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BIFURCATIONS FOR FAMILIES OF AHLFORS ISLAND MAPS

MATTHIEU ASTORG†, ANNA MIRIAM BENINI∗, AND NÚRIA FAGELLA‡

ABSTRACT. We extend Mañé-Sad-Sullivan and Lyubich’s equivalent characterization of stability
to the setting of Ahlfors island maps, which include notably all meromorphic maps. As a
consequence we also obtain the density of J-stability for finite type maps in the sense of Epstein.

1. INTRODUCTION

A fundamental type of questions in complex dynamics relates to parameter spaces. Con-
sider a complex connected manifold M and a holomorphic family {fλ}λ∈M of holomorphic
self-maps fλ : X → X of a Riemann surface X, or more generally, of partially defined maps
fλ : Wλ → X, with Wλ ⊂ X. How are global dynamics of fλ affected by a variation of the
parameter λ? Of particular interest is the set of parameters λ ∈ M for which the global dy-
namics is stable under perturbation of the parameter in some sense; this is called the stability
locus, and its complement is the bifurcation locus. For families of rational maps on P1 of
given degree, much is understood. In the seminal works [MSS83] and [Lyu84], it has been
proven that several possible notions of stability coincide: continuous motion of the Julia set
(J -stability), stability of periodic orbits, and stability of critical orbits (passivity). As a conse-
quence, the authors obtained the following crucial result: stability is open and dense in any
holomorphic family of rational maps.

In [EL92], Eremenko and Lyubich extended this result to the setting of natural families of
finite type entire maps. An entire map is of finite type if it has only finitely many singular
values (see Section 2.1 for the definition of singular values, and see Definition 1.3 for the
definition of a natural family). The key point in the proof is the absence of collisions between
periodic cycles and the essential singularity ∞. In [ABF21], the analogous result was proven
for natural families of finite type meromorphic maps. In this setting, due to the presence of
poles, it turns out that collisions between periodic points and ∞ do actually occur, creating a
new type of bifurcation to be investigated.

In this paper, we extend the equivalent characterizations of stability to a much broader
class of maps, called Ahlfors Island maps, and we show that stability is dense for a subclass
of these maps, namely finite type maps. Both of these classes were introduced by Epstein in
his PhD thesis ([Eps93]), see also [RR12] and [MR12].
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Definition 1.1 (Ahlfors island map). Let X be a compact Riemann surface and W ⊂ X a non-
empty open set. Let f :W → X be a holomorphic map. We say that f has the N -island property
if given any N Jordan domains D1, . . . , DN ⊂ X whose closures are pairwise disjoint and any
open set U intersecting ∂W , there exists 1 ≤ i ≤ N and an open set Ω ⋐ U ∩ W such that
f : Ω → Di is a conformal isomorphism.

If there exists N ≥ 1 such that f has the N - island property, we say that f is an Ahlfors island
map.

Definition 1.2 (Finite type map). Let X be a compact Riemann surface, and let W ⊂ X be a
non-empty open set. Let f : W → X be a holomorphic map. We say that f is a finite type map
on X if

(1) f is non-constant on every connected component of W
(2) f has no removable singularities
(3) The set of singular values S(f) is finite.

Although it is not immediately apparent from these definitions, finite type maps form a
subclass of Ahlfors island maps: Epstein proved that finite type maps have the N + 1-island
property, where N = cardS(f) (see [Eps93, Proposition 9 p. 88]). The following are exam-
ples of finite type maps:

• Rational maps on the Riemann sphere P1 of degree d ≥ 2.
• Entire or meromorphic maps f : C → P1 with finitely many singular values.
• Maps f : P1 \ E → P1 meromorphic outside of a compact totally disconneted set E

(see [BDH04, BDH01]) and with finitely many singular values.
• Universal covers f : D → P1 \ {0, 1,∞} of the thrice punctured sphere, with X = P1,
W = D; in that case S(f) = {0, 1,∞}.

• Horn maps of rational maps (see [Eps93] for a proof of this fact, and see e.g. [BEE13]
for definitions and properties of horn maps). These maps arise as geometrical limits
of rational maps with a parabolic fixed point.

• Any composition or iterate of finite type maps.
More generally, examples of Ahlfors island maps include:

• Arbitrary meromorphic maps: by a deep theorem of Ahlfors (see [Ahl35], [Ber00,
Theorem A.2]), any transcendental meromorphic map f : C → P1 has the 5-island
property, hence is an Ahlfors island map.

• Horn maps of semi-parabolic Hénon maps (introduced in [BSU17]), satisfy a property
which is very close to the Ahlfors island property, called the small island property (see
[AB24]). All of our results on Ahlfors island maps also apply to maps with the small
island property, although we have chosen to work within the more established setting
of Ahlfors island maps.

• Any composition or iterate of Ahlfors island maps is also an Ahlfors island map.
Observe that if f has the N -island property, then f can omit at most N − 1 points in X. So

for instance if C ⊂ P1 is a closed infinite set, and f : D → P1 \ C is a covering map, then f is
not an Ahlfors island map.

When working with families of rational maps, it is natural to ask that the degree remains
fixed throughout the family. We require a similar type of condition for the families of dynam-
ical systems that we will consider, although they are of course typically of infinite degree.
A somewhat stronger but very convenient notion is that of so-called natural families, to our
knowledge first introduced in [EL92] in the context of entire maps.
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Definition 1.3 (Natural families). Let f :W → X be a holomorphic map, whereX is a compact
Riemann surface, W ⊂ X is an open set, and let M be a connected complex manifold. A natural
family is a family of holomorphic maps {fλ :Wλ → X}λ∈M of the form

(1) fλ := φλ ◦ f ◦ ψ−1
λ ,

where φλ, ψλ : X → X are quasiconformal homeomorphisms depending holomorphically on
λ ∈M , and Wλ = ψλ(W ).

Let fλ := φλ ◦ f ◦ ψ−1
λ be as above. The following basic but important facts follow directly

from the fact that φλ, ψλ are homeomorphisms:
(a) φλ maps S(f) to S(fλ)
(b) ψλ maps critical points of f to critical points of fλ, preserving multiplicities
(c) if f : W → X is a finite type map (respectively an Ahlfors island map), then so are

the maps fλ :Wλ → X.
Generalizing [EL92] and [GK86], Epstein proved in [Eps93] that one can always embed

any finite type map in a (locally) natural family of dimension cardS(f). Moreover, this family
satisfies a universal property in the sense that any other natural family can be lifted to it. More
recently, these results were partially extended to the case of arbitrary entire maps by Ferreira
and van Strien ([FvS23]). We will however not require any of these results, and we refer the
reader to [Eps93], [Eps09], and [FvS23].

Finally, we recall the notion of activity or passivity of a singular value (see [Lev81], [McM94]).

Definition 1.4 (Passive singular value). Let {fλ}λ∈M be a natural family of finite type maps.
Let v(λ) := φλ(v) be a singular value of fλ depending holomorphically on λ near some λ0 ∈M .
We say that v(λ) is passive at λ0 if there exists a neighborhood V of λ0 in M such that:

(1) either fnλ (v(λ)) ∈ X \Wλ for some n ∈ N and for all λ ∈ V ; or
(2) the family {λ 7→ fnλ (v(λ))}n∈N is well-defined and normal on V .

We say that v(λ) is active at λ0 if it is not passive.

Following classical terminology, we will say that a natural family of Ahlfors island map is J -
stable if there is a holomorphic motion of the Julia set respecting the dynamics (see Definition
3.1). The main results in this article are the following.

Theorem 1.5 (J−stability of Ahlfors Islands maps). Let {fλ}λ∈M be a natural family of Ahlfors
island maps which are not automorphisms of X. Let λ0 ∈M . Then the following are equivalent:

(1) there exists a neighborhood of λ0 on which all singular values are passive.
(2) the family is J -stable on a neighborhood of λ0.

