
HAL Id: hal-04722689
https://hal.science/hal-04722689v1

Submitted on 10 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Autonomous Multi-Agent System for Customized
Scientific Literature Recommendation: A Tool for

Researchers and Students
Abdelhakim Herrouz, Mahieddine Djoudi, Houssem Eddine Degha, Bouchra

Boukanoun

To cite this version:
Abdelhakim Herrouz, Mahieddine Djoudi, Houssem Eddine Degha, Bouchra Boukanoun. An Au-
tonomous Multi-Agent System for Customized Scientific Literature Recommendation: A Tool for
Researchers and Students. Revue des Sciences et Technologies de l’Information - Série ISI : Ingénierie
des Systèmes d’Information, 2023, 28 (4), pp.799-814. �10.18280/isi.280401�. �hal-04722689�

https://hal.science/hal-04722689v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Autonomous Multi-Agent System for Customized Scientific Literature Recommendation:

A Tool for Researchers and Students

Abdelhakim Herrouz1* , Mahieddine Djoudi2 , Houssem Eddine Degha3 , Bouchra Boukanoun3

1 Department of Computer Science, University of Biskra, Biskra 07000, Algeria
2 Laboratoire TECHnologies Numériques pour l'Éducation (TECHNE), Université de Poitiers, Poitiers 86073, France
3 Department of Computer Science, University of Ghardaia, Ghardaia 47000, Algeria

Corresponding Author Email: herrouz.abdelhakim@univ-ouargla.dz

https://doi.org/10.18280/isi.280401 ABSTRACT

Received: 19 February 2023

Revised: 12 June 2023

Accepted: 26 July 2023

Available online: 31 August 2023

The ever-accelerating growth in scientific literature presents a formidable challenge for

researchers and students aiming to stay abreast of the most recent findings. Previous

solutions, which include content-based, collaborative-based, and graph-based filtering

recommendation systems, have their own limitations, primarily their inability to efficiently

manage time-consuming search engine queries, a frequent issue for students. To address

these constraints, we introduce a novel tool-a multi-agent system with an intelligent filtering

mechanism. This system automates the literature search and filtering process, generating

search queries independently and conducting comprehensive online searches. The system

comprises autonomous agents that collectively gather and analyze data from a myriad of

sources. Utilizing sophisticated techniques, the intelligent filtering mechanism leverages

user preferences, interests, and contextual information. Continuous learning from user

feedback allows the system to iteratively refine its recommendations, providing a

personalized user experience. A user-friendly interface has been developed to streamline

the configuration of the search procedure, offering users an easy way to fine-tune their

preferences. Evaluations indicate that our approach delivers superior performance,

significantly improving the process of scientific literature recommendation. Our tool is

designed to assist researchers and students by minimizing the manual effort required in

literature search and filtering, thereby ensuring efficient access to pertinent information. By

automating these labor-intensive tasks, our tool enables users to keep pace with the latest

scientific discoveries with increased ease.

Keywords:

multi-agent system, ontology, personalized

information filtering, recommendation

system, scientific paper, search engine,

usability, user interface

1. INTRODUCTION

The exponential proliferation of scientific articles,

facilitated by their online archiving, has emerged as a

byproduct of intensifying scientific inquiry. Esteemed

platforms such as ACM (Association for Computing

Machinery), IEEE Xplore, Elsevier, among others, now serve

as repositories for millions of scientific papers. Notably,

Scopus stands out as the most extensive scholarly

bibliographic database, housing 71 million articles and 1.4

billion [1].

Academic search engines have become indispensable tools

for researchers and students, given their ability to access an

expansive domain of scholarly literature. Among these,

Google Scholar stands as a premier academic search engine,

providing unrestricted access to approximately 390 million

pieces [2]. Other significant databases include Microsoft

Academic, with over 250 million public records. Base, an

online search engine developed at Germany's Bielefeld

University that indexes over 241 million documents from

more than 8000 different resources [2]. Additionally, more

than 190 million papers have been indexed by Semantic

Scholar.

Researchers and students are heavily reliant on scientific

literature for a range of tasks, from research to writing

scientific articles and evaluating results. However, the

escalating growth of worldwide literature data has complicated

the research process. The likelihood of locating papers aligned

with the users' preferences has dwindled, leading to the

academic community's increased reliance on academic web

search engines. For students, in particular, identifying relevant

academic articles can be demanding. Search engines'

algorithms, which are reliant on user keywords, often churn

out an overwhelming number of potential answers. Moreover,

the quality of these search results can be questionable,

highlighting the importance of research impact metrics, such

as the number of citations, the h-index, the g-index, and the

Eigen factor scores.

Confronted with precise questions and limited time, users

have turned to recommendation systems to enhance search

efficiency and reduce time wastage. These systems, which

choose and suggest the most relevant items based on user

profiles, have found applications in various industries,

including business, academia, and the scientific community.

The advent of "big scholarly data" has amplified the need for

intelligent suggestion methods to handle information overload

and maximize the use of academic resources.

In response to this demand, this study introduces a multi-

agent recommender system designed to optimize the

recommendations provided by academic search engines. It

employs a content-based filtering method to generate

improved suggestions. User-submitted papers are used by the

Ingénierie des Systèmes d’Information
Vol. 28, No. 4, August, 2023, pp. 799-814

Journal homepage: http://iieta.org/journals/isi

799

https://orcid.org/0000-0002-8009-0397
https://orcid.org/0000-0002-2998-5574
https://orcid.org/0000-0002-3401-4473
https://orcid.org/0009-0002-3025-803X
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280401&domain=pdf

system to generate search queries, conduct automated online

searches, gather relevant scientific articles, and apply filters to

select the most fitting ones. Cosine similarity computations are

performed to gauge the congruence between the user's paper

and the relevant scientific papers. Based on this measure, the

top N scientific papers are recommended to the user. The

system also includes an intuitive interface to customize the

search process.

The remainder of the paper is structured as follows: Section

2 discusses related work in the field; Section 3 defines several

central concepts; Section 4 provides a detailed description of

the software; Section 5 outlines the development of the tool;

Section 6 presents evaluations and results; Section 7 offers a

System Usability Scale Evaluation, and the paper is concluded

in Section 8.

2. RELATED WORKS

An assortment of studies has surfaced in recent years,

contributing significantly towards enhancing the scholarly

research terrain. One of the emerging fronts in this field is the

Recommendation Systems (RS), which have gained

considerable traction due to their potential for delivering

pertinent information. RS employ a fusion of various

technologies, fields, and methodologies, demonstrating

proficiency with large datasets, a focus on textual data, and a

capacity for incorporating user profiles. Four primary types of

scientific article recommender systems have been widely

recognized: Collaborative, Content-based, Graph-based, and

Hybrid recommender systems. The succeeding discourse

encompasses a discussion of selected works that embody each

category.

2.1 Collaborative recommender system

Recommendations are generated by collaborative

recommender systems using information on user ratings [3].

Collaborative recommender systems, which underpin paper

recommendation systems, hinge on the activities of academic

peers, wherein the rating of publications is contingent upon

their evaluations. This methodology leverages previous

researchers' assessments to refine the selection of potential

research papers.

Within this context, a noteworthy method to recommend

scholarly articles was developed by Lee et al. [4]. This system

employed a collaborative-filtering-based technique to discern

researchers' interests and deliver personalized

recommendations of pertinent publications, thereby

conserving time and effort traditionally spent on keyword

searches or manual review of academic literature. The

system's operation was bifurcated into two phases. Initially, a

bag-of-words model was applied to a corpus for data collection

and preprocessing, with documents represented as binary

vectors. Subsequent preprocessing involved stemming,

performed post the removal of stop words. The system then

utilized user queries and inferred preferences to generate

tailored recommendations. A lazy learning technique akin to

k-Nearest Neighbors (kNN) was employed to retrieve items

markedly similar to the user's previous articles. The system's

functionality was validated through a dual-pronged evaluation,

involving a statistical analysis and a user study. Despite

achieving an accuracy of 89% in suggesting papers from the

correct field, the system's focus on frequency, to the exclusion

of user information and temporal data, was identified as a

significant limitation.

