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1 INTRODUCTION

The last decade has experienced a major advance in the
development of finite element based tools for the sim-
ulation of a wide range of industrial parts. This is
mainly motivated by the need to improve time and cost
efficiency in a highly competitive industry particularly
in automotive AVS industry. While the basic concept of
finite element method has been well established, the
choice of material constitutive relations and the com-
puter running time issues remain an ongoing study.

Elastomers are widely used in automotive AVS.
Many studies regarding this material have been con-
ducted. Among these studies, estimation of fatigue life
seems fascinate many authors. Several fatigue criteria
can easily be found in literature; see for example Mars &
Fatemi (2002) or very recently Verron et al. (2004). It is
well known that fatigue life of elastomers increases
with mean stress for a given stress amplitude (Abraham
et al. 2005 and André et al. 1999). This reinforcement
phenomenon is often imputed to strain-induced crystal-
lization (André et al. 1999 and Cadwell et al. 1940).

Under cyclic loading conditions, elastomers exhibit
stress softening and hysteresis. It is believed that vis-
coelasticity and viscoplasticity are the main reason for
the hysteretic response (Drozdov & Dorfmann 2001,
Miehe & Keck 2000, Bergström & Boyce 1998, Spathis
1997 and Lion 1996). However, it is experimentally

shown by Chagnon (2003) that hysteresis of elastomers
is quasi-rate independent. A very interesting result was
obtained by Toki et al. (2000) and Trabelsi et al. (2003)
who related hysteresis with strain-induced crystalliza-
tion. Authors compared the hysteretic response of
elastomers and the real time evolution of crystallization
during stretching and retracting. It has opened a new
horizon on the study of the relationship among hys-
teresis, strain-induced crystallization and fatigue life.

The purpose of this study is to show theoretically
that the reinforcement phenomenon of elastomers can
be predicted using a simple non linear three-parameter
model and an appropriate fatigue life criterion. In
Section 2, a general derivation of constitutive equa-
tions for a simple non-linear phenomenological three-
parameter model is presented in order to simulate a
stabilized hysteretic response. The fatigue life crite-
rion proposed by Verron et al. (2004) is adopted and
briefly recalled in Section 3. Here the end of life is
defined by the initiation of a crack estimated using
the so-called configurational stress concept. Results
and discussion are given in Section 4.

2 CONSTITUTIVE EQUATIONS

In order to derive the constitutive relations, consider a
stress-stretch curve of carbon black-filled natural
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rubber as shown in Figure 1 (presented in the first
Piola-Kirchoff stress against stretch). This curve 
was obtained from uniaxial cyclic test interrupted 
by relaxation steps at different stretching levels
(Chagnon 2003).

It can be seen that natural rubber exhibits a signi-
ficant hysteresis. During relaxation, the stress decreases
in stretching and increases in retracting, approaching
the so-called equilibrium configuration, i.e. a config-
uration that can virtually be reached by a sufficiently
long-time stress relaxation test. Similar observations
were also obtained by Bergström & Boyce (1998) and
Lion (1996). This hysteretic response has been inter-
preted as a consequence of viscoelastic or viscoplastic
nature of elastomers. Thus many models proposed in
the literature were developed using this interpretation
(Drozdov & Dorfmann 2001, Bergström & Boyce
2000, Lion 1996). However, several microscopic
observations showed that hysteresis can also be
imputed to strain-induced crystallization (Trabelsi et al.
2003 and Toki et al. 2000).

In this study hysteresis is modeled by a simple non-
linear phenomenological viscoelastic three-parameter
model. This model is obtained by combining the vis-
coelastic-generalized Maxwell element network (B)
in parallel with a non-linear spring network (A) as
presented in Figure 2.

A proper and complete derivation of constitutive
relations for this model in the frame of visco-hyper-
elasticity has been conducted by Huber & Tsakmakis
(2000). Elastomers are assumed to be isotropic and
incompressible. The total deformation gradient tensor
F acts on both networks A and B, i.e.