As in [ABF21], one of the main difficulties in the proof of this type of result is the possi-
bility of collisions between periodic cycles and the boundary ∂Wλ of the domain of definition
Wλ of the map fλ. In [ABF21], a delicate analysis allowed us to relate this phenomenon to
the activity of asymptotic values (see in particular Theorem A). However, this analysis used
in a crucial way the fact that ∂Wλ = {∞} in the case of a family of meromorphic maps. In
the more general setting of Ahlfors island maps or even finite type maps, ∂Wλ may contain a
continuum, and tracts above asymptotic values may accumulate on such continua in a compli-
cated way. This is why instead of working with the motion of periodic cycles, we consider the
motion of the backward orbit of some point z ∈ J(fλ0), and relate this holomorphic motion
(or lack thereof) to the activity or passivity of singular values (see Proposition 3.3).
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In view of Theorem 1.5, we hereafter define the stability locus of a natural family {fλ}λ∈M
as the set of all λ ∈ M for which one of the above equivalent conditions is satisfied, and
the bifurcation locus as its complement, extending these classical notions to the very general
setting of Ahlfors island maps.

In the case of finite type maps, we can obtain one more equivalent characterization of
stability.

Theorem 1.6 (J−stability of finite type maps). Let {fλ}λ∈M be a natural family of finite type
maps which are not automorphisms of X, and let λ0 ∈M . The following are equivalent:

(1) there exists a neighborhood of λ0 on which all singular values are passive
(2) the family is J -stable on a neighborhood of λ0
(3) there is a constant N ∈ N and a neighborhood U ⊂M of λ0 such that for all λ ∈ U , the

period of any attracting cycle is at most N .

As a consequence, we obtain (as in the case of rational or finite type meromorphic maps):

Corollary 1.7 (Density of J−stable maps). The stability locus is open and dense in natural
families of finite type maps.

On the other hand, using Theorem 1.5 is is very easy to construct families of Ahlfors island
maps with robust bifurcations, i.e. for which the set of J -stability is not dense. For instance:

Corollary 1.8 ( Bifurcation locus with nonempty interior). Let {fλ}λ∈M be a natural family
of Ahlfors island maps and let λ0 ∈M . Assume that

(1) vλ0 belongs to the interior of S(fλ0)
(2) and vλ0 is active at λ0.

Then λ0 is in the closure of the interior of the bifurcation locus.

There are many examples of Ahlfors island maps fλ0 satisfying the first condition of Corol-
lary 1.8; in fact, there exists entire or meromorphic maps f with S(f) = P1.

Acknowledgements. We wish to thank Adam Epstein and Lasse Rempe for helpful discus-
sions.

2. ACTIVITY LOCUS OF AHLFORS ISLAND MAPS

2.1. Preliminaries: Ahlfors island maps, finite type maps and singular values. Choose an
arbitrary hermitian metric on X (the choice is not important since X is compact), and denote
by dX the distance it induces. Unless otherwise stated, distances in X will be measured in
the sense of dX .

We start by recalling the definitions of critical, asymptotic and singular values. Let W,X
be two Riemann surfaces and let f : W → X holomorphic. A point c ∈ W is critical if
f ′(c) = 0. A value v ∈ X is critical if it is the image of a critical point; it is asymptotic if there
is a curve γ : R+ → W such that, as t → ∞, γ(t) → ∂W and f(γ(t)) → v. (Notice that if
W ⊂ X, we do not require γ(t) to converge in X). A logarithmic tract over an asymptotic
value v is a simply connected domain T ⊂ W such that f : T → D \ {v} is an infinite degree
unbranched covering over a topological disk D punctured at v. Any limit point of a (possibly
constant) sequence of critical or asymptotic values is called a singular value. If we denote by
S(f) the set of all singular values of a holomorphic map f : W → X, it is a classical result
that f :W \ f−1(S(f)) → X \ S(f) is a covering map (assuming that X \ S(f) is not empty).
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As a consequence, any asymptotic value that is isolated in S(f) admits logarithmic tracts.
This is in particular the case for finite type maps, although not in general for Ahlfors island
maps.

2.2. Ahlfors island maps. We now move on to basic properties of Ahlfors island maps, in-
cluding a classification of so-called exceptional Ahlfors island maps which will sometimes
require separate arguments. Roughly speaking, these exceptional cases correspond to those
for which few or no points can escape the domain of definition, and include notably rational
and entire maps.

By considering a sequence of neighborhoods shrinking to a boundary point z, the island
property implies that if ∂W ̸= ∅, then there are at most finitely many values which do not
have infinitely many preimages in W under f , and every such value is a singular value. In
particular, if f is an Ahlfors island map of finite degree, then we must have W = X.

Definition 2.1 (Fatou and Julia sets). Let f : W → X be an Ahlfors island map. The Fatou set
F (f) of f is defined as the union of all open subsets U ⊂W such that

(1) either there exists n ∈ N∗ such that fn(U) ∩W = ∅, or
(2) fn(U) ⊂W for all n ∈ N and {fn : U → X}n∈N is normal.

The Julia set is J(f) := X \ F (f).

Observe that by this definition, we have ∂W ⊂ J(f), where ∂W denotes the boundary of
W as a subset of X. Hence if W ̸= X, then the Julia set is non-empty. The theorem below
(stated for finite type maps, but whose proof also works for Ahlfors island map) gives a much
stronger statement:

Theorem 2.2 ([Eps93, p. 100]). Let f : W → X be an Ahlfors island map which is not an
automorphism of X. Then J(f) is non-empty, perfect, and repelling cycles are dense in J(f).

Definition 2.3 (Exceptional Ahlfors islands maps). Let f : W → X be an Ahlfors island map.
Let W∞ := int

⋂
n≥0 f

−n(W ). We say that f is exceptional if either f is an automorphism of X
or W∞ is non-empty and non-hyperbolic.

Lemma 2.4 (Exceptional Ahlfors islands maps). An Ahlfors island map f : W → X is excep-
tional if and only if it is analytically conjugated to one of the following types:

(1) a rational self-map of P1

(2) an affine endomorphism of a complex torus
(3) an entire map
(4) a meromorphic map with exactly one pole, which is also an omitted value
(5) a self-map of C∗ with essential singularities at 0 and ∞
(6) an automorphism of X.

Proof. By definition if f is exceptional and not an automorphism then there is at least one
connected component of W∞ which is not hyperbolic. In particular, there is one connected
component of W which is not hyperbolic. Since W ⊂ X, X is also not hyperbolic. This means
that W and X are isomorphic to one of the following: P1, C, C∗, or a complex torus.

If W ≃ P1, then X = P1 and f is a rational map.
If W is a complex torus, then W = X and f must be an affine endomorphism of X (since

endomorphisms of complex tori are all affine).
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If W ≃ C, then X = P1 (since X is compact) and f is a transcendental meromorphic map
(since the island property implies infinite degree). Moreover, we must have

card
⋃
n≥0

f−n({∞}) ≤ 2,

since otherwise W would be hyperbolic. This implies that f has at most one pole, and
that this pole must be an omitted value; otherwise, by Picard’s theorem, we would have
card

⋃
n≥0 f

−n({∞}) = ∞.
Finally, if W ≃ C∗, then the island property implies that f has two essential singularities

at 0 and ∞, and as before we must have card
⋃

n≥0 f
−n({0,∞}) ≤ 2, so both 0 and ∞ are

omitted values and f is a self-map of C∗.
Conversely, it is clear that maps of the form (1)-(6) are exceptional. □

The following is an immediate consequence of the exhaustive list given above.

Corollary 2.5. If W is hyperbolic and non-compact, then f is not exceptional.

Note that the converse is not true, since a meromorphic map with infinitely many poles is
not exceptional.

In natural families, either the whole family is exceptional or exceptional maps form a
proper analytic subset.

Proposition 2.6 (Natural family with exceptional maps). Let {fλ}λ∈M be a natural family of
Ahlfors island maps. Then either all maps in M are exceptional, or the set of exceptional maps
in M forms a (possibly empty) proper analytic subset of M .

Proof. Let fλ = φλ ◦ fλ0 ◦ ψ−1
λ and assume that f := fλ0 is exceptional. As usual, we may

assume that φλ0 = ψλ0 = id. If f is an automorphism, so is fλ for all λ ∈M and we are done.
Otherwise, by Lemma 2.4, either X = W is a complex torus, or X = P1 and W = P1, C or
C∗. If W = P1 or if W is a complex torus, then clearly all maps in the family are exceptional,
so we can further reduce to the case where W = C or C∗, i.e. f is either meromorphic or
defined on C∗ with two essential singularities.

