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Numerical simulation of large strain fracture problems using X-FEM

G. Legrain, E. Verron & N. Moés

GeM — Institut de Recherche en Genie Civil et Mecanique, Nantes, France

ABSTRACT: Fracture of rubber-like materials is still an open problem. Indeed, it deals with issues related to
the fracture itself (crack growth law, stress singularity around the crack tip), and also issues related to the bulk
material behaviour (non-linear elasticity, large strain, incompressibility). The present study focuses on the
application of the eXtended Finite Element Method (X-FEM) to the large strain fracture mechanics, under plane
stress conditions. Two important aspects of this problem are investigated: the formulation used to solve the
problem and the determination of suitable enrichment functions. The method is compared with Abaqus to
demonstrate its robustness and capabilities for large strain problems.

1 INTRODUCTION

Fracture of rubber-like materials is still an open prob-
lem, as pointed out in (Charrier, Kuczynski, Verron,
Marckmann, Gornet, and Chagnon 2003). Indeed, very
few tools exist to solve this particular kind of problems.
They cannot avoid the remeshing issue coming from
crack growth, which for some of them must be handled
by the user at each step of propagation. These prob-
lems contrast with linear fracture mechanics, where
simulation tools have improved over the past years.
New tools has been developed like meshless methods
(EFGM (Lu, Belytschko, and Gu 1994) or HP-clouds
(Duarte and Oden 1996)) to avoid the meshing of the
domain studied, and by enriching the approximation
basis. Finite element methods have also been modi-
fied within the partition of unity framework (Babuska
and Y. Melenk 1997). One of these methods based on
the partition of unity is the eXtended Finite Element
Method. This method was first proposed as a
response to the remeshing issue in crack propagation
in linear fracture mechanics (Belytschko and Black
1999) (Moés, Dolbow, and Belytschko 1999). The
eXtended Finite Element Methoduses the Partition of
Unity in two ways: first to take into account the dis-
placement jump across the crack faces far away from
the crack tip, but also to enrich the approximation
close to the tip with some knowledge of asymptotic
fields. This method exhibits advantages which are in
common with meshless methods (enrichment of the
interpolation basis) and with Finite Element methods
(mesh based approximations). A lot of linear fracture
mechanics applications have been solved with the
X-FEM approach: crack growth with friction (Dolbow,
Moés, and Belytschko 2001), arbitrary branched and

intersecting cracks (Daux, Moés, Dolbow, Sukumar,
and Belytschko 2000), three dimensional crack prop-
agation (Moégs, Gravouil, and Belytschko 2002;
Gravouil, Moés, and Belytschko 2002). The method
has also been coupled with the level set approach
(Sethian 1996) (Stolarska, Chopp, Moés, and
Belytschko 2001a) for greater robustness and versa-
tility. The main purpose of this paper is to show how
to solve nonlinear fracture mechanics problem with
the eXtended Finite Element Method, in particular for
rubber-like material. It seems that only one paper has
been published on this problem. This study, presented
by Dolbow and Devan (Dolbow and Devan 2004) is
about geometrically nonlinear fracture with the
eXtended Finite Element Method, but more precisely
about the locking issue occurring in plane strain
analysis. The present paper will focus on the enrich-
ment around the crack tip in nonlinear fracture
mechanics, and will show the robustness and versatil-
ity of the eXtended Finite Element Method approach.

Nonlinear fracture mechanics study for rubber-like
material really started in the 1950’s with Rivlin and
Thomas (Rivlin and Thomas 1953), who showed that
the fracture of rubber was controlled by one parame-
ter: the tearing energy. This parameter is equivalent to
the energy release rate, and thus to the J-Integral.
They also introduced a parameter (k) which relies the
tearing energy with the strain energy density in the
testpiece. They also argued that this parameter should
only depend on the elongation. A lot of experiments has
been done by Rivlin & Thomas, but also by Greensmith
(Greensmith 1963) to obtain formulas describing this
factor. On the other hand, Lake (Lake 1970) proposed
an energetic way to approximate it, and more recently,
O.H. Yeoh (Yeoh 2002) used a method based on crack



surface displacement to model &, and confronted it with
finite element simulations. This paper is organized
as follows: In the next section, we will discuss the gov-
erning equations of the problem. Then, we will pres-
ent technical aspects of the implementation of the
eXtended Finite Element Methodto nonlinear elasticity,
before following with numerical examples of this
implementation. Finally, we will conclude on the results
presented, and present possible extensions to this work.