(1)

The deformation gradient tensor on network B can
further be decomposed into elastic and inelastic parts
through a tensor product:

(2)

where Fi represents a configuration obtained by a vir-
tual elastic infinitely fast unloading of network B from
the current configuration to an equilibrium configu-
ration which is not a stress-free configuration (Huber &
Tsakmakis 2000). See Figure 3 for the illustration.
The left Cauchy-Green strain tensor B and its elastic
part Be are:

(3)

(4)

By considering an isothermal process, the second
law of thermodynamics can be expressed in the form:

(5)

where W is the strain energy density per unit volume
of the reference configuration, D is the Eulerian
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deformation rate tensor, i.e. the symmetric part of the
velocity gradient tensor L. �̂ is the deformation rate
tensor at the intermediate configuration, and TE is the
extra part of the stress tensor at the intermediate con-
figuration. These tensors are defined by:

(6)

(7)

(8)

where p is an arbitrary hydrostatic pressure which can
be determined using equilibrium equations. Ce is the
elastic part of the right Cauchy-Green strain tensor.
Furthermore, we assume that W can be written as a
function of the first invariants of B and Be:

(9)

(10)

It can be shown that expression of the second law of
thermodynamics (5) becomes:

(11)

where Di is the inelastic part of the Eulerian deforma-
tion rate tensor and �E is the deviatoric part of the
Cauchy stress tensor defined by:

(12)

(13)

in which p is an arbitrary hydrostatic pressure and I is
the identity tensor.

Following the argument of Coleman & Gurtin
(1967), we have:

(14)

and the simplest sufficient condition to fulfill
inequality (11) is:

(15)

where the index dev represents the deviatoric part.

3 FATIGUE LIFE CRITERION

3.1 Brief literature study

In general, there are two approaches in estimating
fatigue life of elastomers: crack initiation (nucle-
ation) and crack growth approaches. For our purpose,
we will only briefly recall the former. The latter which
adopted the famous definition of the Griffith energy
release rate is well documented in Mars & Fatemi
(2002) and the references herein.

The crack initiation approach considers that
fatigue life of rubber can be determined from the his-
tory of strain and stress at a point in the body. Two
most widely used criteria are the maximum principal
stretch and the strain energy density. However both
fail to give satisfying predictions for multiaxial prob-
lems. Later on, it is considered that nucleation
involves small intrinsic flaws which can be seen as
small cracks that grow upon loading. This led to the
definition of the cracking energy density by Mars
(2001). This energy represents the part of total energy
which contributes to the growth of these small cracks.
The fatigue life is then defined by the number of
cycles required to create a crack at a certain size.

Very recently, Verron et al. (2004) used the config-
urational stress concept to define end of life. This was
motivated by the fact that crack nucleation criteria
should be formulated in terms of continuum mechanics
in order to be combined with the finite element mod-
eling in engineering applications. The concept was
firstly introduced by Eshelby (1951) through the energy
momentum tensor (Eshelby tensor) which was used to
study forces on elastic singularities and defects. This
tensor was extended to large strain by Eshelby (1975)
and Chadwick (1975). Further studies were then per-
formed by several authors, see for example the works
of Kienzler & Herrmann (2000), Gurtin (2000) and
Maugin (1993). For our purpose, we will adopt the cri-
terion developed by Verron et al. (2004). A brief for-
mulation of this criterion is presented in the following.

3.2 Configurational stress concept

Consider a rubber body and a current particle M in
the reference configuration of the physical space. In
the material space, the body is subjected to a continu-
ous distributed defect density. Enlarging vicinity of
M leads to Figure 4. The defect is represented by a
grey disk, N is the outward normal vector of an unit
surface and � is an arbitrary given direction.

The Eshelby tensor in M relative to the reference
configuration is defined by:

(16)

where � is the first Piola-Kirchoff stress tensor. The
other quantities were introduced in Section 2. The unit
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surface on which the maximum energy is released 
is defined by its outward normal vector N~ such that:

(17)

The Eshelby tensor is symmetric, thus it has three real
eigenvalues, denoted by (�i)i�1,2,3 and three eigenvec-
tors, denoted by (Vi)i�1,2,3:

(18)

These three vectors correspond to the directions in
which the energy release rates tend to open or close
the void by material normal traction without material
“shear” traction. Using the fact that the body tends to
reduce its potential energy, Verron et al. (2004)
showed that crack nucleation criterion for rubber can
be written by:

(19)

Authors compared this criterion to three other criteria
i.e. the maximum principal stretch, the strain energy
density and the cracking energy density in the case of
elasticity. Here we will enlarge the application of the
criterion to the case of visco-hyperelasticity by con-
sidering only the effect of hysteretic response under
cyclic loading.

