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1 INTRODUCTION

A tyre surface is a rubber-like vulcanized filled system,
which assures the junction between road and vehicle.
Due to contact and tangential forces, wear can occur.
Usual solicitations induce a slow tyre-scale homoge-
neous loss of material, called mild wear.

Mild wear of rubber-like materials is a microscopic
and slow phenomenon regarding to the tyre size and
dynamics. An accurate description of wear mecha-
nisms (Archard 1957) has to be settled at appropriate
scales, which are much smaller than the scale of a
whole tyre. A phenomenological law for the rate of
material loss (Schallamach 1954) at tyre scale leads
to service life predictions but cannot describe the ini-
tiation and the evolution of wear in such a local scale.
It is not appropriate to model abrasion patterns.

Wear phenomena are essentially characterized by a
loss of materials; particles are taken off a sound solid.
Unlike classical material, when submitted to repeated
friction with hard antagonist, the surface of rubber-
like materials roughens.

For different contact parameters (antagonist, pres-
sure, sliding velocity, environment), rubber abrasion
runs specific surface patterns (called abrasion patterns).
In our case, we consider the patterns defined by peri-
odic parallel ridges perpendicular to the sliding direc-
tion (Fig.1, (Petitet 2003)). This pattern is regarded as
a signature of the wear phenomenon, depending on
material and road properties.

We need to develop an intermediate model taking
account of local wear patterns and structure-scale com-
putation’s requirements. This paper proposes a meso-
scopic and homogenized model of wear and friction
phenomena based on geometrical observations of abra-
sion patterns. This model will further be implemented

in a numerical framework of local and continuous
wear, not presented here.

2 ON PATTERNS

The periodic parallel ridged pattern we consider is
striking, at least for two reasons: it is inherent to mild
wear of rubber-like materials (tyres, shoes, etc) and
its geometric shape is conserved during cycling load-
ing. For a sliding sphere (Petitet 2003) or a razor blade
(Fukahori and Yamazaki 1994) on a rubber block, a rip-
pled marked pattern is observed on the contact area,
as early as the very first loading cycles.

The geometric features of these wrinkles, perpen-
dicular to the sliding direction, are defined by their
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Figure 1. Example of a wrinkle type abrasion patterns,
observed on tyre, sliding direction quoted by an arrow.
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width (l ), their inter-ridge distance (d), their so-called
wavelength (L � l � d) and their height (h), which
are constant in appearance on the surface (Fig.2(b)).
Repeated sliding passes increase these features till
they reach a critical size as shown in (Fukahori and
Yamazaki 1994). In that case, two competing phenom-
ena are observed: stick-slip oscillations and microvi-
brations during the frictional sliding phase. The
wavelength of the initial wrinkles matches a natural
period of the rubber according to the mean sliding
velocity of the antagonist. The wavelength of the crit-
ical wrinkles matches the period of the stick-slip
oscillations according to the mean sliding velocity.

The initial wrinkles, further called microridges
according to their average wavelength (�10–100 �m),
the critical wrinkles, further called ridges (mesoscopic-
millimetric), the slider (from milli- to centimetric) and
the slided length (decimetric) settle the length scales
of the wear contact problem. We propose a meso-
scopic scale model of a sliding hard indent on a block
of rubber.

Petitet (Petitet 2003) does show it is possible to gen-
erate a microridged pattern with a spherical slider under
peculiar experimental conditions with no stick-slip
oscillations. In his experiments, the microridges do not
develop towards ridges: the wrinkle geometrical features

(l�, d�, h�) remain steady. We note (l�, d�, h�) the criti-
cal features observed in (Fukahori and Yamazaki 1994).
Following Petitet’s results, we describe microridged
and ridged patterns separately even if they are related.