Adding to the literature, Sakib et al. [5] proposed a

recommendation procedure in 2020, which amalgamated

citation context with collaborative filtering to suggest relevant

scholarly papers. Upon receipt of a Paper of Interest (POI), the

system initiated an extraction phase, retrieving all associated

citation and reference documents. These candidate papers

were represented as a matrix capturing their citation

relationships. The Jaccard similarity coefficient was utilized to

calculate the similarity score for each candidate paper. The

final score, indicating each paper's relevance to the POI, was

generated by normalizing the results of the two similarity

scores. The top-N most similar papers were then presented to

the user. Although the proposed approach demonstrated

efficacy when compared to three baselines, it relied solely on

citation relation information, overlooking potentially

beneficial features such as author and journal information.

2.2 Content-based recommender system

In recommender systems, content-based filtering is a highly

prevalent approach. It considers the items that users have

previously indicated a preference [6]. Through a comparison

of the content descriptions of the papers, this method

recommends papers to users based on their prospective

interests.

In 2015, Hanyurwimfura et al. [7] proposed a method for

recommending academic research papers to researchers

without relying on user profiles. Traditional user profile-based

systems necessitate user registration and recommend papers

based on profile similarity. This approach has limitations, such

as its incapacity to accommodate non-registered or new users

who have only read a single paper and are looking for similar

ones. To address this issue, the authors presented a method for

recommending relevant papers based on a target paper's topic

and primary ideas by generating queries from the entire paper's

content. Their methodology entailed analyzing sections of the

target paper that adequately characterize its primary content

and provide information about related papers. They

concentrated on the target and candidate papers' titles,

abstracts, introductions, and related work sections. Four

algorithms for generating topics for brief or long queries have

been proposed. The first algorithm utilized the target paper's

title and citations to generate brief queries. The second

algorithm extracted the paper's main idea from the abstract to

generate lengthy queries by using cue words. The last two

algorithms selected only a few sentences or phrases from the

body of the paper that was highly germane to its main ideas,

generating either long or short queries. The generated query

was then submitted to an online repository to retrieve

candidate papers, from which the most relevant were chosen

for recommendation. Using cosine similarity, the authors

measured the similarity between specified fields of the target

paper and candidate papers. The paper was recommended if

cosine similarity determined that the content was similar.

Using Recall and Normalized Discounted Cumulative Gain

(NDCG) as evaluation metrics for various query generation

and ranking strategies, the accuracy of their method was

measured. Experiments were conducted to evaluate the

proposed paper recommendation methods, which revealed a

significant improvement in results.

The authors of "A Content-Based Approach to Citation

Recommendation in Academic Paper Drafts" by Bhagavatula

800

et al. [8] presented a method for recommending citations that

can improve the quality and efficacy of the literature review

process. Instead of relying on metadata such as author names,

they use a neural model to encode the textual content of all

available documents and embed them into a vector space. To

accomplish this, they used Sentence-BERT (SBERT), a

transformer-based text embedding technique. Using positive

and negative examples from the citation graph, the authors

fine-tuned SBERT. During the prediction phase, they also

proposed a submodular scoring function to reconcile the

relevance of recommended citations with the diversity of their

authors. The authors evaluated their recommendations using

precision, recall, Mean Reciprocal Rank (MRR), and the

F1@k score. MRR determines the position of the first correct

citation in the recommended list by calculating its reciprocal

and aggregating it across the test set. The F1@k score

indicates the harmonic mean of precision and recall at corpus

position k. Precision and recall were initially calculated for

each inquiry document before being averaged across the test

set to determine the F1 score. Across all metrics, the

experimental results conducted on the ACL Anthology

Network corpus, a benchmark dataset, demonstrated that the

proposed method is superior to other methods, including a

state-of-the-art neural method. In addition, the authors

demonstrated empirically that while the incorporation of

metadata enhances the performance of standard metrics, it

tends to favor self-citations, which are less valuable in the

context of citation recommendation.

2.3 Graph-based filtering

Graph-based methodologies are increasingly becoming

indispensable to the analysis of diverse real-world systems.

Nevertheless, comprehensive scrutiny of these strategies

remains scant.

In 2017, Dai et al. [9] proposed TMALCCite, an innovative

citation recommendation approach for bibliographic networks,

which leverages a novel topic model. The TMALCCite model

enriches the recommendation process by amalgamating two

key elements: the textual content similarity among research

papers and the community relevance among authors. This

approach extends the Latent Dirichlet Allocation (LDA), a

statistical model, by incorporating the intricate relationship

between textual content similarity and community relevance,

thereby enabling practical and robust recommendations. By

integrating semantic and link information of the research

papers, TMALCCite facilitates the concurrent learning of

lower dimension spaces for paper nodes, author communities,

and topics. A parameter inference algorithm, grounded in

Maximum A posteriori (MAP) estimation, was developed,

with ample evidence of algorithm convergence provided by

Dai et al. [9]. The authors further enhanced the model's

efficiency by introducing a range of citation link probability

functions, which have been shown to bolster recommendation

performance. To assess the efficacy of their model, the authors

juxtaposed TMALCCite against several existing algorithms,

including BM25, PopRank, Random walks, ClusCite, LDA,

Link-PLSA-LDA, TLLDA, and RTM. Trials conducted on the

AAN and DBLP datasets, using citation information from

training papers to train the model and citation information

from test papers as the ground truth, demonstrated

TMALCCite's superiority across all evaluation metrics,

including precision, recall, and mean reciprocal ranking

(MRR).

In a related work, Ma and Wang [10] unveiled HGRec, a

novel method for paper recommendations that employs a

heterogeneous graph representation to address the

complexities of personalized paper recommendation. A

heterogeneous graph, a directed graph characterized by

diverse node and link types, was employed in their method.

The authors formulated user and paper profiles based on

extracted content information from the research papers, which

included titles, keywords, and abstracts. These profiles were

then utilized to generate initial embeddings for users and

papers using the pre-trained Doc2vec technique. The HGRec

method proposed by Ma and Wang [10] permitted the learning

and updating of embeddings for various node types within the

heterogeneous graph. The final list of recommended papers for

the target researchers was obtained by calculating the cosine

similarity between the final user feature vectors and paper

feature vectors. The HGRec method was subjected to a

rigorous evaluation, which involved a comparative study

against state-of-the-art methods such as Content-Based Paper

Recommendation (CBR), Graph-Based Paper

Recommendation (GBR), MPRec, HGRec, and HGRec1. The

evaluation metrics employed included precision, recall, and F-

measure. The results demonstrated a notable superiority of the

HGRec method over the other approaches. However, the

authors acknowledged a limitation in their approach: the

descriptive paths utilized in their method were manually

created.

2.4 Hybrid recommender system

Hybrid recommendation methodologies, built upon the

integration of multiple techniques, have proven instrumental

in the development of high-performing scientific paper

recommender systems. By amalgamating content-based and

collaborative-based approaches, these systems are able to

offset their individual shortcomings while capitalizing on their

strengths.

In 2015, Meilian et al. [11] proposed a method for

recommending academic papers of varying quality levels

within network-based systems. Their approach involved the

use of the Advanced Hyperlink Induced Topic Search (AHITS)

algorithm, designed to recommend high-quality academic

papers to users, thereby expanding their academic purview.

The AHITS algorithm utilizes a tripartite graph, termed UPT

(User-Paper-Topic), to assess the quality and authority of

academic resources. While the experiment yielded promising

results in addressing the identified challenge, their method was

shown to still be susceptible to the cold start problem.

In a subsequent study conducted in 2020, Shi et al. [12]

introduced an AMHG-based hybrid paper recommendation

method, predicated on a multi-level citation heterogeneous

graph. In an effort to alleviate the cold start problem, the

authors not only considered similar papers published by the

same author but also incorporated metadata of the papers into

their model. The model was further refined by reordering the

output candidate list based on the author influence factor, with

the intention to prioritize high-quality papers. The

investigation employed the DBLP-REC dataset and the results

demonstrated a significant improvement in the accuracy of

recommendations provided by the AMHG method. However,

this approach was found to rely exclusively on offline data,

thereby limiting its capacity to provide personalized

recommendations. This limitation was attributed to the lack of

a user's usage record and the exclusion of key metadata such

801

as the publication journal.

