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Prediction of fatigue crack initiation in rubber with the

help of configurational mechanics

E. Verron

Institut de Recherche en Génie Civil et Mécanique (GeM)
Ecole Centrale de Nantes, Nantes, France

ABSTRACT: The present paper is a first step towards the definition of a new multiaxial fracture criterion for
rubber-like materials. Here, the end of life is defined by crack initiation. Motivated by recent experimental
observations, it is assumed that elastomers contain a uniform distribution of voids. Then, in order to determine
the energy release rate which opens voids, the framework of Mechanics in Physical Space is considered. More
precisely, properties of the configurational stress tensor are thoroughly examined to derive the criterion.
Predictions are compared with published experimental data and the efficiency of the theory is highlighted.

1 INTRODUCTION

Rubber parts are widely used in many applications such
as tires, engine mounts, bumpers or shoes. For the
development of new industrial products, both short- and
long-term durabilities should be estimated. Depending
on applications, crack nucleation or crack growth can
be considered. As shown by Mars & Fatemi (2002),
only few criteria are used for crack nucleation and
their efficiency is questionable whereas crack growth
approaches are well-established since the pioneering
work of Rivlin & Thomas (1953).

The present paper focuses on the prediction of crack
initiation in rubber for which most widely used criteria
are the maximum principal stretch and the strain energy
density. Nevertheless, none of them is applicable to mul-
tiaxial loading conditions (see Mars & Fatemi (2002)
and the references herein). More recently, some authors
consider that rubber contains intrinsic flaws which can
be seen as small cracks that grow under cyclic loading
conditions. It leads to the definition of the cracking
energy density which represents the portion of the total
energy that contributes to the growth of small cracks
Mars (2002). For a given surface, it is defined as “the
work performed by the tractions on the surface in
deforming the surface”. The aim of the present paper is
to rationalize this approach using the theoretical frame-
work of the Eshelbian mechanics.

In the next Section, principal works on the Eshelbian
mechanics are recalled. Section 3 is devoted to the for-
mulation of the new criterion. Then, some comparisons
of the theory with published experimental data are pre-
sented in Section 4 to demonstrate the efficiency of

the approach. Finally, concluding remarks are given in
Section 5.

2 A BRIEF OVERVIEW OF
CONFIGURATIONAL MECHANICS

The concept of configurational stress was first intro-
duced by Eshelby (1951). The author studied forces
that applied on defects and introduced the following
“stress tensor”

¥ = w(sym(Vu),x)I— (Vu) o, (1)

where w is the strain energy density which depends on
both the symmetric part of the displacement gradient
sym (Vu) and the position vector x, and o is the Cauchy
stress tensor. In this equation, the superscript 7 stands for
the transposition. The tensor 3, is classically referred as
the configurational stress tensor. For a homogeneous
body, i.e. without defects, and in absence of body forces,
3, satisfies a strict conservation law:

divE =0. (@)
Moreover, in the case of a body (or a part of a body)
of volume V and boundary S which contains a defect,

the force which acts on this defect is given by the inte-
gration of the configurational traction vector over §
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where N is the unit outward normal vector to S. G is
generally referred as the configurational force.

Twenty five years later, both Eshelby (1975) and
Chadwick (1975) extended the previous theory to finite
strain. The corresponding expression for the configura-
tional stress is

¥ =W(C,X)I-¥TP, )

where W is the strain energy density per unit volume of
the reference configuration and depends on both the
right Cauchy-Green stretch tensor C (to ensure objectiv-
ity) and the placement X in the reference configuration,
F stands for the deformation gradient and P denotes the
first Piola-Kirchhoff stress tensor. Introducing the sec-
ond Piola-Kirchhoff stress tensor, 2, can be rewritten as

¥ = WI-CS, (5)

in which S is the second Piola-Kirchhoff stress tensor.
In the special case of isotropic materials, for which C
and S are coaxial and commute, the configurational
stress tensor is symmetric:

r=3T (6)

These pioneering works were revisited by contempo-
rary authors who considered configurational stress and
forces as basic objects of a new concept of mechanics
(see the introduction of the monograph of Gurtin
(2000)). This concept is designated as the Eshelbian
Mechanics by Maugin (1993) and the Mechanics in
Material Space by Kienzler & Herrmann (2000) by
contrast to the Newtonian Mechanics or the Mechanics
in Physical Space, respectively. In this point of view, the
duality between classical mechanical quantities and
configurational quantities is highlighted.