3 LOCAL BEHAVIOR

In accordance with Fig.3, the following settings are
obtained. The loading and the block are symmetric
with respect to (0y) direction. Moreover, ridges and
microridges are assumed to be spacially (0y) invariant.
Thus, we restrain to a 2D model in the plane (0, x, z),
where (0x) is the sliding direction. The average height
(in the direction 0z) of the block at instant t is qm(t).
The local difference of height to qm(t) is q(x,t), x is the
eulerian abscissa. Let L denote the block’s length, lc the
contact’s length, � the sliding velocity, � the macro-
scopic loading parameters.

qm(t) is given by the global constitutive law of the
material and we approximate the local motion by:

(1)

where dotted letters (q� ) represent time derivation,
apostrophized letters (q�) spacial derivation versus x,
f� the loading function, which is unknown at this
point just like the parameters � (which plays the role
of viscosity), k (a local rigidity type quantity) and m.
We only know that the solution of this equation is a
wrinkle shape profile for q(x,t).

In order to represent the relevant ridged patterns
(Fig.2(a)) with q0(x,t), we have to solve an inverse
problem consisting in: “Find (m, �, �, f�) so that q0(x, t)
is a solution of (Eq.1)?” The surface profile q0(x, t) is
defined by its width l, its inter-ridge distance d and its
height h, observed after an experiment defined by a
given rubber-like block, a sliding velocity �, a specific
indentor and a prescribed pressure. For example, the
profile (Fig.2(b)) is admissible to represent the pat-
tern (Fig.2(a)).

(a) Experimental example of a wrinkle

(b) Admissible model of a wrinkle

Figure 2. Wrinkles, pertinent features and representation,
sliding direction quoted by an arrow.
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Figure 3. Sliding test and abrasion patterns’ scale.

2



Acc
ep

te
d 

M
an

us
cr

ip
t

4 LOCAL CONTACT CONDITIONS

For general motion, we assume the following form f �

�

for the loading f�:

(2)

(3)

(4)

where f �
� represents the microvibrational part and f �

�

the stick-slip part (H is the Heaviside function, H � 0
on R*�, H � 1 on R�). Further, the exposants �, �, �
correspond respectively to the solutions of (Eq.1)
where the loading f� is f �

�, f �
�, f �

�
, the features without

exposant are to be understood as general solution
with any loading f� Considering the specific unde-
formed (Fig.4(a)) and deformed (Fig.4(b)) shape of a
wrinkle, some authors explain implied wear mecha-
nism is governed by shear loading specifically seen
on the “tongue” of the ridge, the ridged excrescent part.

The ridges are so deformed under the contact that they
bend down, changing the local stiffness of the material.
We do not comment now the different phenomenolog-
ical mechanisms proposed, like abrasion of the tongues
induced by fracture (Reznikovskii and Brodskii 1967)
or fatigue cracks growth in tongue roots (Thomas
1975), we note simply the importance of the effective
loading seen by the tongues. Then, we model this local
variation of contact conditions by a small perturbation
in elastic (*) and shear (�) modula on the tongue upper
part (Fig.4(b)). Following (Xia 2003), we take account
of a stick-slip motion with different stick (w1) and slip
(w2) frequencies imposed directly into the loading.

The general solution of (Eq. 1) is

(5)

where qs is the steady solution per length unit and q� a
dumped solution per length unit, calculated by recur-
rence. The function qs is spacially L-periodic and q�

is spacially L-pseudo-periodic; it has an increasing
exponential part versus x and a decreasing one with
respect to the time t.

5 ENERGY DISSIPATION

The energy release rate (or local dissipation) of the
system (Stolz 2003), calculated on a period L can be
written:

(6)

This quantity, integrated on the whole contact sur-
face, gives the energy dissipation of the system at any
moment. Three phenomena tend to make the system
dissipate energy: friction, viscosity and wear. Experi-
mentally, the mechanisms interact one to another and
each effect can not be differentiated from the others.
Besides, we assume that every part of DL can be iden-
tify mostly to a single phenomenon. The second part
of the local dissipation DL, noted D{, linear to the
shear modulus �, takes into account the whole fric-
tional dissipation of the system and some viscous
effects. We do not tempt to fix the inter-dependency
of both phenomena since we are preoccupied here with
wear. Consequently, the first term in DL takes account
of the whole wear dissipation.