The meromorphic case was treated in [ABF21, Prop. 5.4], so we only need to deal with
the case where W = C∗, which is similar. By the classification of Lemma 2.4, f omits 0 and
∞. Without loss of generality, we may normalize ψλ so that it always fixes 0 and ∞. Then
for all λ ∈ M , φλ(0) and φλ(∞) are omitted values of fλ. By Picard’s theorem, fλ is then
exceptional if and only if φλ({0,∞}) = {0,∞}. Indeed, if this relation is not satisfied, then at
least one of 0 or ∞ is not a Picard exceptional value, so that say card f−1

λ ({0,∞}) = ∞ and
fλ is not exceptional. By connectivity of M , the set of λ ∈ M such that fλ is exceptional is
then exactly

E := {λ ∈M : φλ(0) = 0 and φλ(∞) = ∞}.
This set is either all of M or a (possibly empty) proper analytic subset of M . □

We record here the following well-known version of Montel’s theorem (see e.g. [Mil06,
Corollary 3.3]).

Lemma 2.7 (Montel’s Theorem). Let U, V be hyperbolic Riemann surfaces. Then the family of
maps {f | f : U → V holomorphic} is a normal family.
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Lemma 2.8 below generalizes to the case of non-exceptional Ahlfors island maps the well-
known characterization of the Julia set as the closure of the set of prepoles of f . Recall that
a transcendental meromorphic map f is non-exceptional if and only if there is at least one
non-omitted pole.

Lemma 2.8 (Characterization of J(f)). Let f : W → X be a non-exceptional Ahlfors island
map. Then J(f) =

⋃
n≥0 f

−n(∂W ).

Proof. The inclusion
⋃

n≥0 f
−n(∂W ) ⊂ J(f) is always true by definition. Conversely, if z /∈⋃

n≥0 f
−n(∂W ), then there exists a neighborhood U of z such that fn(U) ∩ ∂W = ∅ for all

n ∈ N. Therefore either there exists n ∈ N such that fn(U)∩W = ∅, and hence z ∈ F (f); or
fn(U) ⊂ W for all n ∈ N, i.e. U ⊂ W∞. Since f is non-exceptional, W∞ is hyperbolic. Thus
(fn|W∞)n∈N is normal by Lemma 2.7 and z ∈ F (f).

□

For a holomorphic map f with an isolated essential singularity, a point z0 is called Picard
exceptional if and only if f−1(z0) has finite cardinality. By analogy, with introduce the follow-
ing terminology.

Definition 2.9 (Picard exceptional value). Let f : W → X be an Ahlfors island map with
∂W ̸= ∅. We will say that v ∈ X is a Picard exceptional value if f−1(v) is finite (possibly
empty).

By definition, if f has the N island property and ∂W ̸= ∅, then it has at most N − 1 Picard
exceptional values. Lemma 2.10 below generalizes the characterization of the Julia set as the
closure of the backward orbit of any point z0 which is not Picard exceptional. One can show
that Picard exceptional values are always asymptotic values.

Lemma 2.10 (Preimages of non exceptional values are dense in J(f)). Let f : W → X be a
non-exceptional Ahlfors island map, and let p ∈ N∗. Let z0 ∈ J(f) and assume that z0 is not a
Picard exceptional value. Then

⋃
n≥0 f

−np({z0}) is dense in J(f).

Proof. Since repelling cycles are dense in the Julia set by Theorem 2.2 we have that J(f) =
J(fp), hence we may assume without loss of generality that p = 1.

Let U ⊂W be an open set which intersects J(f).
By Lemma 2.8, there exists n ∈ N∗ and z ∈ U such that fn(z) ∈ ∂W .
Since z0 is not a Picard exceptional value and f is non-exceptional (hence has infinite

degree), z0 has infinitely many preimages : choose N+1 such preimages x1, . . . , xN+1, where
f has the N -island property, and let D1, . . . , DN+1 be Jordan domains with pairwise disjoint
closures containing each xi. By the island property, there exists 1 ≤ i ≤ N+1 and Ω ⋐ fn(U)∩
W such that f : Ω → Di is a conformal isomorphism. In particular, fn+2 : U∩f−n(Ω) → f(Di)
is well-defined and surjective; in other words, there exists z1 ∈ U such that fn+2(z1) = z0, as
desired. □

2.3. Activity of singular values and preliminary results. In this section we collect some
results about activity and passivity of singular values in natural families of Ahlfors island
maps. In what follows, we fix a natural family {fλ = φλ ◦f ◦ψ−1

λ }λ∈M of Ahlfors island maps.
Given a singular value vλ0 we consider the holomorphic function v(λ) := φλ(vλ0). Since

{fλ}λ∈M is a natural family, vλ is a singular value for fλ for each λ ∈ M , of the same type
as vλ0 . With this in mind we often refer to v(λ) as a singular value, although technically it is
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a holomorphic function whose value v(λ) is a singular value for fλ for each fixed λ. We also
use the equivalent notation vλ = v(λ).

Recall the definition of activity/passivity given in the introduction.

Definition 2.11 (Passive singular value). Let {fλ}λ∈M be a natural family of finite type maps.
Let v(λ) be a singular value (or a critical point) of fλ depending holomorphically on λ near some
λ0 ∈M . We say that v(λ) is passive at λ0 if there exists a neighborhood V of λ0 in M such that:

(1) either fnλ (v(λ)) ∈ X \Wλ for some n ∈ N and for all λ ∈ V ; or
(2) the family {λ 7→ fnλ (v(λ))}n∈N is well-defined and normal on V .

We say that v(λ) is active at λ0 if it is not passive.

Definition 2.12 (Activity locus). Given a singular value vλ we define its activity locus as the
set of parameters

A(vλ) = {λ0 ∈M | vλ is active at λ0}.

It is important to remark that the concept of activity must be associated only to non-
persistent behaviour.

Definition 2.13 (Persistence). We say that fnλ0
(v(λ0)) ∈ X \Wλ0 (resp. fnλ0

(v(λ0)) ∈ ∂Wλ0)
persistently if for all λ in a neighborhood of λ0, we have fnλ (v(λ)) ∈ X \Wλ (resp. fnλ (v(λ)) ∈
∂Wλ).

Lemma 2.14 (Persistence property). Let {fλ}λ∈M be a natural family of finite type maps. Let
v(λ) be a singular value (or a critical point) of fλ depending holomorphically on λ ∈ M If vλ.
If n ∈ N is such that fnλ (vλ) ∈ ∂Wλ for all λ in an open subset of M , then fnλ (vλ) ∈ ∂Wλ

persistently on M .

The proof follows almost inmediately from the following lemma, which will also be useful
later on.

Lemma 2.15 ([ABF21]). Let (ψλ : X → X)λ∈M be a holomorphic family of quasiconformal
homeomorphisms, such that ψλ0 = id and dimM = 1. Let g : M → X be a holomorphic map
and G(λ) := ψ−1

λ ◦ g(λ). Then either G is constant, or there are neighborhoods U of λ0 in M
and V of G(λ0) in X such that G : U → V is a branched cover, ramified only possibly at G(λ0).

In fact, one could prove that G is even quasiregular ([Ber13]), although we will not require
this.

Proof of Lemma 2.14. Let G(λ) := ψ−1
λ ◦fnλ (vλ). By the previous Lemma, the map G :M → X

is either locally constant (hence constant since M is connected) or open. Since G(λ) ∈ ∂W
if and only if fnλ (vλ) ∈ ∂Wλ, and ∂W has empty interior, the map G cannot be open, and is
therefore constant. □

The next lemma, though technical, is standard in rational dynamics. It will be used to
locally follow holomorphically preimages of a marked point, up to passing to a finite branched
cover in parameter space. Since we work with non-rational maps, we give here a detailed
proof.

Lemma 2.16 (Holomorphic dependence of preimages). Let S,X be Riemann surfaces, U ⊂ X
be a domain, and F : S × U → X be a holomorphic map such that for all λ ∈ S, the map
F (λ, ·) is non-constant on U . Let γ : S → X be a holomorphic map, and let (λ0, zi) ∈ S × U
(where zi, 1 ≤ i ≤ N are N distinct points in U) be such that F (λ0, zi) = γ(λ0). Then there
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is a neighborhood V of λ0 in S, a finite branched cover π : D → V and holomorphic maps
D ∋ t 7→ xi(t) ∈ U such that xi(0) = zi and for all t ∈ D,

F (π(t), xi(t)) = γ ◦ π(t).