It is evident from the literature review that significant

efforts and research have been dedicated to the development

of filtering techniques for recommender systems. Despite

these advancements, the reviewed methods exhibit inherent

limitations. Collaborative filtering recommender systems

necessitate vital information about users and items prior to

generating recommendations. However, in instances where

there is no information about the user or the item in the system,

or when only a few ratings from users about various items are

available, numerous challenges, including the cold start and

sparsity problem, arise. The conceptual modeling of our

proposed paper recommendation system, designed to address

these issues, will be elaborated upon in the following section.

3. CONCEPTS DEFINITIONS

In this section, we will present the definitions of the most

important concepts and theorems used in our research to

develop the new tool.

3.1 Bayes theorem definition

Thomas Bayes formulated a mathematical theorem to

calculate conditional probability, which is the probability of

an event occurring based on a prior event. Bayes' theorem

takes into account prior probability distributions to generate

posterior probabilities. Prior probability is the probability of

an event before new data is collected, and it represents the best

rational estimate of the probability of an outcome before an

experiment is performed. The posterior probability is the

updated probability of an event occurring after new

information is considered, and it is calculated using Bayes'

theorem. In statistical terms, the posterior probability is the

probability of event A occurring, given that event B has

occurred. If A and B are two events in a sample space S, then

the conditional probability of A given B is defined as:

𝑃(𝐴 ∨ 𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
, when 𝑃(𝐵) > 0. (1)

where,

P(A)=The probability of A occurring

P(B)=The probability of B occurring

P(A|B)=The probability of A given B

P(A∩ B)=The probability of both A and B occurring, where

is the joint probability of both A and B being true.

Because,

P(B∩A)=P(A∩B)⇒P(A∩B)=P(AB)P(B)=P(BA)P(A)

The Bayes' Rule, for any two events A and B, where P(B)

≠ 0, we have

𝑃(𝐴 ∨ 𝐵) =
𝑃(𝐵 ∨ 𝐴). 𝑃(𝐴)

𝑃(𝐵)
 (2)

3.2 Markov chains

A Markov chain is a stochastic model that describes a

sequence of possible events in which the probability of each

event depends only on the state attained in the previous event.

If the chain moves state at discrete time steps, it is called a

discrete-time Markov chain (DTMC).

Consider the random process {Xn, n=0,1, 2,}, where RXi=S

⊂{0,1, 2...}. We say that this process is a Markov chain if:

P(Xm+1=j|Xm=im−1=im−1, ...,X0=i0)=P(Xm+1=j|Xm=i) (3)

for all m, j, i, i0, i1, ..., im−1. If the number of states is finite,

such as S = {0, 1, 2, ..., r}, we call it a finite Markov chain.

4. SOFTWARE DESCRIPTION

This section introduces the MASSPR (Multi-Agents

System for Scientific Paper Recommendation). The MASSPR

tool consists of six primary modules: Graphic User Interface

(GUI), Front-end modules, GUI Back-end Engine, Query

Module, Searching Module, Data preparation and learning

module, and Recommendation and Filtering Module. Each

module performs specific tasks and collaborates with others to

achieve the system's objectives.

What sets MASSPR apart from other recommendation

systems is its unique approach of extracting queries from a

research paper provided by the user instead of relying on user-

provided keywords to represent their interests. These queries,

derived from the most relevant terms in the paper, are then

submitted to existing online repositories storing academic

papers. The system retrieves similar papers from these

repositories to generate recommendations.

To accomplish its recommendation goals, MASSPR

employs a multi-agent system with an intelligent filtering

mechanism. It suggests all relevant papers that users may find

valuable based on their input paper. Figure 1 depicts the

architecture of MASSPR, providing an overview of the

system's structure.

4.1 Query modelling module

The Query Modeling Module is a sub-module of MASSPR

that plays a crucial role in constructing and modeling

searching queries. Figure 2 provides an insight into the internal

architecture of this module. One of the significant challenges

students face when using search engines is the inadequacy of

their keywords and queries in finding papers relevant to their

needs. Our tool addresses this issue by generating search

queries based on a series of base papers the user provides.

This modeling approach utilizes a selection mechanism

grounded in the Bayes theorem to extract concepts and

keywords. The process begins by breaking down the user-

provided papers into distinct sections: title, abstract, author

and affiliation, keywords, introduction, references, and more.

Each section undergoes preprocessing to transform the text

into a more manageable format, thereby enhancing the

performance of this module. During the preprocessing phase,

various filters are applied, including removing special

characters and white spaces, converting texts to lowercase,

transforming number words into numeric form, and other

necessary transformations. Subsequently, similar sections are

grouped into bags. The module calculates the conditional

probability of their co-occurrence using Bayes Theorem for

each pair of consecutive words within each bag. This step

generates a list of conditional probability values for each

section, which are then stored in a temporary database. Before

the search queries are modeled based on the previous results,

the calculated probabilities are sorted and arranged in

descending order to select the highest probability.

802

Figure 1. The general architecture of the MASSPR system

Figure 2. Query modelling module sub-architecture

Overall, the Query Modeling Module within MASSPR is

designed to address the issue of ineffective keyword and query

usage by generating search queries based on a series of base

papers. By utilizing a selection mechanism rooted in the Bayes

theorem and applying preprocessing techniques, the module

enhances the quality of the generated queries, leading to more

accurate and relevant recommendations.

The query modeling phase employs the Markov Chain

technique to construct coherent sentences for searching

queries based on a list of consecutive words. This process

begins by selecting the top consecutive words from the

temporary database. For each pair of words, the second word

is combined with other consecutive words that follow it and

possess the highest probability. This technique generates

sentences that effectively represent the content of the given

papers. The process above is repeated for each consecutive

word, resulting in a list of sentences. Finally, the probability

of each sentence is calculated using a formula derived from the

Markov chain theorem. Using the Markov Chain technique,

the query modeling phase generates well-formed sentences for

search queries. This approach enhances the effectiveness of

the MASSPR system by ensuring the relevance and coherence

of the queries, ultimately leading to more accurate

recommendations.

The most significant values will be chosen to accurately

represent the given papers. Subsequently, the modeled

sentences will be transformed into URLs format and stored in

the query buffer submodule. This conversion facilitates the

collection of scientific papers from various publisher web

portals, including Elsevier, Springer, Google Scholar, and

others. Figure 3 exemplifies the probability computation for a

modeled sentence, showcasing the functionality of the Query

Modeling Module within MASSPR.

803

Figure 3. Example of a modeled sentence using Markov Chain technique

𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 = ∑

𝑚

𝑖=0

𝑊𝑜𝑟𝑑𝑖

()

() ()
()

()
1

1

0

1 1

()

 Wor Wor . Word
* * , 3

 Wor

m

i i i

i m i

P Sentence P Wor d

P d d P
P Wor d m

P d

+

= − +

=

(4)

4.2 Documents preprocessing agent

This agent plays a crucial role in text preprocessing, which

involves cleaning the input document's textual data to prepare

it for building a machine learning model. The document

preprocessing phase encompasses various techniques to

process textual data effectively. The process begins by

extracting the different components of a given paper provided

by the user and dividing them into individual parts. Each

section represents a specific part of the paper, such as the title,

abstract, keywords, introduction, references, etc. These

sections then undergo the preprocessing phase to transform the

textual content into a more manageable format, enhancing the

model's performance. During the preprocessing phase, several

filters are applied to the sections. These filters include

removing special characters, spaces, and converting the text to

lowercase. Additionally, numeric words are converted to their

numeric form. Other preprocessing techniques may also be

utilized to ensure the data is in a suitable format for further

analysis. Finally, the preprocessed sections that share

similarities are grouped together to form a complete document.

This process consolidates the individual parts into a cohesive

whole, ready to be utilized for building the machine learning

model. The input document is cleaned and transformed into a

more digestible form through the text preprocessing performed

by this agent. The resulting data is better prepared for

subsequent analysis and modeling tasks by applying various

techniques and filters.

4.3 Query generation agent

The preprocessed document, obtained from the documents

pre-processing agent, is utilized as input for a machine

learning-based model. This model automatically incorporates

a transformer architecture to extract the most relevant

keywords from the document. Within seconds, the model

identifies keywords and phrases that describe the document's

content.

Once the important words and phrases are extracted, the

model constructs search query sentences using these

significant terms. This step enables the model to generate

concise and effective search queries that capture the essence

of the document. Subsequently, the agent responsible for this

process collects the generated search query sentences and

stores them in files, specifically within a query buffer. This

storage mechanism ensures that the search queries are readily

available for subsequent stages of the recommendation system.