2 GOVERNING EQUATIONS

2.1 Deformation of a cracked body in large strain

Consider a thin cracked sheet B defined by its mid-
plane surface ) and its thickness distribution H in the
reference undeformed configuration (Cy). Under plane
mechanical loading, B deforms and occupies the con-
figuration (C). The corresponding mid-plane surface,
boundary and thickness distribution are respectively
denoted w, dw and h. Figure 1 presents the notations.
The motion between (Cy) and (C) can be described by
the mapping ¢ which relates the current position of a
particle, X, at time ¢, to its initial position X:

x =¢(X,t) ey

In the deformed configuration, the boundary of B can
be split into 2 disjoined parts: dw, on which the dis-
placement field is enforced (Dirichlet boundary con-
dition), and ww; on which the surface traction is
enforced (Neumann boundary condition). More pre-
cisely, wwy includes the crack faces wy; and wyc,.
The corresponding parts of the boundaries in the ref-
erence configuration are denoted by (2, (Dirichlet
boundary condition), and by w{2; (Neumann bound-
ary condition), and by wl'c; and wlc, for the two
crack faces. Mathematically, these crack boundaries
are different because of the bijectivity of the mapping
¢ even if they are superimposed in (Cy), as shown in
Fig. 1. Considering that there is no body forces, the
material description of strong form of the boundary
value problems is:

Divxk P=0 inQ
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In these equations P is the first Piola-Kirchhoff stress
tensor, u is the displacement field, ug is the prescribed
displacement field, N stands for the unit exterior vector
normal to the boundary d(2; and Ty is the prescribed
Piola-Kirchhoff traction vector, i.e. the force meas-
ured per unit reference boundary length. According to

o ¢

Figure 1. Notations of the model problem.

these equations, the Principle of Virtual Work in the
material description is expressed as:

F(u,bu) = /Q H(X) S : §EdO
3)
—/ Tq-6udl =0 Véu
o

in which Sis the second Piola-Kirchhoff stress tensor,
E'the Green-Lagrange strain tensor and du represents
the virtual displacement field. In the case of rubber-
like materials, the above equation is highly nonlinear
(due to both large strain and material nonlinearities).
Its linearization is an essential prerequisite for the use
of a Newton-like algorithm:

DF(u,60)u] = /Q H DE[Su) : ¢ : DE[u] dV
= )

+ /Q H 8 [(Gradyu)T - (Gradxdu)| dv

where D is the directional derivative operator and Cis

the material elasticity tensor. Here, the prescribed
tractions were supposed not to depend on the dis-
placement field. Finally, the constitutive equation of
the material is examined. The material is supposed
homogeneous, isotropic and incompressible. Moreover
the general theory of hyperelasticity is considered.
Here the material is assumed to obey the Neo-
Hookean constitutive equation. The corresponding
strain energy function is:

W= %‘(Tr(g) -3) )



where u is the shear modulus and C stands for the
right Cauchy-Green dilatation tensor (C = I + 2E).
The second Piola-Kirchhoff stress tensor is given by:

ow .
—99% =l — ©)
S=255-pC =pl-pC

In this equation p is the hydrostatic pressure due to
the incompressibility of the material, it is determined
using equilibrium equations. Because of small thick-
ness of the sheet and plane loading, plane stress
assumption is made. In this case, the thickness direc-
tion is irrelevant and the thickness variation is simply
given by:

H2

2 _
K1)

O]

where C is the in-plane dilatation tensor. As a conse-
quence, the hydrostatic pressure can explicitly be
evaluated and the in-plane second Piola-Kirchhoff
stress tensor is:

8= u[l-der(0)~'C7] ®)

where I is the 2 X2 identity tensor. Finally the 4th
order elasticity tensor C of Eq. (4) reduces to:

C=2pdet(C) (C' 0! +Z) ©)

where Z=08C"/0C".

