

5 Conclusion

As social media grows in popularity, an increasing number of people are get-
ting their news from these platforms rather than from traditional news sources.
However, social media spreads various forms of harmful content, leading to grave
consequences for both individual users and society at large. Building datasets for
effective detection of misleading content involves different phases, and each has
specific challenges. In this survey, We have included a range of available datasets
for the automatic detection of harmful Arabic online content. (HAOC) and enu-
merated the distinctive attributes of each dataset, such as language, source,
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features, annotation, size, creation date. There is a small data set dedicated to
the Arabic language. This is due to the unique characteristics and challenges of
the Arabic language, as well as the diversity of its dialects. Arabizi language was
also ignored. We also plan to explore other datasets for another type of HOC
and different Arabic dialects.
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