In the majority of studies involving the Eshelbian
Mechanics, only configurational forces are investi-
gated through the calculation of path-independent
integrals around inhomogeneities. Thus, configura-
tional stress only appears in the definition of surface
tractions. Majority of works focus on the application
of configurational mechanics to fracture problems
(see for example Steinmann (2000) and the refer-
ences herein). Indeed, it is now well-established that,
for hyperelastostatic problems, configurational forces
which apply on crack tip generalize the classical
J-(Rice 1968), L- and M-(Budiansky & Rice 1973)
path-independent integrals.

Opposite to the case of configurational forces,
only few studies are concerned with the peculiar
properties of the configurational stress tensor. For the
linear theory, the physical significance of the
Cartesian components of this tensor were recently
identified by Kienzler & Herrmann (1997), who

explain that [the ij-component] of the Eshelby tensor
is the change in the total energy density at a point of
an elastic continuum due to a material unit transla-
tion in x; direction of a unit surface with normal in
x;-direction. More recently, the same authors intro-
duce local fracture criteria for small strain problems
based on the components of the configurational stress
tensor Kienzler & Herrmann (2002).

3 A NEW CRITERION TO PREDICT THE
FATIGUE LIFE OF RUBBERLIKE
MATERIALS

3.1 Physical motivation

As mentioned in the introduction, an efficient fatigue
life criterion should reflect the physical phenomena
which take place during crack initiation and growth.
For rubber, Le cam et al. (2004) recently demonstrated
that fatigue crack propagation can be explained by
growth and coalescence of small voids, which are the
consequence of the decohesion between compounding
ingredients, such as zinc oxides or filler aggregates and
rubber matrix.

From a macroscopic point of view, fatigue crack ini-
tiation is defined by the occurrence of a small crack
of a given size (1 mm for André et al. (1999), 2 mm for
Ostoja-Kuczynski et al. (2003)). This criterion is not a
material intrinsic parameter, because it should be com-
pared with the sample/structure size. Indeed, in regard
to the previous paragraph, it is obvious that such small
cracks are related to initiation from the macroscopic
point of view and to propagation in the microscopic
point of view.

Following this idea, a well-defined fatigue life cri-
terion should consider these two points of view. First,
it has to be written in terms of continuum mechanics
variables with no reference to fracture mechanics
because small cracks do not significantly influence
the mechanical response of the structure in the macro-
scopic point of view. Second, it should take into
account the energy release rate of small flaws in order
to render microscopic phenomena. Such idea was
investigated in the past by Rivlin & Thomas (1953),
Greensmith (1963), Lindley (1972) and Young (1990)
who relate tearing energy density to strain energy den-
sity for classical fracture rubber test specimen such as
the single edge specimen and the trouser specimen,
and by Mars (2002) through his concept of cracking
energy density.

3.2 Prediction of crack initiation

In this section, the formulation of our criterion is
derived.

From a continuum mechanics point of view, elas-
tomers are considered homogeneous, isotropic, elastic
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Figure 1. (a) A rubber body in its undeformed configura-
tion. (b) Zoom in near the particle M in the material space.

and incompressible under large strain. The framework
of hyperelasticity is adopted. From the microscopic
point of view, it is assumed that small pre-existing voids
are present everywhere in the material. Thus, each par-
ticle of the reference configuration in the Physical
Space can be a point defect in the Material Space. The
aim of the criterion is to determine the energy release
rate of all possible defects (i.e. in each particle of the
Physical Space) in order to exhibit the most propitious
zone for macroscopic crack occurrence.