To isolate the wear dissipation from dissipation
induced by viscosity, we use the property that viscous
effects tend to vanish at infinite time but material
removal dissipates instantly. The q solution (Eq. 5)
found in (Eq.6) has two contributions qs and q�. We
have q�� that tends to vanish with an infinite time like
q�. Then, we define the part of the dissipation exclu-
sively due to wear as:

(7)
Figure 4. Local perturbation of contact condition on the
wrinkles, FN the normal contact effort.
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This term under-estimate the wear dissipation,
because of the dependence between viscosity and wear
dissipations. At this point, we have no reason to consider
that the term DL � Dw � Df is totally due to viscosity.
We assume that the contribution of wear mechanisms
in this dissipation is negligeable and that Dw is the
whole wear energy release rate. The discussion upon
the pertinency of this assumption follows in section 8.

6 WEAR CRITERION

Wear is a continuous loss of material. Experimentally,
at any time, the same abrasion pattern is observed.
Some regular wrinkles appear at the surface and grow
till they reach a critical size. Then, their features remain
steady even if the surface loses some material.

This mechanism is not an explanation but a signa-
ture of wear. We base a wear criterion on these exper-
imental observations. In our model, the steady solution
is given by �sqs. The increasing part of the facies is
��q�. To fit the observation, when the parameter �s

reaches the critical size h, the profile q remains at this
mean level: the wrinkles cease to increase. On a period
L, the profile is meant to increase by the value ��.

In our model, it means that for a sliding length of L,
when �s � h, �� represents the height of lost material.
During that period, the wear dissipation is exactly:

(8)

For every L slide length, DW is the energy release
rate needed to lose some material, neglecting the ini-
tiation period of the wear phenomena (which appears
in Dw). Then the material loss rate is ��. This crite-
rion is local because it depends on the slide length
seen at any point of the contact surface. To determine
the global material loss on the surface, we have to
integrate this criterion in time and in space, consider-
ing the local contact conditions. This criterion is a
discretization of a continuous wear, compatible with a
FEM computation. If a small elementary surface, S its
area, slides on a length L, then the lost material volume
is equal to S��L/L, when the energy release rate
reaches the value DWL/L.

7 PARAMETERS IDENTIFICATION

At mesoscopic scale, we have very few experimental
data that can be both precise and accurate for macro-
scopic numerical simulations. However, the presented
model seems to need a lot of parameters. In fact, to fit
the experimental observations, the steady solution �sqs

of this model has to represent an admissible wrinkle
(Fig.2) for a ridged abrasion pattern. Therefore, to iden-
tify the model’s parameters, we use the geometrical

features of abrasion patterns, seen as a signature of
wear phenomena.

The identification process is divided in three steps.
First, following Fukahori & Yamazaki (Fukahori and
Yamazaki 1994) and Petitet (Petitet 2003) results, a
microridge wear pattern is an experimental solution
of wear mechanism, if there is no stick-slip solicita-
tion. In our model, it means that when f� � f

�
�, a

microridge admissible profile (Fig.2), characterized
by (l�, d�, h�), has to be a steady solution ��

sq
�
s to the

model. We use the inherent relations to identify some
material parameters.

Then, in the general case, the solution pattern is
ridged, characterized by (l�, d�, h�). Some stick-slip
oscillations are observed, information we translate 
in f� � f

�
�, because experimentally (Fukahori and

Yamazaki 1994) the ridge pattern is a development of a
microridge pattern. The steady solution ��

sq
�
s of this

loading has to be a ridge admissible profile (Fig.2). The
last material parameters are determined by these rela-
tions. Finally, we identify the wear criterion parameters
by identification with a classical global wear criterion.