One crucial problem to be solved in the case of
visco-hyperelasticity is to separate the non-dissipative
part of the Eshelby tensor which opens or closes the
crack from its dissipative part. In this preliminary
study, a procedure used for the case of plasticity by
Cermelli et al. (2001) is adopted. In order to evaluate
the non-dissipative part of the Eshelby tensor, it is

chosen to express the Eshelby tensor relative to the
intermediate configuration associated with the elastic
and inelastic decomposition in Eq. (2). Introducing
the strain energy density relative to the intermediate
configuration as:

(20)

and the relative first Piola-Kirchoff stress tensor as:

(21)

it is considered that the non-dissipative part of the
Eshelby tensor is given by:

(22)

where Ji is the determinant of the inelastic part of the
deformation gradient tensor Fi.

3.3 Hysteretic behavior

For the next calculation, we will adopt the Neo-
Hookean constitutive equation. For our model it is
given by:

(23)

where CA and CB are the model parameters. 
For uniaxial cyclic loading, the only variable involved

is the principal stretch in the stretching direction �.
The deformation tensors F and Fe have the form:

(24)

where �e is the elastic stretch.
During a cycle (stretching and retracting), we have

to accumulate the increment of the non-dissipative
part of the Eshelby tensor especially the contribution
which tends to open the crack i.e. the negative part of
�ND. Using this argument, Eq. (19) can be changed to:

(25)

with:

(26)

Figure 4. Material space.
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4 RESULTS AND DISCUSSION

In order to build the Haigh diagram, different stretch-
controlled loading conditions are considered i.e. dif-
ferent mean stretch and stretch amplitude. Let
CA � 1 MPa, CB � 6 MPa, � � 2 MPa.s and �

.
� 1 s�1.

These values are chosen to obtain a stabilized hys-
teretic response and will be used for the rest of our
calculation.

The cyclic loading is applied to the model as shown
in Figure 5. The stretch amplitude is fixed at 0.2 while
the mean stretch is varied; 1, 1.4 and 1.8. The model
response is presented in Figure 6 in terms of the nom-
inal stress (the first Piola-Kirchoff). 

It can be seen that the hysteretic loop area decreases
as the mean stretch increases for a given stretch ampli-
tude. At the end of the loading sequence, a relaxation
phenomenon of the model response is observed. Similar

results were experimentally observed by Abraham 
et al. (2005) and Lion (1996). Figure 7 shows varia-
tion of the criterion as a function of minimum stretch.
The five curves from the bottom to the top represent
stretch amplitudes equal to 0.1, 0.3, 0.5, 0.7 and 0.9.
The minimum stretch equal to 1 represents the case
where the applied stretching is followed by a com-
plete retracting to the undeformed configuration. We
observe that the model response exhibits reinforce-
ment phenomenon. The criterion value increases until
a certain limit of minimum stretch is reached before it
decreases with the increase of minimum stretch. This
limit (minimum stretch) is likely independent of the
stretch amplitude. Note that if this limit is expressed
in terms of the mean stretch, then this limit is highly
dependent on the stretch amplitude.

Finally the Haigh diagram (in terms of stretch) of
this model is presented in Figure 8. It is obvious that

0 2 4 6 8 10 12
0.8

1

1.2

1.4

1.6

1.8

2

Time

S
tr

e
tc

h

APPLIED STRETCH

Figure 5. Applied stretch.

0.8 1 1.2 1.4 1.6 1.8 2
6

4

2

0

2

4

6

Stretch

P
K

–
1
 S

tr
e
s
s

STRESS–STRETCH CURVE

C1=1, C2=6, eta=2

Figure 6. Model response.

0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

Minimum stretch

C
ri
te

ri
o

n
 v

a
lu

e

CRITERION

Stretch amplitude = 0.1:0.2:0.9

Figure 7. Criterion value.

1.2 1.4 1.6 1.8 2 2.2 2.4
0.1

0.2

0.3

0.4

0.5

0.6
HAIGH DIAGRAM

Mean stretch

S
tr

e
tc

h
 a

m
p
lit

u
d
e

C1=1, C2=6, eta=2

Figure 8. Haigh diagram.

5



the model can exhibit significant reinforcement phe-
nomenon. However the curve slope in the reinforce-
ment area is lower than that obtained experimentally
(see for example André et al. 1999). This is probably
due to the strain energy density considered here. One
interesting observation is the fact that the end of life
increases when the hysteretic loop decreases. As men-
tioned in Introduction, it will be interesting to study
relationship among reinforcement, hysteresis and strain-
induced crystallization.

To close this paper, it is to note that the choice of
the formulation of the Eshelby tensor for a viscoelas-
tic material is of major importance. Here we consider
the Eshelby tensor defined in the intermediate con-
figuration. Nevertheless, as the decomposition FeFi is
not unique, further investigations are necessary to
determine the most relevant formulation.
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