The system efficiently extracts essential keywords from the

preprocessed document by employing a machine learning

model with a transformer architecture. This approach

streamlines constructing search queries, allowing for more

accurate and meaningful recommendations. Storing these

queries in the query buffer ensures their accessibility and

usability within the recommendation system.

4.4 Searching articles module

The Searching Articles Module is tasked with searching for

scientific papers on the web using the generated queries. It

comprises three main components.

Figure 4. Sub-architecture of the searching articles module

First, the web searching agents, functioning as spiders,

utilize the queries to search the web for relevant scientific

papers. The inner architecture of the searching agent is

depicted in Figure 4. The process begins by importing queries

from the query buffer. The agent then performs a search task,

crawling web pages and extracting URLs that are deemed

relevant. Each discovered article is subsequently forwarded to

the collecting agents in the next module. To facilitate web

navigation, we leverage the Jsoup Java library, which provides

a user-friendly API for fetching URLs, extracting data, and

manipulating HTML using HTML5 DOM methods and CSS

selectors. Second, the article collecting agents are responsible

for aggregating the downloaded articles obtained from the

804

previous module. These agents scrape articles and extract

relevant data stored in a well-structured and unified format

within the articles buffer. Finally, the articles buffer acts as a

temporary database that houses the gathered scientific papers

from the web. The agents within our search module are

autonomous, meaning they can make judgments regarding the

collected material. These judgments are based on the Bayes

probabilities computed by the preceding model.

Figure 5 presents the sub-architecture of the searching

articles module, providing an overview of its internal structure

and component interactions. Through the collaborative efforts

of the web searching agents, article collecting agents, and the

articles buffer, the Searching Articles Module effectively

retrieves scientific papers from the web and stores them in a

structured manner. The agents' autonomy allows for intelligent

decision-making, while utilizing the Jsoup library streamlines

the web navigation process.

Figure 5. Data preparation and learning module sub-

architecture

4.4.1 Web searching agents

The Searching Articles Module consists of a team of agents

that function as web spiders, utilizing the queries to search the

web for relevant scientific papers. These agents begin their

process by importing queries from a query buffer, and then

initiate search tasks across the World Wide Web. They

navigate through various websites, automatically retrieving

targeted web pages. The agents extract relevant URLs from

each webpage during their web crawling process. These URLs

serve as potential sources for finding scientific papers. The

agents explore these URLs, downloading the associated web

pages for further analysis. Once the web pages are downloaded,

the agents transfer them to the collecting agents in the

subsequent module for further processing and aggregation.

The collective efforts of these agents enable the Searching

Articles Module to effectively search the web, retrieve

relevant scientific papers, and prepare them for subsequent

stages of the recommendation system.

4.4.2 Articles collecting agents

Upon receiving the downloaded web pages from the web

searching agents, the next crucial step is to scrape the articles

and extract relevant data. The agents responsible for this task

selectively store the well-structured scientific papers obtained

from the web in the article buffer, ensuring their availability

for future use in subsequent modules. To optimize the data

extraction process, our approach focuses on targeting specific

sections of the documents that contain essential information,

while disregarding sections that are not directly relevant to the

primary contribution of the papers. By doing so, we aim to

extract the most pertinent details from the articles. In particular,

we concentrate on scraping sections that adequately describe

the main content of the papers. This includes extracting

information such as the title, abstract, and keywords, which

play a vital role in understanding the core aspects of scientific

work. By selectively extracting and storing the relevant

sections of the articles in a well-structured manner, the agents

ensure that the essential information is readily accessible

within the article buffer. This curated collection of scientific

papers is a valuable resource for subsequent modules within

the recommendation system.

4.5 Data preparation and learning module

4.5.1 Learning model agent

In our system, we employ a multi-label classification

learning model to predict the citations of an article based on

its context. In multi-label classification, the model's

predictions consist of a collection of labels for each instance.

In our case, the input for the classification model is the article's

context, which encompasses information such as the title,

abstract, keywords, and authors. The model's output comprises

a set of predicted citations or references for the article. For

example, given a specific context, the model can classify the

citations as citation-1, citation-2, and so on (Figure 5).

4.5.2 Data preparation

They must be prepared before feeding the articles from the

buffer database into the learning model. The data for the

learning model is divided into two parts: the inputs and the

outputs for the classification model. Both of these parts require

processing to meet the requirements of the multi-label

classification model.

Reference Extraction and preparation (output model): The

references from all citing documents are extracted and

represented by IDs corresponding to the ranking of the papers

in the buffer. Subsequently, a binarization transformation is

applied to prepare the output for the multi-label, multi-output

classification model. During the learning stage, this

binarization transformation involves training a regressor or

binary classifier for each class. It requires converting the

multi-class labels into binary labels, indicating whether an

instance belongs or does not belong to a particular class. The

scikit-learn library's LabelBinarizer provides a convenient

transform method for performing this conversion.

The first step is to extract the contexts of all articles from

each citing document. These citation contexts are then

transformed into the desired representation format, involving

preprocessing and embedding vector transformation. Like

other NLP problems, the input text data must undergo

preprocessing before being fed into the model. The

preprocessing stage includes applying filters to remove special

characters and white spaces, converting text to lowercase,

number words to numeric form, and other relevant

transformations.

805

4.6 Recommendation module

The architecture of the Recommendation Module system is

depicted in Figure 6 and comprises two main components: the

Model Prediction Module and the Filtering Articles Module.

Figure 6. Recommendation module sub-architecture

4.6.1 Model prediction module

The Model Prediction Module of the Recommendation

Module system begins by collecting and saving all the

references mentioned in the user's input article. It then extracts

and represents the contextual information of the user's input

article using the same methodology employed in the offline

step. This involves preprocessing the data and generating

embedding vectors. Subsequently, the trained model is applied

to the represented user article context to generate predictions

for citations, which serve as the outcome of the model

prediction.

4.6.2 Filtering article module

The Filtering Articles Module plays a crucial role in

selecting a subset of potentially relevant articles to the user's

needs. The filtering agents collaborate to choose the most

representative articles based on the user's search query. The

underlying concept of the filtering algorithm relies on

intelligent machines developed using Bayes and Markov chain

theorems. The filtering process begins by constructing a graph

of nodes representing words and articles. These graph nodes

are interconnected through semantic relationships. Each word

is associated with three types of semantic relations. Firstly,

PW, which represents the Probability of a Word Appearing in

a Scientific Paper. Secondly, Pwc, measures the Probability of

a Word Appearing in a Cited Paper. And thirdly, Pwa denotes

the Probability of a Word Appearing in other authors' Papers.

These three probabilities are utilized in the following formula

to compute the power of the word node:

• The Formula to compute the words node power in the

Masspr graph.

𝑊𝑜𝑟𝑑 = ∑

𝑚

𝑖=0

𝑃𝑤𝑖 + ∑

𝑛

𝑗=0

𝑃𝑤𝑐𝑗 + ∑

ℎ

𝑘=0

𝑃𝑤𝑎𝑘

The power of the word node plays a crucial role in

determining the power of the article node. The article node

incorporates several additional relationships from the three

semantic relationships discussed earlier. One of these

relationships is the CBP, which indicates that Paper 1 cites

Paper 2. Additionally, we have the PMA, which measures the

Probability of Mutual Authors, and the CSP, representing the

Probability of both papers cited in the same paper. To calculate

the power of the article node, the following formulas are

employed:

• The Formula to compute the Article node power in the

MASSPR graph

𝐴𝑟𝑡𝑖𝑐𝑙𝑒𝑖 𝑟0 = ∑ 𝐶𝑏 𝑝𝑖 +

𝑚

𝑖=0

∑ 𝑃𝑚 𝑎𝑗 +

𝑛

𝑗=0

∑ 𝐶𝑠 𝑝𝑘 +

ℎ

𝑘=0

∑ 𝑊𝑜𝑟𝑑𝑖 𝑟0

𝑓

𝑧=0

𝐴𝑟𝑡𝑖𝑐𝑙𝑒𝑖 𝑟𝑖𝑑=
𝑃(Articlei r id ∩ Articlei r id-1)

𝑃(Wor 𝑑𝑖+1)
* i

(∑ 𝐶𝑏 𝑝 𝑖𝑑 𝑖 +𝑚
𝑖=0 ∑ 𝑃𝑚 𝑎 𝑖𝑑 𝑗 + 𝑛

𝑗=0 ∑ 𝐶𝑠 𝑝 𝑖𝑑 𝑘 +ℎ
𝑘=0

 ∑ 𝑊𝑜𝑟𝑑 𝑖 𝑟 𝑖𝑑 𝑖)
𝑓

𝑧=0
, 𝑖 > 0

Figure 7 showcases an example of a MASSPR graph that

incorporates words, articles, and various semantic

relationships. The Agents traverse the graph nodes in each

iteration using our innovative mechanism. They begin with the

article possessing the highest power and then proceed to the

following article ranked second. The agents compute the

power of the second article by considering the conditional

probability that assumes its existence relies on its predecessor.