Proof. Up to restricting U , we may assume without loss of generality that F (λ0, ·) extends
holomorphically in a neighborhood of U in X, and that for all z ∈ ∂U , F (λ0, z) ̸= γ(λ0).

Let
Z := {(λ, (y1, . . . , yN )) ∈ S × UN : F (λ, yi)− γ(λ) = 0 for 1 ≤ i ≤ N}

and let Z0 denote the irreducible component of Z containing (λ0, z1, . . . , zN ). Let πS :
(λ, x1, . . . , xN ) 7→ λ denote the projection from Z0 to S. Then Z0 is an analytic subset of
S ×UN of complex dimension one. Indeed, if Z0 had higher dimension, then π−1

S ({λ0})∩Z0

would have positive dimension, which would contradict the assumption that F (λ0, ·) is non-
constant on U .

The set of singular points of Z0 is discrete (since it is a codimension at least 1 analytic subset
of Z0), and so is the set of critical points of the projection πS restricted to Z0. Therefore, there
exists a small disk V ⊂ S containing λ0 such that Z∗

1 := Z0 ∩ π−1
S (V \ {λ0}) is smooth and

πS : Z∗
1 → V \ {λ0} has no critical points. Up to taking a smaller V , we may also assume

that for all (λ, z) ∈ V × ∂U , F (λ, z) ̸= γ(λ). Then the map πS : Z∗
1 → V \ {λ0} is proper.

Indeed, let K ⊂ V \ {λ0} denote a compact set, and let (λn, zn) ∈ π−1(K). Up to extracting a
subsequence, we may assume that (λn, zn) → (λ, z) ∈ (K×U)∩Z∗

1 . But by our restriction on
V , we have z ∈ U . This proves that π−1

S (K) is compact in Z∗
1 , hence that πS : Z∗

1 → V \ {λ0}
is proper. It is also surjective (because it is open and closed, and S is connected).

Since πS : Z∗
1 → V \{λ0} is proper, surjective and has no critical points, it is a covering map.

Therefore, there exists a conformal isomorphism h : D∗ → Z∗
1 and a degree d ≥ 1 covering

map π : D∗ → V \ {λ0} such that πS ◦ h = π. The map h extends to a holomorphic map
h : D → S × UN such that h(0) = (λ0, z1, . . . , zN ) and the map π extends to a holomorphic
map π : D → V with π(0) = λ0. For 1 ≤ i ≤ N , let πi : S×UN → U be the projection defined
by πi(λ, x1, . . . , xN ) = xi.

We can then set xi := πi ◦ h; it is straightforward to check that they have the desired
properties. □

We now show that if a singular value is mapped to ∂Wλ0 at a parameter λ0 ∈M , the latter
parameter can be perturbed in such a way that the singular value has any prescribed behavior.

Proposition 2.17 (Shooting Lemma). Let {fλ}λ∈M be a natural family of Ahlfors island maps.
Let λ0 ∈M and n ≥ 0 be such that a singular value vλ satisfies fnλ0

(vλ0) ∈ ∂Wλ0 non persistently.
Let λ 7→ γ(λ) be a holomorphic map such that γ(λ0) is not Picard exceptional. Then we can find
λ′ arbitrarily close to λ0 such that

fn+2
λ′ (vλ′) = γ(λ′).

Since Picard exceptional values are also asymptotic values, Proposition 2.17 applies in
particular whenever γ(λ0) /∈ S(fλ0). To prove Proposition 2.17 we need the following lemma.

Lemma 2.18 ([ABF21]). Let V be a Jordan domain, and let f, g be holomorphic functions in
a neighborhood of V . Suppose that g(V ) ⊂ f(V ) and g(∂V ) ∩ f(∂V ) = ∅. Then there exists
λ ∈ V such that f(λ) = g(λ).

Proof of Proposition 2.17. First, we pick an arbitrary one-dimensional slice containing λ0 in
the parameter space M on which λ 7→ fnλ (v(λ)) is not constant, and we identify M with
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D(λ0, 1) ⊂ C in the rest of the proof. By assumption fλ = φλ ◦ f ◦ ψ−1
λ and we may assume

without loss of generality that φλ0 = ψλ0 = Id and hence f = fλ0 . Let x := fnλ0
(vλ0), and

hence, by assumption, x ∈ ∂W .
Let N ∈ N be such that f (and therefore each map fλ) have the N -island property. Since

by assumption γ(λ0) has infinitely many preimages, let z0, . . . , zN denote N + 1 such distinct
preimages. We apply Lemma 2.16 to the map F (λ, z) := fλ(z) and to the zi, thus there
exists a branched cover π : D → V , with π(0) = λ0, where V is a neighborhood of λ0, and
holomorphic maps t 7→ xi(t) on D such that fπ(t)(xi(t)) = γ ◦ π(t), and xi(0) = zi. In other
words, up to replacing the family {fλ}λ∈V by the family {fπ(t)}t∈D, we may assume that each
preimage zi(λ) moves holomorphically, satisfying fλ(zi(λ)) = γ(λ). To keep notations light,
we will still denote this reparametrized family by {fλ}λ∈V . Let Di (0 ≤ i ≤ N + 1) be Jordan
domains with pairwise disjoint closures each containing zi, and let δ > 0 be small enough
that for all 0 ≤ i ≤ N and λ ∈ D(λ0, δ), we have zi(λ) ∈ Di.

Decreasing δ if necessary, the function G(λ) := ψ−1
λ (fnλ (vλ)) is open on D(λ0, δ) by Lemma

2.15, and G(λ0) = x ∈ ∂W . It follows that G(D(λ0, δ)) contains a disk ∆ ⊂ X of dX -radius
say ϵ > 0 centered at x. By the island property, there exists 0 ≤ i ≤ N and U ⋐ ∆ ∩W such
that f : U → Di is a conformal isomorphism. Up to relabeling, we will assume without loss
of generality that i = 0.

Since U is contained in the image of G, we let V1 denote a connected component ofG−1(U)
inside D(λ0, δ). If D0 (and therefore U) is small enough, then V1 is a Jordan domain as well.
Let us now define H(λ) := fn+1

λ (vλ). Our goal is to show that z0(V1) ⊂ H(V1) so that Lemma
2.18 applied to the maps λ 7→ z0(λ) and H gives the result.

In order to see this we write

fn+1
λ (vλ) = φλ ◦ fλ0 ◦ ψ

−1
λ ◦ fnλ (vλ) = φλ ◦ fλ0 ◦G(λ),

and therefore
H(V1) = φλ(fλ0(G(V1))) = φλ(fλ0(U)) = φλ(D0).

Now since δ can be taken arbitrarily small, the values of λ can be arbitrarily close to λ0
and therefore φλ is arbitrarily close to the identity. It follows that H(V1) = φλ(D0) ≃ D0,
while z0(V1) ⊂ z0(D(λ0, δ)) ⊂ D0. Moreover, ∂z0(D(λ0, δ)) separates the boundaries of these
two sets, so the hypotheses of Lemma 2.18 can be applied. This gives the existence of λ′

arbitrarily close to λ0 such that fn+1
λ′ (vλ′) = z0(λ

′), and since fλ′(z0(λ
′)) = γ(λ′), we do have

fn+2
λ′ (vλ′) = γ(λ′).

□

With the tools above, we can give some additional characterizations of activity of singular
values, which will be usefull to prove approximation theorems in the next section.

Proposition 2.19 (Active singular values). A singular value v(λ) is active at λ0 if and only if
one of the following three cases occurs:

(1) There exists n ≥ 0 such that fnλ0
(v(λ0)) ∈ ∂Wλ0 , non persistently.

(2) There exists an injective sequence of parameters λk → λ0, such that for some sequence of
integers nk → ∞,

fnk
λk

(v(λk)) ∈ ∂Wλk
.

(3) There exists a neighborhood U of λ0 such that the family (λ 7→ fnλ (vλ))n∈N is well defined
and not normal in U . This case can only occur if f is exceptional.
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Proof of Proposition 2.19. Taking the formal negation of the definition of passivity, we obtain
that v(λ) is active at λ0 if and only if both of the following conditions are satisfied for all
neighborhood V of λ0:

(a) for all n ≥ 0, there exists λ ∈ V such that fnλ (vλ) ∈Wλ; and
(b) the family of holomorphic maps {λ 7→ fnλ (vλ)} is either not well-defined on V , or it is

well-defined but non-normal.