To summerize, the model counts 8 material and
loading parameters (m, �, k, *, �, A, w1, w2) and 6
wear parameters (��

s, �
�
�, D�

W, �
�
s, �

�
�, D�

W). We
assume that the data given by experience are (�, l�,
d�, h�, l�, d�, h�). The first data is the test’s sliding
velocity and the last 6 are given by a rugosimetric
analysis of the contact surface.

7.1 Microridge model

The introduced microridge model presents a steady
solution ��

sq
�
s if and only if the parameter * follows

the relation (Eq.9), that indicates the non explicit
depends of q�

s in the parameter t. Now, if we assume
the existence of that steady solution, it has to be pseudo-
periodic like the microridge patterns it modelizes.
Then, the parameter � is fixed by the relation (Eq. 10)
that comes from the equation q�

s(x) � q�
s(x � L�). To

represent an exact microridge model, the steady solu-
tion �

�
s q�

s has to match the observed quasi-steady
microridge patterns, characterized experimentally by
(l�, d�, h�). The two semi-periods are settled by (Eqs.
11–12), that impose the parameters k and �. There is an
other relation upon the period L� of the microridge
pattern, but it did not give any information, in fact
L�

� d� � l�, which is a combination of (Eqs. 11–12).
To be accurate and experimentally pertinent, the

microridge model has to respect the relations (Eq.
9–12). In these conditions, the theoretical pattern
�

�
sq

�
s (Fig.5), given by the model, fit the experimen-

tal microridge pattern, characterized by (l�, d�, h�).

(9)
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(10)

(11)

(12)

7.2 Complete model

The steady solution ��
sq

�
s of the whole model has to

match the observed quasi-steady critical ridge pat-
terns. Given a pattern �

�
sq

�
s (Fig.5), characterized

experimentally by (l�, d�, h�), we determine three
independent relations between the parameters:

(13)

(14)

(15)

Once more, we have the relation on the period
L�

� d� � l�, linear combination of the first two
equations that give the two semi-periods. As a matter
of material and loading parameters, the model has
exactly one degree of freedom, set as m.

7.3 Wear parameters

In fact, because the introduced model of wear is dis-
crete, the two wear criteria, given by (��

s, �
�
�, D�

W) and
(��

s, �
�
�, D�

W), have to be coherent to each other to rep-
resent an actual continuous mechanism. The difference
between these two criteria is the period where they are
calculated, L� and L�. Then, we have the relation:

(16)

By definition, ��
s and ��

s give the critical size of
the wrinkle pattern for the microridge and ridge mod-
els respectively. So, we have:

(17)

(18)

It remains three wear parameters to identify: D�

W, ��
�

and ��
�. Experimentally, there is no proof that wear rates

of a microridge and a ridge pattern are different. There
is no proof of the opposite neither. We do not answer this
question here, so, for now, we consider the way to iden-
tify ��

� is the same as to identify ��
�, if they are different.

One interest of this model is to be computed in a
finite element algorithm. The mechanism of wear is local
and material loss rates can fluctuate on the whole con-
tact surface. On the other hand, the measured material
loss rates are macroscopic. It means that the experimen-
tal data used to fit our model are the material loss given
here, integrated on space and time.

The only way to identify the wear parameters is to
integrate our model on the contact surface for some
fixed test conditions and to identify the whole lost
material volume given by our model to experimental
data or a classical phenomelogical wear criterion. For
complex solicitations, FEM implementation is needed
but we present here an simple example of analytical
identification of our wear parameters to the Thomas
model (Thomas 1975). This model considers a crack
growing on a single ridge’s basis, on the contrary to our
continuous model of wear. The Thomas energy release
rate, G, is given by the relation:

(19)

and the abraded volume:

(20)

with Ft the shear efforts, L the slide length, � and � some
material coefficients, � the angle of a surface crack.

We consider a single sliding spherical indentor,
following the notations of (Fig.3), on a rubber block,
which has been characterized for the Thomas model.
The surface contact is S. The simplest integration of
our model is when we assume an homogeneous material
loss1. In these conditions, our model give the equations:

(21)

1 This assumption is the worst we can make, because we lose
the best contribution of our model, the localisation of wear.