3 DISCRETIZATION BY THE X-FEM

The formulation used in this study will be the total
Lagrangian formulation, as discussed later. Thus we
will have to approximate the displacement over the
initial configuration. In classical finite elements, the
approximation of a vectorial field u(X) on an element
(), is written as:

Nddl_e

Z u' N

i=1

ll(X)IQe = (10)

Here within the partition of unity framework, the
approximation is enriched as:
) an

Nenr

Nddl_e
X))o, = ZN'(u+Za¢]

Where Nddl_e is the number of degrees of freedom of
the element, Nenr the number of additional degree of
freedom, a} the additional dof associated to dof i and
¢; the jth scalar enrichment function. Remarks:

e As we can see, additional dofs have been added to
the finite element model. Thus, we won’t know a
priori the exact number of dofs of the structure.

e The approximation on every elements (11) can be
assembled on the whole structure to obtain an
approximation of u(X) on the entire domain ().

o Classically, a dof will be enriched if its associated
nodal support contains the discontinuity (crack
here) (Moés, Dolbow, and Belytschko 1999).

Two different types of enrichment are used in fracture
mechanics (see (Moés, Dolbow, and Belytschko
1999)):

e A discontinuous enrichment for nodes whose sup-
port is bisected by the crack. In this case, the inter-
polation of the displacement field must be
discontinuous across the crack. An Heaviside jump
function is used to model this discontinuity: this
function is equal to +1 on one side of the crack,
and —1 on the other side. The associated dof will
manage the magnitude of this displacement dis-
continuity. The Heaviside function is computed
using the levelset representation of the crack
(Stolarska, Chopp, Moés, and Belytschko 2001b).

e A near tip enrichment for nodes whose support
contains the crack tip. In linear fracture mechanics,
the enrichment functions are based on the asymp-
totic displacement field near the tip of the crack.
The problem in nonlinear elasticity is to find this
asymptotic field. The determination of this field
will be discussed in the next part.

As a remark, we can see that there are gradient dis-
continuities inside enriched elements. That’s why all
the elements containing the discontinuity are parti-
tioned into sub-elements (Moés, Dolbow, and
Belytschko 1999). Note that no additional degrees of
freedom are associated with these sub-elements.

3.1 Near-tip enrichment

As pointed out above, the choice of the right enrich-
ment function is fundamental in the eXtended Finite
Element Method in order to achieve precision, even
with coarse meshes. The choice of those functions is
now discussed. Suitable enrichment functions are
related to the asymptotic displacement field around
the crack tip. The determination of this field is a com-
plex topic since the problem is highly nonlinear. The
oretical results were established in the incompressible
plane stress case by Geubelle and Knauss (Geubelle
and Knauss 1994a; Geubelle and Knauss 1994b;
Geubelle and Knauss 1994c), in the general plane



strain case by Knowles and Sternberg (Knowles and
Sternberg 1973; Knowles and Sternberg 1974) and in
the incompressible plane strain case by Stephenson
(Stephenson 1982). These studies were conducted
using the generalized Neo-Hookean strain energy:
Recall that in the present case, the incompressible
plane stress assumption is adopted and the classical
Neo-Hookean material is considered. Thus, the corre-
sponding asymptotic field is given by (Geubelle and
Knauss 1994a):

v1(r, 8) = rcos(f)
{ va(r,0) = r/2sin(6/2) (12)

where the v; and v, are the displacement projected
respectively on E; and E, (see Fig. 2). Moreover, if
second order terms are needed, it can be proved that
only one additional term appears along the second
axis. However, this term is defined by an implicit
equation, thus it is not straightforward to use it
numerically as enrichment. Finally the enrichment
functions that will be used in the following is:

¢ = {rm sin(9/2)} (13)

As a comparison, in linear fracture mechanics, the
enrichment functions are:

o = {1/2sm(0/2) 2cos(6/2) (14)

/2sin (6/2)sin(6), r'/* cos (6/2) sin(0) }

The first term in (13) is similar to the only discontin-
uous term of Eq. (14). Moreover, it should be noted
that the second term of Eq. (13) reduces to ‘x’ when
expressed in the crack font coordinate system. This
function being linear, it is already contained in the
polynomial approximation space. The use of this
function as an enrichment would lead to a ill-condi-
tioned tangent matrix.