It is clear that condition (3) implies both (a) and (b), and that conditions (1) and (2)
each imply (b). Let us prove that (1) also implies (a). Assume that fnλ0

(v(λ0)) ∈ ∂Wλ0

non-persistently. Let G(λ) := ψ−1
λ ◦ fnλ (v(λ)). Since Wλ := ψλ(W ), we have G(λ) ∈ W ⇔

fnλ (v(λ)) ∈ Wλ, and G(λ) ∈ ∂W ⇔ fnλ (v(λ)) ∈ ∂Wλ. By Lemma 2.15, the map G is either
open or constant near λ0; and G(λ) is non-constant since by assumption fnλ0

(v(λ0)) ∈ ∂Wλ0

non-persistently. Therefore, there exists λ ∈ V such that G(λ) ∈ W , hence fnλ (v(λ)) ∈ Wλ.
Now that we know that (1) implies (a), it is clear that (2) also implies (a). We have therefore
proved that v(λ) is active at λ0 if one of the three cases (1), (2) or (3) occurs. Let us now
prove that case (3) can only occur if fλ0 is exceptional.

Suppose that (3) holds. Then X cannot be hyperbolic by Lemma 2.7, and therefore X = P1

or a complex torus. But endomorphisms of complex tori have no singular values by Hurwitz’s
formula, so this last possibility is in fact excluded; therefore, X = P1.

Assume for a contradiction that fλ0 is not exceptional. Then in particular
⋃

n≥0 f
−n
λ0

(∂W ) is
infinite, by Lemma 2.8, so there exists z1, z2, z3 ∈ P1 three distinct points such that fNλ0

(x1) =

fNλ0
(x2) = fNλ0

(x3) =: y ∈ ∂Wλ0 for some N ≥ 1. Let D ⊂ M be a one-dimensional disk
passing through λ0 such that {λ 7→ fnλ (vλ) : n ∈ N} is still well-defined but non-normal on D.
By Lemma 2.16 applied with F (λ, z) := fNλ (z) and γ(λ) := ψλ(y), there exists a neighborhood
V of λ0 in D, a branched cover π : D → V and holomorphic maps xi : D → P1 such that for
all t ∈ D,

fNπ(t)(xi(t)) = ψπ(t)(y).

The family {t 7→ fnπ(t)(vπ(t)) : n ∈ N} is non-normal on D, so by Montel’s theorem it cannot
omit the three moving values x1(t), x2(t), x3(t); therefore, there exists t1 ∈ D and n ∈ N such
that say fnπ(t1)(vπ(t1)) = x1(t1), which means that fN+n

λ1
(vλ1) ∈ ∂Wλ1 , where λ1 := π(t1). But

this contradicts the assumption that {λ 7→ fnλ (vλ) : n ∈ N} is well-defined on D, hence on V .
Therefore, f is exceptional.

Conversely, assume that both (a) and (b) hold. There are two possibilities: first, if there
exists a neighborhood V such that {λ 7→ fnλ (vλ)} is well-defined but not normal, then we are
in case (3). Assume from now on that this is not the case, and let Gn(λ) := ψ−1

λ ◦ fnλ (vλ) as
above. Then, for all neighborhood V of λ0, there exists n ∈ N such that Gn(V )∩Wλ0 ̸= ∅ (by
(a)) and Gn(V )∩ (X \Wλ0) ̸= ∅ (because {λ 7→ fnλ (vλ)} is not well defined), so that Gn(V )∩
∂Wλ0 ̸= ∅. By considering a basis of neighborhoods (Vk)k∈N of λ0, we obtain a sequence λk →
λ0 (not necessarily injective) and a sequence of integers (nk)k∈N (not necessarily unbounded)
such that fnk

λk
(vλk

) /∈Wλk
. If the sequence (nk) is bounded, then up to extraction it is constant

equal to some N ∈ N; and by continuity we have fNλ0
(vλ0) ∈ ∂W . By (a) this relation is not

persistent on M , and so we are in case (1).
If the sequence (nk) is unbounded, then up to extraction we can assume that it is strictly

increasing. Then the sequence (λk) must be injective, and so we are in case (2).
□
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2.4. Density Theorems. In this section we prove that given the activity locus A(vλ) of a
singular value vλ, parameters for which vλ has a Misiurewicz relation and parameters for
which the orbit of vλ lands on the boundary of Wλ are dense in A(vλ). We also show that
A(vλ) is nowhere locally contained in a proper analytic subset of M .

Definition 2.20 (Misiurewicz relation). Let {fλ}λ∈M be a natural family of holomorphic maps,
and λ0 ∈M . We say that fλ0 has a Misiurewicz relation if there exists a singular value vλ0 , n ∈ N
and a repelling periodic point zλ0 such that fnλ0

(vλ0) = zλ0 .

We say that a Misiurewicz relation is persistent if it holds on a parameter neighborhood of
λ0.

Lemma 2.21 (Misiurewicz relations imply activity). Let {fλ}λ∈M be a natural family of Ahlfors
island maps. Let λ0 ∈ M be such that fλ0 has a Misiurewicz relation, i.e. there exists vλ0 ∈
S(fλ0) and n ∈ N such that fnλ0

(vλ0) is a repelling periodic point, and this relation is not
persistent. Then vλ is active at λ0.

Proof. By definition of activity, we may assume without loss of generality that there exists a
neighborhood V of λ0 on which {λ 7→ fkλ (vλ) : k ∈ N} are well-defined (otherwise, vλ is
active at λ0 and we are done). Then the proof is the same as in the classical case of e.g.
rational maps. We reproduce it here for the convenience of the reader.

Let p denote the period of the repelling cycle. There exists a neighborhood U of λ0 such
that the repelling periodic point zλ0 = fnλ0

(vλ0) moves holomorphically over U as λ 7→ zλ,
and remains repelling. Moreover, there exists r > 0 such that the cycle of zλ is linearizable on
D(zλ, r), that is, there exists local biholomorphisms ζλ : D(0, r) → Wλ depending holomor-
phically on λ, such that ζλ(0) = zλ and fpλ ◦ ζλ(z) = ζλ(ρλz), where ρλ is the multiplier of the
repelling cycle. Let u(λ) := ζ−1

λ (fnλ (vλ)). Then fn+kp
λ (vλ) = fkpλ ◦ ζλ(u(λ)) = ζλ(ρ

k
λu(λ)). But

since by assumption, u(λ0) = 0 and u does not vanish identically and |ρλ| > 1, it is clear that
the family {λ 7→ fn+kp

λ (vλ)}k∈N is not normal at λ0, hence that vλ is indeed active at λ0. □

Lemma 2.22 (Activity loci are not contained in analytic subsets). Let {fλ}λ∈M be a natural
family of Ahlfors island maps, and let A(vλ) be the activity locus of a singular value vλ. Then
A(vλ) is nowhere locally contained in a proper analytic subset of M . More precisely, if λ0 ∈
A(vλ) ∩ H, where H ⊂ M is a proper analytic subset, then for every neighborhood U of λ0 in
M , U ∩ (A(vλ) \H) ̸= ∅.

Proof. Let λ0 ∈ A(vλ), H a proper analytic subset of M containing λ0, and U be a small
polydisk centered at λ0 in M . Assume for a contradiction that A(vλ) ∩ U ⊂ H ∩ U . Let
hn(λ) := fnλ (vλ), wherever this expression is well-defined. Let zλ0 be a repelling periodic
point of period at least 3 for fλ0 which is not Picard exceptional. Let zλ be the corresponding
repelling periodic point for fλ given by the Implicit Function Theorem. Up to reducing U , we
may assume that λ 7→ zλ is defined over U .

Since λ0 ∈ A(vλ), there is no N ∈ N such that hN (λ) ∈ X \Wλ for all λ ∈ U . By Lemma
2.14 and the assumption that v(λ) is active at λ0, we cannot have that fnλ (vλ) ∈ ∂Wλ for all
λ in an open subset of U . Therefore, if λ ∈ U and n ∈ N are such that hn(λ) ∈ ∂Wλ, then
λ ∈ A(vλ) ∩ U , therefore in H.