This computation utilizes the Markov chain, which only

considers one predecessor for calculating the conditional

probabilities of occurrence. Additionally, we leverage the

Bayes theorem to ensure the computation reflects the intended

logic. This mechanism generates a dynamic phenomenon

where the power of articles and words changes, with some

decreasing sequentially. During each iteration, nodes whose

power falls below a certain threshold, known as the Learning

Rate, are deleted. By following our algorithms, node powers

decrease with each iteration, reducing the number of articles

until we obtain the desired number specified by the user. We

employ the concept of Entropy to assess the amount of useful

information contained in the article set. With each iteration,

the Entropy increases until it reaches its maximum value with

the minimum number of articles. This signifies that the

remaining articles can effectively represent the entire set and

are the most relevant ones that fulfill the users' needs.

This research paper employs the cosine similarity function

to measure similarity within each field. The cosine similarity

function is a well-established measure that provides accurate

results. It quantifies the cosine angle between two vectors,

serving as a reliable metric for assessing similarity. This

function is commonly utilized in various domains, including

information retrieval and text mining, to compare and evaluate

text documents [10].

806

Figure 7. An example of a builder graph of concepts and articles by filtering agents

Figure 8. General sequence diagram

4.7 GUI front-end module and GUI back-end engine

The GUI Front-End module serves as the user interface for

interacting with the system, while the GUI Back-End Engine

module plays a crucial role in providing the necessary

functionalities to support the GUI Front-End module. Acting

as a bridge between different modules in MASSPR, such as

the Query Module and Filtering Module, the GUI Back-End

Engine module performs the following roles:

⚫ Execution of visualization functions: The GUI Back-End

Engine module handles the execution of all visualization

functions required for the smooth operation of the GUI

Front-End module.

⚫ Integration with the Query Module: This module

facilitates the transfer of scientific articles uploaded by

the user to the Query Module, enabling the generation of

search queries based on the user's input.

⚫ Facilitation of recommended papers: The GUI Back-End

Engine module takes the responsibility of sending the

807

recommended scientific papers, which have been

selected by the filtering model, to the GUI Front-End

module. These papers are then displayed to the user for

further exploration and analysis.

4.8 Sequence diagram

The sequence diagram illustrates the interactions and flow

of events between components and objects within the system

(Figure 8). Here is a revised version of the Sequence Diagram

Description:

(1) The user initiates the system by inputting the desired

paper into the interface to find similar papers.

(2) The interface transmits the user's paper to both the query

and recommendation modules.

(3) The query module performs a preprocessing task on the

paper to facilitate interpretation. It identifies suitable

keywords and constructs search queries based on these

keywords.

(4) The query module sends the constructed queries to the

searching module.

(5) The searching module utilizes the queries received from

the query module to crawl websites on the World Wide Web

and scrape relevant articles. The retrieved articles are stored in

a buffer.

(6) The data preparation and learning module retrieves

articles from the search articles buffer and prepares them for

training the learning model.

(7) The trained model is then sent from the data preparation

and learning module to the recommendation module.

(8) The recommendation module utilizes the trained model

to predict relevant articles based on the user's paper. It filters

these relevant articles by calculating the cosine similarity

between each article and the user's paper.

(9) The recommendation module selects the top N articles

with the highest similarity scores.

(10) The selected articles are returned to the interface,

where they are displayed to the user as the recommended

similar papers.

5. DEVELOPMENT

Our objective is to enhance a system that assists students

and researchers in automatically collecting and filtering

published scientific papers from the Internet, while

recommending the most pertinent ones within their research

domains. To achieve this, we outline the following goals of

MASSPR, which aim to empower users to:

(1) Perform document-based search using input documents:

Users can input their desired documents into the system, and

the system will utilize these documents to conduct searches for

related scientific papers.

(2) Choose the scientific platform for the search: Users can

choose the scientific platform or database where the search

will be conducted, allowing them to tailor the search to their

specific needs.

(3) Provide the most pertinent document as the output: The

system employs advanced algorithms and machine learning

techniques to analyze and rank the retrieved scientific papers,

ensuring that the most relevant and significant documents are

presented to the users.

(4) Present the details of the retrieved related documents:

Along with the recommendation of pertinent scientific papers,

the system provides comprehensive details about each

retrieved document. This includes information such as the title,

abstract, author, keywords, and other relevant details that aid

users in assessing the relevance and significance of the papers.

By achieving these goals, MASSPR empowers users to

efficiently search for and access valuable scientific papers,

saving them time and effort in their research endeavors.

To create the MASSPR tool, we utilized the Python

programming language and the Jupyter IDE. We also

employed the Java programming language and the NetBeans

IDE as the development environment.

5.1 Transfer learning

Transformer-based pre-trained language models have

demonstrated remarkable achievements across various natural

language processing (NLP) tasks. The development of these

models commenced with GPT and BERT, both of which rely

on transformers, self-supervised learning, and transfer

learning. By leveraging the power of transformers, pre-trained

language models acquire universal language representations

through self-supervised learning, and subsequently transfer

this knowledge to downstream tasks. This approach offers the

advantage of furnishing downstream models with valuable

foundational knowledge, obviating the need to train them from

scratch [10].

(1) doc2query/all-t5-base-v1

The T5-base model underwent training using the MS

MARCO Passage Dataset, comprising approximately 500,000

actual search queries sourced from Bing and their

corresponding relevant passages. This model serves the

purpose of query generation, enabling the acquisition of

semantic search models without the need for annotated

training data. This technique is known as Synthetic Query

Generation. Another model, called doc2query or docT5query,

builds upon the T5 model. It can be employed for document

expansion by generating 20-40 paragraph queries. These

paragraphs and generated queries are then indexed using a

standard BM25 index such as Elasticsearch, OpenSearch, or

Lucene. One notable advantage of the doc2query approach lies

in its simplicity in terms of conceptual understanding and

implementation. The model can be easily trained using

existing sequence-to-sequence neural toolkits with minimal

modifications required [12].

(2) all-MiniLM-L6-v2

Table 1. All-MiniLM-L6-v2 model information

Description

All-Round Model Tuned for Many Use-Cases

Trained on a Large and Diverse Dataset of

Over 1 Billion Training Pairs

Base Model nreimers/MiniLM-1.6-H384-uncased

Max Sequence

Length
256

Dimensions 384

Normalized

Embeddings
true

Suitable Score

Functions

Dot-product (util dot_score),

Cosine-similarity (util.cos sim),

Euclidean distance

Size NO MB

Peoling Mean Pooling

Training Data 18+ training pairs for details see model card

Model Card
https://huggingface.co/sentence-transformers/all-

MiniLM-L6-v2

808

The Sentence Transformers Library 2 is a publicly available

collection of advanced sentence encoder models that are based

on the architecture of Sentence-BERT. This library includes

various state-of-the-art models capable of transforming text

into vector representations. Sentence-BERT utilizes the BERT

encoder within a Siamese architecture, training it for similarity

comparison tasks. While Sentence-BERT can be trained on

data from different domains to cater to various tasks, there isn't

a specific encoder within the library that is specifically trained

for encoding Java code. However, the generic pre-trained all-

MiniLM-L6-v2 encoder is available. This encoder is trained

on a diverse, extensive dataset of training pairs to support

multiple domains [13].

Table 1 contains details about the all-MiniLM-L6-v2 model.