3.2 Solving procedure

We may now justify why the total Lagrangian formu-
lation is used. The main reason stems from the
method itself: The eXtended Finite Element Method,
like classical finite element method defines a mapping
between parent element and current element (using
reference element as a step) (Cf Fig. 3) In an updated
Lagrangian approach, the weak form is integrated on
the last computed configuration, whereas in a total
Lagrangian approach, the integration takes place on
the reference configuration. The key problem is to

E=g
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Figure 2. Deformation of a cracked body.
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Figure 3. (a) Mappings associated to linear finite element,
(b) Mappings associated to the eXtended Finite Element
Method.

know if the inverse mapping from current and/or ref-
erence element to parent element is possible. In classi-
cal linear FE, all the mapping involved are linear. So,
both total or updated Lagrangian formulation will be
possible. With X-FEM, the mapping between reference
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Figure 4. (a) Abaqus deformed configuration; (b) X-FEM

deformed configuration; (c¢) Comparison of the two crack
vertical displacements.

and actual configuration (as for actual — parent map-
ping) are nonlinear. Inverse mapping between these
configurations cannot be obtained because of this
nonlinearity. On the contrary, the mapping between
parent and reference element remains linear. The total
Lagrangian formulation will therefore be best fitted
to the eXtended Finite Element Method. For more
detailed explanations, see (Legrain, Moés, and Verron
2004). Since the total Lagrangian formulation is cho-
sen, we will have to discretize the reference domain
), and interpolate the displacement field. The
discretization of these equations is similar with
discretization for classical finite element and becomes:

(Kfﬁhys +Ksﬁeo) d'U.ﬁ — fint _ fzzt (15)

With K* the physical tangent stiffness matrix, KGe
the geometrical tangent stiffness matrix, fi" the internal
equivalent nodal forces, f*™! the external equivalent

nodal forces and du the correction to the current con-
figuration. The expressions of these matrix and vec-
tors are similar to finite element expressions.

4 NUMERICAL EXAMPLE

In this example, X-FEM and Abaqus (HKS) compu-
tation results are compared. A SET specimen (dimen-
sions = 2mm X 6 mm and crack length = 1 mm) is
subjected to an enforced displacement of its top edge
equal to 4 mm and its bottom edge is fixed. The mate-
rial is Neo-Hookean with shear modulus p = 0.4225.
The mesh used with Abaqus conforms to the crack
surface and has the same element density as the
X-FEM mesh which is unstructured (the crack runs
through the elements). Deformed configurations are
compared. Qualitatively, they are similar as shown in
Figure 4(a) and (b). To compare them more precisely,
the vertical displacement of the crack surface nodes
versus their initial horizontal position are plotted in
Figure 4(c). The deformed shape of the crack is very
similar for the two simulations, and results obtained
with X-FEM are reliable.

5 CONCLUSIONS

The application of the eXtended Finite Element
Method to the field of high strain fracture analysis
seems to be promising. Indeed, the numerical examples
have shown the reliability of the method when dealing
with high strain structural applications. More valida-
tions have been carried out in (Legrain, Moés, and
Verron 2004) and have shown that high strain compu-
tation of the tearing energy was very accurate, even
when dealing with coarse meshes or more complex
loadings. However, the choice of the right enrichment
functions may be a problem when dealing with more
complex material behaviour, plane strain or three-
dimensional analysis. This should be an important topic
to investigate. One other important point is the enforce-
ment of the incompressibility constraint. A first work
has already been published on this topic (see (Dolbow
and Devan 2004)), and may be a beginning.
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