We now distinguish two cases:
(1) either there exists n0 ∈ N and λ1 ∈ U such that hn0(λ1) ∈ ∂Wλ1 non-persistently;
(2) or for every n ∈ N, hn is well-defined over U but not normal.
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Let us first treat case (1). Let D be a one-dimensional holomorphic disk passing through
λ1 and not contained in H. Then by the choice of λ1 and our previous observation, hn0(λ1) ∈
∂Wλ1 and there exists λ ∈ D \ {λ1} such that hn(λ) /∈ ∂Wλ. By the Shooting Lemma (Propo-
sition 2.17) applied with γ(λ) := zλ and M := D, we find some λ2 ∈ D \ {λ1} such that
hn0+1(λ2) = zλ2 , in other words, vλ2 is Misiurewicz. Therefore λ2 ∈ A(vλ2), but λ2 /∈ H, a
contradiction.

Case 2 follows from a similar but more classical application of Montel’s theorem. □

Proposition 2.23 (Density of truncated parameters). Assume that fλ0 is a non-exceptional
Ahlfors island map. Let vλ be a singular value, and assume that it is active at λ0. Then there
exists nk → +∞ and λk → λ0 such that fnk(vλk

) ∈ ∂Wλk
non persistently.

Proof. Given N ∈ N, we will construct λ arbitrarily close to λ0 such that fnλ (vλ) ∈ ∂Wλ, for
some n ≥ N . In view of Lemma 2.10 and since f is not exceptional, the set

⋃
n≥0 f

−n(∂W ) is
infinite. By the Ahlfors Island property we may find n ≥ N and x ∈ f−n(∂W ) with infinitely
many preimages. By Lemma 2.16 applied to F (λ, z) := fnλ (z) and γ(λ) := ψλ ◦ fn(x) ∈
∂Wλ, up to passing to a branched cover in parameter space, we may assume without loss of
generality that there is a local holomorphic germ λ 7→ xλ, with xλ0 = x and for all λ close
enough to λ0, fnλ (xλ) ∈ ∂Wλ.

By Proposition 2.19 and since vλ is active at λ0, we may assume without loss of generality
that there is n0 ∈ N such that fn0

λ0
(vλ0) ∈ ∂Wλ1 non-persistently. Applying Lemma 2.17 with

γ(λ) := xλ, we find λ1 arbitrarily close to λ0 such that fn0+2
λ1

(vλ1) = xλ1 , which implies
fn0+2+n
λ1

(vλ1) = yλ1 ∈ ∂Wλ1 .
□

Proposition 2.24 (Density of Misiurewicz parameters). Let vλ be a singular value, and assume
that it is active at λ0. Let xλ0 be a repelling periodic point for an Ahlfors island map fλ0 of period
at least 3 which is not a Picard exceptional value, and let xλ be its analytic continuation in some
neighborhood of λ0. Then there is nk → +∞ and λk → λ0 such that

fnk
λk

(vλk
) = xλk

.

Proof. Let us first assume that f is not exceptional. Let ϵ > 0 and N ∈ N, and let λ 7→ xλ
denote the holomorphic motion of xλ0 as a repelling periodic point, which we may assume to
be well-defined for λ ∈ B(λ0, ϵ) (up to taking ϵ > 0 small enough). By Proposition 2.23, there
exists λ1 ∈ B(λ0, ϵ2) and n1 > N such that fNλ1

(vλ1) ∈ ∂Wλ1 (non-persistently). By Proposition
2.17, there exists λ2 ∈ B(λ1, ϵ2) such that fn1+2

λ2
(vλ2) = xλ2 , and we are done.

Asssume now that f is exceptional. By Proposition 2.6, either for all λ ∈ M we have that
fλ is exceptional, or the set of λ ∈M such that fλ is exceptional is a proper analytic subset of
M . In the latter case, we may use Lemma 2.22 to perturb slightly λ0 to remain in the activity
locus of vλ0 but outside this analytic set, thus reducing to the non-exceptional case. Finally,
if all maps fλ are exceptional, then we can just apply the classical argument using Montel’s
theorem. □

3. CHARACTERIZATION OF STABILITY: PROOF OF THEOREM 1.5

In this section we prove that the backward orbits of repelling periodic points move holo-
morphically, provided they do not collide with the postsingular set. We then use this fact to
prove Theorem 1.5.

In what follows M always denotes a connected complex manifold.
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Definition 3.1 (Holomorphic motions respecting the dynamics). A holomorphic motion of a
set A ⊂ X over an open set U ⊂M with basepoint λ0 ∈ U is a map H : U ×A→ X given by
(λ, x) 7→ Hλ(x) such that

(1) for each x ∈ A , λ 7→ Hλ(x) is holomorphic ,
(2) for each λ ∈ U , Hλ(·) is injective on A, and,
(3) Hλ0 ≡ Id.

A holomorphic motion of a set X respects the dynamics of the holomorphic family {fλ}λ∈M
if

Hλ ◦ fλ0 = fλ ◦Hλ

whenever both x and fλ0(x) belong to A.

Definition 3.2 (J -stability). Let {fλ}λ∈M be a natural family of Ahlfors maps. Given λ0 ∈M
the map fλ0 is J -stable if there exists a neighbourhood U of λ0 over which the Julia sets
move holomorphically, and the holomorphic motion respects the dynamics.

Let
O−(w, g) :=

⋃
n≥0

g−n({w})

denote the backwards orbit of w under the map g.
We define the postsingular set of fλ as

⋃
n≥0 f

n
λ (S(fλ)) (without taking the closure).

Proposition 3.3 (Holomorphic motion of backward orbits). Let {fλ : Wλ → X}λ∈M be a
natural family of Ahlfors island maps. Let z0 be a repelling periodic point of period p ≥ 1 for
f := fλ0 . Let U be a simply connected neighborhood of λ0 over which the analytic continuation of
z0, denoted by z0(λ), remains repelling, and suppose that for all λ ∈ U , fλ has no non-persistent
Misiurewicz relations of the form fnλ (v(λ)) = z0(λ), where v(λ) is either a critical or asymptotic
value. Then, there is a holomorphic motion

H : U ×O−(z0, f
p) −→ O−(z0(λ), f

p
λ)

(λ, z) 7−→ z(λ)

preserving the dynamics of fpλ .

Proof. Let φλ, ψλ : X → X be the quasiconformal homeomorphisms such that fλ = φλ◦f◦ψ−1
λ

(see Definition 1.3). We will prove the statement in several steps. We shall first show that for
every choice of n ≥ 1, the set f−n

λ ({z0}) moves holomorphically with λ ∈ U . Then, we will
prove that there are no collisions between the motion of points belonging to f−m

λ ({z0}) and
f−k
λ ({z0}) when k ̸= m provided both are multiples of p. For n = 1 consider the set

Z1 = {(λ, z) | fλ(z) = z0(λ)},
which is an analytic hypersurface of U ×X. Let

π1 : Z1 →M

denote the projection onto the first coordinate.

Step 1. We first claim that every irreducible component of Z1 is the graph of a holomorphic
map from U to X.

We will first treat the case where z0 ∈ S(f). Let (λ1, z1) ∈ Z1. By assumption, Misiurewicz
relations (if there are any) are persistent, and fpλ0

(z0) = z0 is such a relation. Therefore for
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all λ ∈ U , z0(λ) ∈ S(fλ) and, since fλ is a natural family, z0(λ) = φλ(z0). Let z1(λ) :=
ψλ ◦ ψ−1

λ1
(z1). Then, for all λ ∈ U :

fλ(z1(λ)) = φλ ◦ f ◦ ψ−1
λ ◦ ψλ ◦ ψ−1

λ1
(z1)

= φλ ◦ φ−1
λ1

◦ φλ1 ◦ f ◦ ψ−1
λ1

(z1)

= φλ ◦ φ−1
λ1

◦ fλ1(z1)

= φλ ◦ φ−1
λ1

(z0(λ1))

= φλ(z0) = z0(λ).

Therefore, for all λ ∈ U , (λ, z1(λ)) ∈ Z1, which proves Step 1 in the case where z0 ∈ S(f).
We now assume (in the rest of the proof of Step 1) that z0 /∈ S(f). Let (λ1, z1) ∈ Z1 and

let Z denote the irreducible component of Z1 containing (λ1, z1). Again by the persistence
assumption, z0(λ1) is not a critical value, and hence z1 is not a critical point of fλ1 . By the
Implicit Function Theorem, Z is then a complex manifold and π1 : Z → U is locally invertible.
It is then well known that π1 is a covering unless it has as asymptotic value.