5.2 GUI front-end and GUI back-end module

To commence the development of the MASSPR system, we

prioritize the construction of its core, which encompasses all

essential modules and their respective functions. The

Graphical User Interface (GUI) Front-End module serves as

the platform for user interaction, and we leverage the Java

programming language along with JavaFX libraries to create a

user-friendly GUI that caters to the specific needs of our users.

Our tool is designed for desktop software usage, providing a

seamless experience. The MASSPR interface offers a range of

notable features, a few of which are highlighted below:

• Time-saving capabilities: Users can streamline their

search tasks by utilizing customizable web search agents

tailored to their specific requirements. This feature

ensures efficient and targeted searches, saving valuable

time.

• Query Module: The Query Module facilitates uploading

a collection of papers and generates precise search

queries based on the uploaded content. This allows users

to obtain relevant results quickly and accurately.

• Easy access to recommended papers: Users can

conveniently browse through recommended scientific

papers and export them to their local machine repository.

This feature enables easy access to important research

materials.

The GUI Back-End Engine module in MASSPR is the

central hub for various internal modules, such as the query and

recommendation modules. It plays multiple roles, including

executing visualization functions essential for the proper

functioning the GUI Front-End module. Additionally, it sends

the scientific articles uploaded by the user to the Query

Module for query modeling. It transmits the recommended

scientific papers, filtered by the model, to the GUI Front-End

module for display.

5.3 Query module

The query module leverages the power of the doc2query/all-

t5-base-v1 model to generate queries. These queries play a

crucial role in bridging the lexical gap in lexical search by

incorporating synonyms. Moreover, the model employs word

reweighting techniques to assign higher importance to key

terms, even if they are sparsely represented in the given

paragraph. The text below illustrates an example

demonstrating the query generation process using the

doc2query/all-t5-base-v1 model. In this example, the article

context is fed as input to the model, which generates a set of

queries as output.

Input_text: Artificial intelligence (AI) is intelligence

demonstrated by machines, as opposed to the natural

Generated Queries:

1: what is the difference between artificial intelligence and

human intelligence?

2: what is artificial intelligence?

3: what is artificial intelligence?

4: what is Ai MWS definition?

5: what is the definition of artificial intelligence?

6: what is AI a human or a machine?

7: what is AI research?

8: what is AI a machine or a human?

9: why I am doing AI research?

10: what is artificial intelligence in psychology?

5.4 Searching module

The Searching module in our implementation is developed

using Java programs and utilizes the Jsoup Java library. Jsoup

provides a convenient API for our agents to browse the

Internet, offering features for fetching URLs, extracting data,

and manipulating HTML using HTML5 DOM methods and

CSS selectors. Furthermore, we have an article collection

agent dedicated to aggregating the downloaded articles.

Table 2 presents information about 10 academic search

engines that we crawled, namely ACMDL1, Base2,

CiteSeerX3, MDPI4, Nature5, SciELO6, TaylorFrancais7,

ResearchGate8, PubMed Central9, and Eric10. Each agent is

assigned to crawl a specific site within the academic search

engine and extract article information based on the queries

received from the query buffer.

Table 3 displays the data obtained through web crawling,

including title, type, authors, journal, publication date, access

link, citation information, abstract, keywords, and references.

The table also accounts for information we could not gather

through crawling from academic search engines.

Table 2. Academic search engine crawled from

 Title Type Authors Journal Publiched In Link Access Citation Abstract Keywords References

ACMDL √ √ √ √ √ √ √ √ √ √

Base √ √ √ √ √ √ √ √ √ √

CiteSeerX √ √ √ √ √ √ √ √ √ √

MDPI √ √ √ √ √ √ √ √ √ √

Nature √ √ √ √ √ √ √ √ √ √

SciELO √ √ √ √ √ √ √ √ √ √

TaylorFrancais √ √ √ √ √ √ √ √ √ √

Researchgate √ √ √ √ √ √ √ √ √ √

PubMed Central √ √ √ √ √ √ √ √ √ √

Eric √ √ √ √ √ √ √ √ √ √

809

Table 3. Crawled information from academic search engine

Website Name Type Year Types of Documents Covered Size

ACMDL Digital

library

July 1997 Journal articles, conference proceedings, Theses, newsletters

and books

2.8+ million articles

Base Search

Engine

June 24,

2004

Journal articles, conference proceedings, Theses, newsletters

and books

136 million articles

CiteSeerX Digital

library

1997 Journal and transaction articles, technical reports, books 5+ million scholarly

documents

MDPI Digital

library

1996 Journals, research articles, reviews, book reviews 386 peer-reviewed journals

Nature Digital

library

1869 Journal articles, magazines, news, books, reviews 800,000+ articles

SciELO Digital

library

1997 Journal articles, original works, case reports, technical reports,

reviews

1723 journals

TaylorFrancais Digital

library

June 2011 Journal articles, ebooks 4,762,000+ articles

Researchgate Digital

library

May 2008 Journal articles, conference proceedings, Theses, newsletters

and books

135+ million publications

PubMed

Central

Digital

library

February

2000

Journal articles 5.1 million articles

Eric Digital

library

1966 Journal articles, conference proceedings, Theses, newsletters

and books

1.3 million items

To extract essential information from a document, we select

specific sections that accurately represent the paper's main

contribution. This approach helps filter out irrelevant or

tangential parts, ensuring that the chosen sections effectively

describe the core content.

5.5 Dataset preparation and learning module

5.5.1 Learning model

For the learning model, we utilized the OneVsRestClassifier

for multilabel classification. The OneVsRestClassifier, or one-

vs-all, is a strategy where a separate classifier is trained for

each class in a multiclass classification problem. Each

classifier is trained to distinguish its corresponding class from

all the other classes combined. This approach offers

computational efficiency as it requires only n classifiers,

where n represents the number of classes in the problem. One

notable advantage of the OneVsRestClassifier strategy is its

interpretability. Since each class has its own dedicated

classifier, it becomes possible to gain insights and

understanding about a specific class by examining its

corresponding classifier. The OneVsRestClassifier strategy is

widely recognized as the most commonly used approach for

multiclass classification tasks and is a reliable default choice.

We used three multi-label multi-output classification

models: SGDClassifier, LogisticRegression, and SVM model,

to adopt the best model in terms of performance. After

assessing these models, we aimed to select the model that

produced the most optimal results.

5.5.2 Input model preparation

For the input of our classification model, we employed the

NLTK (Natural Language Toolkit) Python library to

preprocess the article context. Initially, we converted the

articles' context to lowercase to ensure consistency in the text

representation. Then, we removed numbers, punctuation

marks, and whitespace from the article context. This helped

eliminate non-alphabetic characters that may not contribute to

the classification task. Following that, we utilized the default

set of stop words provided by the NLTK library to remove

commonly occurring words in the English language that

typically do not carry significant meaning for our

classification task. Stop words such as "the," "is," and "and"

were eliminated to reduce noise in the text data. Lastly, we

performed stemming, which transforms words with similar

semantics into a standard form.

Once the preprocessing step is complete, we encode the

context of the preprocessed articles. We utilize the all-

MiniLM-L6-v2 transformer model from the sentence-

transformers Python library to accomplish this. This allows us

to obtain embedding vectors that are prepared and suitable for

use as input in the learning classification model. The provided

dataset in Table 4 is a sample dataset used in the learning

model. This dataset was acquired from the search module and

included the article title and abstract as the context. It is

important to note that this dataset is in its raw form, before

undergoing preparation steps such as preprocessing and

embedding. On the other hand, the subsequent table, labeled

Table 5, showcases the same dataset after preparation,

including preprocessing and embedding. This processed

dataset is now suitable to be used as input for the classification

learning model.

Output model preparation

To apply the OneVsRestClassifier for multilabel

classification tasks, it is essential to format the output labels

(in this case, citations) as a 2D binary (0/1) matrix. This

process, known as binarization, can be accomplished using

techniques like one-hot encoding and the

make_column_transformer transformers in Python. These

methods enable the conversion of the label matrix into a binary

representation suitable for subsequent machine learning

operations. Table 6 presents the citations' IDs before

binarization, while Table 7 showcases the citations' IDs after

the binarization process. Please note that the provided

information is a revised version of the original text. It is

important to proofread and ensure the accuracy of the content

before finalizing it.