Consider a particle M in the undeformed configura-
tion of the Physical Space (see Figure 1(a)). In the
Material Space, the point defect in M can be modelled
by a small circular void (see Figure 1(b)). In this point,
energy properties of the defect are completely defined
by the configurational stress 3, given by Eq. (5). More
precisely, for a given oriented unit surface of outward
normal N in M, the vector %, - N represents the config-
urational traction across the surface. Considering the
definition of . recalled above, the scalar o - 2 - N is
the change of the total energy at the point M due to a
material unit translation in the unit direction « of the
unit surface with normal N. The configurational stress
tensor being symmetric, it admits three real eigen-
values, denoted (2,),_1; in the following, and three
eigenvectors, denoted (V,);— 3:

These three vectors correspond to the directions in
which the energy release rates tend to open or close
the void by material “normal” traction without mate-
rial “shear” traction. Moreover, as the force on a
defect is defined by the negative gradient of the total
energy with respect to the change in position of the
defect (Chadwick 1975; Kienzler & Herrmann 2000),
the morphology of the defect evolves with respect
to the direction opposite to the material force
(Steinmann et al. 2001). So, as the body will ever tend
to reduce its total energy, the minimum eigenvalue of
3, can be considered in order to predict the evolution
of the defect. If it is negative the defect grows to form

a plane crack which normal is defined by the corre-
sponding eigenvector. If it is positive, the three eigen-
values are positive and the defect tends to shrink. This
case can be seen as the theoretical counterpart of the
well-known physical “crack-closure effect”. Finally,
the new crack nucleation criterion is denoted 3* and
its formulation can be summarized as follow:

o ‘min [(Zi)izlﬁ i 0} ‘

where (3));-;; are the principal configurational
stresses.

(i) if 2* > 0, the crack grows in the plane normal to
V*, the eigenvector of 3, associated with —X*,
(i) if 2* = 0 the defect closes (“crack-closure effect”).

The present theory rationalizes the approach of Mars
(2002) who proposed the concept of cracking energy
density to determine the portion of the energy that is
available to be released in crack growth. Nevertheless,
even if the physical motivation of both criteria are sim-
ilar, the work of Mars is more intuitive and can not be
included in the general framework of Configurational
Mechanics.

3.3 Generalization to cyclic loading conditions

The previous criterion defines an instantaneous value
of the damage in the material but it considers no defor-
mation history. In order to take into account the load-
ing history, the increment of the configurational stress
tensor should be integrated over the entire history of
the material. For fatigue problems that involve several
thousands cycles it is impossible to perform this inte-
gration. So, in a first attempt the integration of the
configurational stress over one cycle is revealed suffi-
cient to predict the fatigue life.

The aim of the following derivation is to propose a
suitable method to accumulate the configurational stress
during a cycle. In other words, the instantaneous crite-
rion proposed in the previous section is extended to con-
figurational stress increments. Consider an increment of
2 and denote (d%,));= 3 and (v;);— 3 its eigenvalues and
eigenvectors, respectively:

d¥ = dZ, VvV, @V;. (8)
Then, recalling that defects grow with respect to the

direction opposite to material normal tractions, a con-
figurational damage stress increment can be defined as

d¥* = min (d%;,0)v; @ v;, )

and the configurational damage stress tensor over a
cycle is

,
z*:/ ds*. (10)
JO



Finally, the crack nucleation prediction method devel-
oped above can be applied to this modified tensor to
establish the following fatigue life criterion:

S* = ’min 1:(2:)1':1,3 ? O] ‘

where (2;%);_ 15 are the principal configurational
damage stresses, i.e. eigenvalues of

T
¥ = / min (d210) v, @D V;
0

with (d%,);— 13 and (v;); = 3 being the eigenvalues
and eigenvectors of d3

(i) if =* > 0, the crack grows in the plane normal to
V*, the eigenvector of 3, associated with —2*,
(ii) if 2* = 0 the defect closes (“crack-closure effect”).