So suppose that λ∗ is an asymptotic value of π1, i.e. there exists a path (λt, zt) ∈ Z1,
t ∈ [0, 1) such that λt → λ∗ while zt → ∂Wλ∗ , as t → 1. Let φt, ψt, ft denote respectively
φλ(t), ψλ(t), fλ(t). Then, by definition of Z1,

ft(zt) = (φt ◦ f ◦ ψ−1
t )(zt) = z0(λ(t)),

and hence

(2) f(ψ−1
t (zt)) = φ−1

t (z0(λ(t))).

Now, when t→ 1 we have that zt → ∂Wλ∗ , hence ψ−1
t (zt) → ∂Wλ0 , since ψλ∗(W0) =Wλ∗ . On

the other hand, since z0(λ(t)) → z0(λ
∗) it follows that φ−1

t (z0(λ(t))) → φ−1
λ∗ (z0(λ

∗)), which
makes this point an asymptotic value of f by (2), because t 7→ ψ−1

t (zt)) is a curve converging
to ∂W0. Hence z0(λ∗) is an asymptotic value for fλ∗ , contradiction. Thus π1 : Z → U is
a covering map, and since U is simply connected, it is invertible, which implies that Z is a
holomorphic graph above U . This concludes the proof of Step 1.

Step 2. The irreducible components of Z1 are pairwise disjoint.

Indeed, let us assume for a contradiction that Z and Z ′ are two distinct irreducible com-
ponents of Z1 and (λ1, z1) ∈ Z ∩ Z ′. Then z1 must be a critical point for fλ1 , and z0(λ1) must
be a critical value. But then by the proof of Step 1, both Z and Z ′ are the graph of the same
map λ 7→ ψλ ◦ ψ−1

λ1
(z1), so Z = Z ′, a contradiction.

Step 3: Conclusion. The set O−(z0(λ), f
p
λ) =

⋃
n≥0 f

−np
λ ({z0(λ)}) moves holomophically

over U .

Steps 1 and 2 prove that the set Z1 is a disjoint union of holomorphic graphs Γi =
{(λ, zi(λ)), λ ∈ U} over U , i.e. that the set f−1

λ ({z0(λ)}) moves holomorphically over U ,
with Hλ(zi(λ0)) := zi(λ).

Now assume we have proven the existence of a holomorphic motion of f−n+1
λ ({z0(λ)}). By

considering zn ∈ f−n({z0}) and applying the same arguments, we obtain by induction that
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for every n ∈ N,

Zn := {(λ, z) | fnλ (z) = z0(λ), but f jλ(z) ̸= z0(λ) for any j < n}

is a disjoint union of graphs over U , hence also moves holomorphically over U . Observe that
by construction, this holomorphic motion preserves the dynamics.

To end the proof we need to show that if n1 ̸= n2 then Zn1p and Zn2p are disjoint sets. Let
gλ := fpλ so that z0(λ) is a fixed point of gλ.

So suppose z(λ) and z̃(λ) satisfy the defining equation

gn1
λ (z(λ)) = gn2

λ (z̃(λ)) = z0(λ),

for some n1, n2 ∈ N and assume they coincide at some λ = λ∗, i.e. z(λ∗) = z̃(λ∗) = z∗.
Let n = max(n1, n2). Since z0(λ) is fixed for gλ, we have that

gnλ(z(λ)) = gnλ(z̃(λ)) = z0(λ),

for all λ ∈ U . Then, either z(λ) ≡ z̃(λ) in U and we are done, or z∗ is a critical point of gnλ∗ , in
which case we would have a non-persistent Misiurewicz relation, impossible by assumption.

□

Corollary 3.4 (J−stability). Let {fλ}λ∈M be a natural family of Ahlfors island map. Let U ⊂M
be a simply connected domain over which a repelling periodic point z(λ) moves holomorphi-
cally, and assume that there are no non-persistent Misiurewicz relations on U . Then the family
{fλ}λ∈M is J -stable on a neighborhood of λ0.

Proof. By Lemma 2.10, the set O−(z0, f
p) is dense in J(f). Therefore, by the classical λ-

lemma, this holomorphic motion extends to a holomorphic motion of J(f)

H : U × J(f) −→ J(fλ)
(λ, z) 7−→ Hλ(z) := z(λ)

which by continuity still preserves the dynamics of fp, i.e.

Hλ ◦ fp(z) = fpλ ◦Hλ(z)

for all z ∈ J(f). We claim that we must then have in fact

Hλ ◦ f(z) = fλ ◦Hλ(z)

for all z ∈ J(f). By Theorem 2.2 and continuity, it is enough to prove this only for repelling
periodic points. Let x be a repelling periodic point of period m for f = fλ0 . Reducing U if
necessary, let xλ, λ ∈ U , denote its local analytic continuation as a repelling periodic point
of period m for fλ (given by the Implicit Function Theorem). Since fmp(x) = x, we have
fmp
λ ◦Hλ(x) = Hλ(x) for all λ ∈ U and since H is a holomorphic motion with basepoint λ0,

we have Hλ0(x) = x. By continuity of H and since repelling fixed points of fmp
λ are isolated

and move holomorphically, we must have Hλ(x) = xλ locally for λ close to λ0, and therefore

Hλ ◦ f(z) = fλ ◦Hλ(z)

for all repelling periodic points of f (hence for all z ∈ J(f) by continuity) and for all λ in a
neighborhood of λ0. The result finally follows from the Identity Theorem applied on M to
the holomorphic maps λ 7→ Hλ ◦ f(z) and λ 7→ fλ ◦Hλ(z), z ∈ J(f). □

Proposition 3.5. Let {fλ}λ∈M denote a natural family of Ahlfors island maps. Assume that this
family is J -stable; then all singular values are passive on U .
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Proof. Let λ0 ∈M , and let hλ : J(fλ0) → J(fλ) denote the dynamical holomorphic motion of
the Julia set.

Let v ∈ S(fλ0) and vλ := φλ(v). Let z be a repelling periodic point of fλ0 of period at least
3, with infinitely many preimages and which is not in the forward orbit of v. (Such points
always exist by the island property). Assume for a contradiction that vλ is active at λ0. By
Proposition 2.24, there exists λ1 ∈M close to λ0 and n ∈ N such that fnλ1

(vλ1) = hλ1(z).
But since hλ1 : J(fλ0) → J(fλ1) is a topological conjugacy, this is not possible. Therefore,

vλ must be passive on M . □

Proof of Theorem 1.5 . Let {fλ}λ∈M be a natural family of Ahlfors maps. Proposition 3.5
proves that J -stability implies passivity of all singular values.

Let us prove that conversely, if λ0 ∈ M and if there is a neighborhood V of λ0 such that
all critical and asymptotic values are passive on V , then there is a neighborhood U ⊂ V of λ0
such that {fλ}λ∈U is J -stable.

Let z0(λ0) denote a repelling periodic point of period p ≥ 1 for fλ0 . Let U ⊂ V denote
a simply connected neighborhood λ0 on which z0(λ) moves holomorphically as a repelling
periodic point of fλ.

By Lemma 2.21, none of the maps fλ, λ ∈ U , may have any non-persistent Misiurewicz
relation. We can therefore apply Corollary 3.4, which asserts that {fλ}λ∈U is indeed J -stable.

□

Remark 3.6. The proof given implies the following: if all critical and asymptotic values are
passive, then all singular values are passive. More generally, using Proposition 2.19 one could
prove directly that the set of active singular values at a given parameter λ0 ∈M is closed.

4. FINITE TYPE MAPS AND ATTRACTING CYCLES

We consider, as above, a natural family fλ = φλ ◦ f ◦ψ−1
λ :Wλ → X of finite type maps. In

this section we prove some results that are necessary for Theorem 1.6, but which are also of
independent interest.

In the context of [ABF21], where we dealt with natural families of meromorphic maps,
i.e. X = P1 and ∂Wλ = {∞} for all λ ∈ M , we were able to prove (see Theorem B,
the Accessibility Theorem in [ABF21]) that certain active parameter values (those involving
asymptotic values mapping eventually to infinity), say λ0, can always be accessed by a curve
of parameters λ(t) such that fλ(t) possesses an attracting cycle, whose multiplier converges
to 0 as λ(t) tends to λ0. Despite λ0 being in the bifurcation locus, this property granted them
the name of virtual centers, in a analogy to the centers of hyperbolic components in rational
maps.