One-Hot Encoding (OHE) is a widely used in data mining

tasks to convert categorical features into numerical

representations. It allows us to transform a single variable with

'n' observations and 'd' distinct values into 'd' binary variables.

Each binary variable represents one of the distinct values, and

its presence is indicated by 1 while its absence is indicated by

0 [14]. This preprocessing step is crucial as many machine

810

learning models require numerical data for effective training

and prediction. The One-Hot Encoding process helps capture

the categorical information in a format that machine learning

algorithms can easily understand and process. It expands the

original categorical variable into multiple binary variables,

where each variable represents a unique category. Doing so

eliminates the inherent ordinality in categorical variables and

allows the model to treat each category equally. Table 7

provides an illustrative example of how One-Hot Encoding

works, showcasing the transformation of categorical variables

into binary variables.

Final Prepared Dataset

The combined datasets from the previous tables are

consolidated in Table 8. This table serves as the input for a

multi-label, multi-output classification learning model. The

articles' context undergoes preprocessing and encoding to be

utilized as input for the model. On the other hand, the citations

are binarized and employed as the model's output.

Table 4. Articles context before preprocessing and embedding

Doc.ID Raw.Abstract Raw.Title

1 To elucidate the organizational and… The metabolic world of Escherichia…

2 Advanced technologies and biology have… Reverse Engineering of Biological…

3 The study of networks pervades all of… Exploring complex…

4 Comprehensive protein protein interaction… Comparative assessment…

5 The small-world phenomenon â the… Navigation in a small…

… … …

16976 Evolution is the fundamental physical… Life is physics evolution as a…

16977 High-throughput sequencing technologies… Limitations of next-generation…

16978 Accurate functional annotation of… Accurate inference of transcription…

16979 ABSTRACT: A recent article in BMC… Software that goes with the flow in…

Table 5. Articles context after preprocessing and embedding

ID Context Embedding

0 (-0.057955895, -0.015522554, -0.07978955, 0.0…

1 (-0.053719852, -0.03363603, -0.0074666627, -0…

2 (-0.05078858, -0.116804756, 0.02499838, 0.045…

3 (0.00081650005, -0.06931782, 0.013128192, -0.0…

4 (0.10938609, -0.011689055, 0.03252615, 0.00642…

… …

16975 (-0.10026872, -0.041010633, -0.009426038, 0.08…

16976 (-0.12650475, -0.04345017, -0.008223459, -0.039…

16977 (-0.005618644, -0.041031037, -0.054177392, -0…

16978 (-0.104945965, -0.079822, -0.08484905, -0.0903…

16979 (-0.019475678, -0.06901016, 0.0040075155, -0.0…

Table 6. Citations-ID before binarization

ID ID_CIT_1 ID_CIT_2 ID_CIT_3 ID_CIT_4 ID_CIT_5 ID_CIT_6 ID_CIT...

0 3 2 485 3284 None None …

1 16 42 43 60 113 116 …

2 85 0 4 5 10 11 …

3 0 None None None None None …

4 23 2 28 488 918 1200 …

… … … … … … … …

16975 16 420 6357 6371 9466 12096 …

16976 8 7991 15184 15944 16304 16451 …

16977 14 418 10406 10558 14709 15093 …

16978 0 None None None None None …

16979 0 None None None None None …

Table 7. Citations-ID after binarization

0 1 2 3 4 5 6 … 33755 33756 33757 33758 33795

0 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 1.0

1 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0

3 1.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 1.0

4 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0

… … … … … … … … … … … … …

16975 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0

16976 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 1.0

16977 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0

16978 1.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 1.0

16979 1.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 1.0

811

Table 8. All prepared dataset: Input and output of learning model

ID Context Embedding 0 1 2 3 … 33757 33758 33759

0 (-0.057955883, -0.015522492, 0.0… 0.0 0.0 0.0 0.0 … 0.0 0.0 1.0

1 (-0.053719815, -0.033635996, -0… 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0

2 (-0.050788604, -0.11680469, 0.04… 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0

3 (0.0008165396, -0.069317825, -0.0… 1.0 0.0 0.0 0.0 … 0.0 0.0 1.0

4 (0.10938613, -0.011689071, 0.0064… 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0

… … … … … … … … … …

16975 (-0.10026879, -0.041010622, 0.08… 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0

16976 (-0.12650478, -0.043450087, -0.03… 0.0 0.0 0.0 0.0 … 0.0 0.0 1.0

16977 (-0.0056186593, -0.04103095, -0… 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0

16978 (-0.10494599, -0.07982196, -0.09… 1.0 0.0 0.0 0.0 … 0.0 0.0 1.0

16979 (-0.019475667, -0.06901014, -0.0… 1.0 0.0 0.0 0.0 … 0.0 0.0 1.0

Table 9. The top 20 articles ranking by cosine similarity

- Article Number Cosine_Similarity

0 424.0 0.714115

1 530.0 0.598394

2 708.0 0.546376

3 816.0 0.398675

4 851.0 0.248307

5 888.0 0.217173

6 875.0 0.196829

7 613.0 0.190989

Figure 9. The system GUI

5.6 Recommendation module

In the final stage, we develop the recommendation module

using a Python program. This module involves retrieving

articles from the article search module's buffer, preparing them

for the learning model, and then passing them to the

recommendation module. The classification model takes the

user's paper as input and predicts a set of associated citations.

We apply the multi-output classification model to the user's

paper, preparing it in the same way as the input for the learning

model (preprocessing and embedding), to predict the citations

most relevant to the user's paper. We utilize the cosine

similarity function from the sklearn library in Python to filter

out the most relevant articles. This function calculates the

similarity between each predicted article and the user's paper.

We can identify the top N articles with the highest similarity

by comparing the similarities. These top N articles are

considered the most relevant to the user's paper and are

presented as the system's output.

The Scikit-learn library is widely recognized as a highly

valuable machine learning library in Python. It offers a range

of powerful tools for machine learning and statistical modeling,

including classification, regression, clustering, and

dimensionality reduction. Table 9 lists the top 20

recommended articles related to the user's input paper after

undergoing the prediction and filtering processes. The articles

in the table are ranked based on their cosine similarity scores.

This curated list is ready to be returned as the output of the

recommendation system.

5.7 The system GUI

We developed the System GUI (Graphical User Interface)

using JavaFX, which enables users to interact with our system

and access its features (Figure 9). JavaFX provides a

comprehensive set of graphical tools that empower developers

to design and implement powerful client applications capable

of operating seamlessly on multiple platforms.

6. EVALUATION AND RESULTS

We conducted a performance metric evaluation to evaluate

the proposed approach's effectiveness. This evaluation

technique allowed us to measure the efficacy of the research

paper recommendation system.

6.1 Data description

We obtained a comprehensive dataset for our study by

collecting articles from various digital libraries using a web

crawling system. This dataset contains information such as

abstracts, titles, and other details for each article.

The article citations are stored in a file named "citation.dat,"

while the article contexts are stored in a separate file called

"raw-data.csv." Both files follow a specific format for

organizing the data:

• In the "citation.dat" file, each line corresponds to the

edges connected to a specific node (Figure 10). For

example, Line 1 in the file: "2 2295 6231" indicates that

two edges are linked to node 0, and their IDs are 2295

and 6231.

• Each line in the "raw-data.csv" file represents a title and

abstract associated with a particular node (Figure 11).

This data description provides an overview of the dataset

we used in our evaluation, including the organization and

content of the files "citation.dat" and "raw-data.csv."

6.2 Data visualisation

Data visualization plays a crucial role in presenting data

visually appealing and informatively, making it easier to

understand, observe, and analyze. In our evaluation, we

utilized Python's powerful libraries for data visualization.

812

Specifically, we employed the Matplotlib library, a user-

friendly and versatile data visualization tool built on NumPy

arrays. Matplotlib offers various plot types, including scatter

plots, line plots, bar charts, etc. With its extensive functionality,

Matplotlib allows us to create visually appealing and

customizable visualizations. By utilizing Matplotlib, we could

present our evaluation results clearly and visually appealingly,

enhancing the understanding and interpretation of the data

(Figure 12). Its flexibility and rich feature set make it an ideal

choice for data visualization tasks.