4 EXAMPLES

4.1  Uniaxial and biaxial data of Roberts and
Benzies (1977)

This first is devoted to the first criterion presented in
Section 3.2. It concerns the experiments conducted by
Roberts & Benzies (1977), who determined the fatigue
life of different elastomers for uniaxial and equi-biaxial
fatigue loading conditions. Using these results, authors
demonstrated that the strain energy density is not a rel-
evant criterion to predict the fatigue life. More recently,
Mars (2002) established a similar conclusion for the
maximum principal strain.

Here, experimental data are first used to determine
the constitutive equation of the materials. The general
framework of isotropic, homogeneous and incom-
pressible hyperelasticity is adopted and a second-
order Mooney-Rivlin model is considered:

W=C\ (I =3)+Cy (I — 3) + Cs (I - 3)*, (11)

where I, and I, are the two first stretch invariants.
Second, the constitutive equation is used to calculate the
criterion. The loading conditions being simple, no
cumulation of configurational stress increments is
needed and the criterion is equal to the minimum prin-
cipal configurational stress which corresponds to the
maximum deformation.

Wohler curves in terms of the maximum principal
strain and the present criterion are shown in Figures 2
for filled Natural Rubber and 3 for filled Styrene-
Butadiene Rubber.

In both cases, uniaxial and equi-biaxial Wolher
curves are superimposed, which shows the superiority
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Figure 2.  Comparison of uniaxial (O) and equi-biaxial ((J)
tension fatigue life data of Benzies & Roberts (1977) for NR
using the maximum principal strain (first graph) and the
present criterion (second graph).

of the configurational stress as compared with classi-
cal criteria such as maximum strain, and also maxi-
mum stress or strain energy (the corresponding results
are not shown here).

4.2 Axial-torsional data of Mars (2001)

The aim of this second example is to validate the
cumulation rule proposed in Section 3.3. For this pur-
pose, the remarkable experimental database detailed
in the PhD thesis of Mars (2001) is used. The author
conducted number of axial tensile/torsion fatigue
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tension fatigue life data of Benzies & Roberts (1977) for
SBR using the maximum principal strain (first graph) and
the present criterion (second graph).

experiments under proportional and non-proportional
loading conditions. Here, the emphasize is laid on
out-of-phase tests for which the criterion should be
cumulated in a cycle.

To calculate the configurational stress, the analyti-
cal solution of the simultaneous axial tensile and
torsion of a hyperelastic cylinder is considered (see
Green & Adkins (1960) for details). As proposed
by Mars, the material is assumed to obey the neo-
hookean model:

W=C(-3) (12)
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Figure 4. Experiments of Mars (2001): comparison of pro-
portional and non-proportional loading conditions. The first
graph presents the Wohler curve in terms of the present cri-
terion and the second graph compares the experimental and
theoretical crack angles. (A) proportional axial tensile/tor-
sion test, (A) non-proportional 45° axial tensile/torsion test,
(V) non-proportional 90° axial tensile/torsion test, (¥) non-
proportional 180° axial tensile/torsion test, (*¥) proportional
axial compression/torsion test, (+) non-proportional 180°
axial compression/torsion test.

with C = 1.5 Mpa. The time is discretized and configu-
rational stress increments are integrated over a cycle.

Figure 4 presents the Wohler curve in terms of the
present criterion and the crack angle prediction. Results
obtained are similar to those of Mars (2002) and lead to
good agreement between experimental data and predic-
tions. This validates the cuamulation method proposed in
this paper.



5 CONCLUDING REMARKS

In this paper, a new criterion for fatigue life predic-
tion of elastomeric parts has been proposed. It is
founded on physical considerations and on the theo-
retical framework of configurational mechanics.

The minimum principal configurational stress is
considered: if it is negative the criterion is equal to its
absolute value, if it is positive the criterion is null
which corresponds to crack closure. Moreover, a sim-
ple method to cumulate the fatigue damage over a
cycle is also proposed. The first results presented here
are very promising.

Nevertheless, this study being only a first step, it
leaves unresolved some issues of fundamental impor-
tance. As example, we can mention the numerical
implementation of the criterion in the finite element
context. Moreover, the relationship between the energy
release rate of small cracks and the present criteria
should be investigated to demonstrate their complete
relevance.
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