Figure 5. Solution profile of the model
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(22)

The parameters of our local model are then identi-
fied to the global Thomas model, in the simplest
homogeneous way. Now, considering that the wear in
the center of the contact surface is more severe than in
the edge (Petitet 2003) we precise our parameters.

For example, we can assume a simple Hertz distri-
bution of the tangential shear, given by a Hertz law on
the parameter m. The surface S is given by the contact
radius a, S � �a2. Then, the equations become:

(23)

(24)

We emphasize that the parameter D�

W, given by (Eq.
8), is a complicated function of all the other parame-
ters. In detail, D�

W depends on the shear parameter �
and is increasing with the ridges’ pseudo-period L�.
Moreover, the link between ��

� and L� is not fixed by
the present model and is the object of ongoing exper-
imental research.

8 DISCUSSION

These examples of wear parameters identification are
given here to understand the general method. The
model will be accurate with a whole finite element
model, which represents ongoing research. The point
is that any phenomenological wear model can be iden-
tified with our model, the Thomas model being one of
them. The present model do not attempt to propose a
new interpretation of wear mechanism but a way to
compute experimental data and global models that
already exist in the literature. At mesoscopic scale, our
wear criterion, which is a threshold governing the mean
surface qm(t), is discrete but at macro-scopic scale,
the numerical model will be a representation of the
continuous mechanism.

Now that we have interpreted all our parameters, we
underline that �� is the material loss rate. In the case
of mild wear that is on discuss in this paper, this param-
eter has to be small compared to the geometry. It does
mean that we can neglect ��, which is the loss of
height by period, in front of �s, which is the height of

the pattern. Then, the term DL � Dw � Df can be
neglected in front of Dw, even if some wear dissipa-
tion are involved. It justifies a posteriori the wear cri-
terion we chose.

9 CONCLUSIONS

In this paper, the local behavior of rubber-like material’s
surface in contact with a sliding indentor has been
related to the wrinkled abrasion patterns observed.
Hence, a mesoscopic scale model of mild wear phe-
nomena has been introduced in order to derive macro-
scopic laws, compatible to a finite element model.
The pattern has been seen a signature of wear, but not
a quantification. We identified material and loading
parameters on the only experimental mesoscopic eas-
ily accessible data, the geometrical features of abrasion
patterns. A local wear criterion was introduced, based
on energetic considerations. The whole model has
exactly one local degree of freedom but can be identi-
fied to any phenomenological and global wear model.
To illustrate the wear parameters indentification, we
proposed two different identifications to a simple
Thomas model, one for homogeneous wear, one for
hertzian wear. The model will be complete after imple-
mentation in an numerical model, which is ongoing
research.

REFERENCES

Archard, J. (1957). Elastic deformation and the laws of fric-
tion. Proc. R. Soc. Ser. A. 243, 190.

Fukahori, Y. and H. Yamazaki (1994). Mechanism of rubber
abrasion. Part 2. general rule in abrasion pattern forma-
tion in rubber-like materials. Wear 178, 109–116.

Petitet, G. (2003). Contribution à la compréhension des

mécanismes élémentaires d’usure douce des élastomères

chargés réticulés. Phd these École Centrale, Lyon.
Reznikovskii, M. and G. Brodskii (1967). Abrasion of rub-

ber. Maclaren Palmerton.
Schallamach, A. (1954). On the abrasion of rubber. Proc. R.

Soc. Ser. B. 67, 883–891.
Stolz, C. (2003). Energetic approaches in non-linear

mechanics. AMAS lectures Notes 11. Warsaw: Center of
excellence for advanced materials and structures, IFTR,
IPPT, Polish Acad. Sci.

Thomas, A. (1975). Factors influencing the strength of rub-
bers. Rubber Chemistry and Technology 48, 902–912.

Xia, F. (2003). Modelling of a two-dimensional coulomb
friction oscillator. Journal of Sound and Vibration 265,
1063–1074.

6