6.3 Analysis of the results

Multi-label classification performance metrics: In the case

of multi-label classification problems, predictions for each

instance consist of multiple labels. The effectiveness of

classifiers in such scenarios can be evaluated by calculating

the average score of an evaluation metric or by directly

comparing the scores for each class. Our research employed

two commonly used performance metrics: hamming loss and

Jaccard similarity. These metrics provide a robust means to

assess the performance of classifiers.

Figure 10. Citation.dat file

Figure 11. Raw-data.csv file

Table 10. Jacard-score for deferents learning model

- Clf Jacard Score

0 SGDClassifier 86.1460481100505

1 LogisticRegression 88.24750564339895

2 LinearSVC 88.11109420470825

Table 10 presents the results of applying three classification

models (SGD Classifier, Logistic Regression, and SVM) to the

dataset. Specifically, it illustrates the Jaccard scores achieved

by these models. The classifiers were trained and assessed

using a five-fold cross-validation approach to ensure reliable

evaluation. This approach involves randomly dividing the

dataset into five equal sub-groups. In each iteration, one sub-

group serves as the test set, while the remaining four are used

for training. The model is then trained on the training set and

evaluated on the corresponding test set. This process is

repeated until each unique group has been utilized as the test

set.

7. SUS EVALUATION

We conducted a usability study using the System Usability

Scale (SUS), a well-established questionnaire developed by

Brooke [15] to assess various aspects of a system's usability.

We introduced the MASSPR tool to multiple groups of

researchers and students, allowing them to explore its features

and providing them with the SUS questionnaire for feedback.

The collected data from the questionnaire revealed that 70%

of the participants identified as male, while 30% identified as

female.

The SUS questionnaire consists of ten questions that

evaluate different dimensions of a system's usability. These

dimensions include frequency of use, system complexity, ease

of use, need for support, system functions integration, system

inconsistencies, learning curve, the cumbersomeness of the

system, confidence in the system, and the need for training

before use. Upon analyzing the data, we discovered interesting

findings from the SUS questionnaire, particularly the positive

feedback received from the researchers. As shown in Figure

12, the researchers found the MASSPR tool easy to use and

expressed a desire to use it frequently. The feedback also

indicated high confidence in utilizing the MASSPR-Tool, with

minimal reported inconsistencies. Furthermore, researchers

provided valuable suggestions for future versions of the tool,

such as expanding its support to include articles from other

scientific publishers, as the current version only supports the

ACM DL.

The feedback from the usability study highlights the

effectiveness of the MASSPR tool and the researchers' overall

satisfaction with its usability. These insights will be

instrumental in shaping future iterations of the tool,

incorporating the requested features, and further enhancing its

usefulness in meeting the needs of researchers.

Figure 12. The results of the System Usability Scale

questionnaire

813

8. CONCLUSIONS

This project aims to develop a tool called MASSPR,

designed to assist researchers in handling time-consuming

daily tasks associated with finding relevant papers for their

studies. Instead of manually browsing the web, our tool

automates the process by utilizing search engines to retrieve

scientific articles. It can search the web, download papers, and

apply intelligent mechanisms to filter and recommend the

most relevant documents. One key feature of the MASSPR

tool is its ability to address the Cold-start issue for new users.

By leveraging an innovative approach, our system generates

search queries based on a user's given paper or a simple search

sentence, assisting new researchers in finding the most

relevant documents for their specific needs.

The MASSPR architecture consists of six main modules:

the Graphic User Interface (GUI) Front-end modules, GUI

Back-end Engine, Query Modelling Module, Searching

Module, Filtering Module, and Database Module. The

implementation utilizes the Java programming language along

with various APIs and libraries. The tool is cross-platform and

compatible with Windows, Linux, and macOS. The initial

version of our tool has received positive feedback from many

users, and incorporating recommendation algorithms has

significantly improved the quality of the final

recommendations. These findings have substantial

implications for researchers seeking to save time by

automatically collecting and storing scientific papers on their

personal computers. Additionally, the MASSPR tool proves

valuable in real-time data set collection of articles.

However, it's important to note that the current version has

limitations, such as not fully utilizing the advantages of

collaborative-based filtering and disregarding contextual

information that influences user preferences as their needs

change. For future developments, we plan to expand the tool's

capabilities to support the collection of scientific papers from

other high-quality digital libraries. Furthermore, we aim to

enhance our intelligent recommendation mechanism by

addressing the limitations above and exploring the use of deep

learning algorithms to improve recommendations further.

REFERENCES

[1] Rachel, M.C. (2018). How scopus powers research

solutions for experts worldwide. Elsevier Scopus Blog.

https://blog.scopus.com/posts/how-scopus-powers-

research-solutions-for-experts-worldwide.

[2] Ujjal Marjit, P.D. (2021). Best 5 academic search engines

for research (Multidisciplinary).

https://researcherssite.com/best-5-academic-search-

engines-for-research-multidisciplinary/.

[3] Deng X.Y., Wang C. (2018). A hybrid collaborative

filtering model with context and folksonomy for social

recommendation, Ingénierie des Systèmes d’Information

(ISI), 23(5): 139-157.

https://doi.org/10.3166/ISI.23.5.139-157

[4] Lee, J., Lee, K., Kim, J.G., Kim, S. (2015). Personalized

academic paper recommendation system. SRS’15.

http://www.joonseok.net/papers/paper_recommend.pdf

[5] Sakib, N., Ahmad, R.B., Haruna, K. (2020). A

collaborative approach toward scientific paper

recommendation using citation context. IEEE Access, 8:

51246-51255.

https://doi.org/10.1109/ACCESS.2020.2980589

[6] Tsolakidis, A., Triperina, E., Sgouropoulou, C.,

Christidis, N. (2016). Research publication

recommendation system based on a hybrid approach. In

Proceedings of the 20th Pan-Hellenic Conference on

Informatics, New York, USA, pp. 1-6.

https://doi.org/10.1145/3003733.3003805

[7] Hanyurwimfura, D., Bo, L., Havyarimana, V., Njagi, D.,

Kagorora, F. (2015). An effective academic research

papers recommendation for non-profiled users.

International Journal of Hybrid Information Technology,

8(3): 255-272. https://doi.org/10.14257/ijhit.2015.8.3.23

[8] Bhagavatula, C., Feldman, S., Power, R., Ammar, W.

(2018). Content-based citation recommendation. arXiv

preprint arXiv:1802.08301.

https://doi.org/10.48550/arXiv.1802.08301

[9] Dai, T., Zhu, L., Cai, X., Pan, S., Yuan, S. (2017).

Explore semantic topics and author communities for

citation recommendation in bipartite bibliographic

network. Journal of Ambient Intelligence and

Humanized Computing, 9(4): 957–975.

https://doi.org/10.1007/s12652-017-0497-1

[10] Ma, X., Wang, R. (2019). Personalized scientific paper

recommendation based on heterogeneous graph

representation. IEEE Access, 7: 79887-79894.

https://doi.org/10.1109/ACCESS.2019.2923293

[11] Meilian, L., Xudan, W., Jie, G., Yan, S. (2015). Ahits-

upt: A high quality academic resources recommendation

method. In 2015 IEEE International Conference on

Smart City/SocialCom/SustainCom (SmartCity),

Chengdu, China, pp. 507-512.

https://doi.org/10.1109/SmartCity.2015.120

[12] Shi, H., Ma, W., Zhang, X.L., Jiang, Y.Y. Liu, Y.B., Chu,

S.J. (2020). A hybrid paper recommendation method by

using heterogeneous graph and metadata. In 2020

International Joint Conference on Neural Networks

(IJCNN), Glasgow, UK, pp. 1-8.

https://doi.org/10.1109/IJCNN48605.2020.9206733

[13] Devlin, J., Chang, M. W., Lee, K., Toutanova, K. (2018).

Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv preprint

arXiv:1810.04805.

https://doi.org/10.48550/arXiv.1810.04805

[14] Ul Haq, I., Gondal, I., Vamplew, P., Brown, S. (2019).

Categorical features transformation with compact one-

hot encoder for fraud detection in distributed

environment. In Data Mining: 16th Australasian

Conference, AusDM 2018, Bahrurst, NSW, Australia, pp.

69-80. https://doi.org/10.1007/978-981-13-6661-1_6

[15] Brooke, J. (1996). Sus: A quick and dirty’usability.

Usability Evaluation in Industry, 189(3): 189-194.

814