The results we prove in this section are the best possible generalization of this property.
More precisely, we shall find a sequence of parameters (instead of a curve) with attracting
cycles of the same period and arbitrarily small multiplier (Theorem 4.4). The difficulty aris-
ing in the new contest of finite type maps is that one must account for the possibility of a
tract which accumulates in a complicated way on ∂W , something which cannot happen for
meromorphic maps. For these reason, we shall need a more elaborate definition of what was
then called a virtual cycle.

4.1. Creation of attracting cycles near virtual cycles.
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Definition 4.1 (Simple virtual cycle). Let f :W → X be a finite type map, and let T be a tract
above an asymptotic value v. We say that x ∈ ∂T ∩ ∂W is a good point in ∂T if it is in the
accumulation locus of an oriented hyperbolic geodesic γ ⊂ T which has no limit point in W .

If there is n ∈ N such that fn(v) is a good point in ∂T , we say that v, f(v), . . . , fn(v) is a
simple virtual cycle of length n+ 1.

Here is an equivalent formulation of the definition above. Let g : H → T be a conformal
isomorphism between the left half-plane H and the simply connected tract T , normalized so
that f ◦ g(z) → v as Re z → −∞. Then x ∈ ∂T ∩ ∂W is a good point if and only if it there
is a constant y0 ∈ R and a sequence tk → +∞ such that g(−tk + iy0) → x. Moreover, up
to choosing an appropriate normalization of g, we can assume without loss of generality that
y0 = 0.

Remark 4.2. In the case of finite type meromorphic maps, ∂W = {∞} so that the only good
point is always ∞. Therefore, this definition agrees with the one from [ABF21], in the sense
that every simple virtual cycle is a virtual cycle as defined in [ABF21, Definition 1.3] (see also
[FK21]).

Definition 4.3 (Non-persistency). Let vλ0 , fλ0(vλ0), . . . , f
n
λ0
(vλ0) be a simple virtual cycle for

some λ0 ∈ M and n ∈ N. We say that the cycle is non persistent, if fnλ0
(v) maps to ∂Wλ0

non-persistently (see Definition 2.13).

The main theorem in this section is the following.

Theorem 4.4 (Attracting cycles). Assume that there is λ0 ∈ M such that fλ0 has a non-
persistent simple virtual cycle of length n + 1. Then there is a sequence λk → λ0 such that
fλk

has an attracting cycle of period n+ 1, of multiplier ρk → 0, which captures the asymptotic
value vλk

.

For the proof, we will use the following technical lemmas, proved in [ABF21].

Lemma 4.5 (Hyperbolic distance in tracts [ABF21, Lemma 4.1]). Let T ⊂ X be a simply
connected hyperbolic domain, ρT be the hyperbolic density in T with respect to a continuous
hermitian metric on X, and let z, w ∈ T . Then

(3) distT (z, w) ≥
1

2

∣∣∣∣ln dist(w, ∂T )

dist(z, ∂T )

∣∣∣∣ .
Lemma 4.6 (Asymptotic derivative of the Riemann map [ABF21, Lemma 4.2]). Let H be the
left half plane, T be a simply connected hyperbolic domain, g : H → T be a Riemann map. Then
for every α > 0,

(4) lim
t→+∞

|g′(−t)|eαt = ∞.

Lemma 4.7 (Distortion of small disks [ABF21, Lemma 2.9]). Let {φλ}λ∈D be a holomorphic
motion of X, with φ0 = id. Let t 7→ λ(t) be a continuous path in D with limt→+∞ λ(t) = 0, and
t 7→ rt a continuous function with rt > 0 and limt→+∞ rt = 0. Let t 7→ zt be a path in X and
Dt := D(zt, rt). Let ϵ > 0; then for all t large enough:

D(φλ(t)(zt), r
1+ϵ
t ) ⊂ φλ(t)(D(zt, rt)) ⊂ D(φλ(t)(zt), r

1−ϵ
t )

Lemma 4.8. Let hλ : D → C be a holomorphic family of holomorphic maps, with λ ∈ M a
domain of Cm containing 0 and assume that hλ(0) ≡ 0 on M . Let λk → 0 in M and let ϵk → 0,
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ϵk > 0. Let Uk denote the connected component of h−1
λk

(D(0, ϵk)) containing 0. There exists c > 0

such that for all k ∈ N large enough,

D(0, cϵk) ⊂ Uk.

Proof. Since hλ(0) ≡ 0, there exists a constant C > 0 such that for all (λ, z) in a neighborhood
of (0, 0) ∈M × D, we have

|hλ(z)| ≤ C|z|.
This means that for all k large enough, (λk, ϵk) belongs to that neighborhood and

hλk
(D(0, cϵk)) ⊂ D(0, ϵk)

where c := 1
C . In particular, D(0, cϵk) ⊂ Uk. □

The proof of Theorem 4.4 will follow from the next lemma, which we will also need later
on.

Lemma 4.9 ( Finding attracting cycles). Let λ0 ∈ M , and let vλ0 be an asymptotic value. Let
T be a tract above vλ0 , and let Φ : T → H be a Riemann uniformization of T onto the left half-
plane. Assume that there exists λk → λ0 and tk → +∞ such that fnλk

(vλk
) = ψλk

◦ Φ−1(−tk).
Then for all k large enough, fλk

has an attracting cycle of period n + 1, of multiplier ρk → 0,
which captures the asymptotic value vλk

.

Proof of Lemma 4.9. To simplify the notations, set f := fλ0 and v := vλ0 . Recall that fλ =
φλ ◦ f ◦ ψ−1

λ . Let V := D∗(v, r) be a punctured disk centered at v disjoint from S(f), , so that
f : T → V is a universal cover.

In particular, f(z) = v + reΦ(z) for all z ∈ T .
Let Vλ := φλ(V ) and Tλ := ψλ(T ), so that fλ : Tλ → Vλ is also an infinite degree universal

cover, and let Φλ := Φ ◦ ψ−1
λ : Tλ → H. Then φ−1

λ ◦ fλ : Tλ → V is a universal cover, and so
for all z ∈ Tλ,

(5) fλ(z) = φλ

(
v + reΦλ(z)

)
By assumption, fnλk

(vλk
) = ψλk

◦ Φ−1(−tk).
Now let Dtk := Φ−1

λk
(D(−tk, π)) ⊂ Tλk

and let Utk denote the connected component of
f−n
λk

(Dtk) containing vλk
. We will prove that for all k large enough, fλk

(Dtk) ⋐ Utk , or
equivalently, fn+1

λk
(Utk) ⋐ Utk ; this implies the existence of an attracting fixed point for fn+1

λk
.

First, let us show that for r small and k large, fλk
(Dtk) is contained in a small disk centered

at vλk
, or more precisely,

(6) fλk
(Dtk) ⊂ D

(
vλk

, e−tk(1−ϵ))
)
.

By (5) we have that for all z ∈ H,

fλ ◦ Φ−1
λ (z) = φλ(v + rez).

Since D(−tk, π) ⊂ {z ∈ C : ℜz < −tk + π} we have that

fλk
(Dtk) ⊂ φλk

(D(v, re−tk+π))

Let ϵ > 0. By Lemma 4.7, we have for all k large enough:

(7) fλk
(Dtk) ⊂ D

(
vλk

, (reπ)1−ϵe−tk(1−ϵ))
)
,

which for r small implies (6).
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Now we show that Utk contains a disk centered at vλk
whose radius, for tk large, is much

larger than e−tk(1−ϵ).
Let us first estimate dist(fnλk

(vλk
), ∂Dtk). To lighten the notations, let g := Φ−1; then g is

univalent on H and Dtk = ψλk
◦ g(D(−tk, π)). By Koebe’s theorem, g(D(−tk, π)) contains a

disk
D(g(−tk), C|g′(−tk)|).

Then, by Lemma 4.7,

Dtk = ψλk
◦ g(D(−tk, π)) ⊃ D(ψλk

◦ g(−tk), C1+ϵ|g′(−tk)|1+ϵ)

= D(fnλk
(vλk

), C1+ϵ|g′(−tk)|1+ϵ).
(8)

Recall that Utk denotes the connected component of f−n
λk

(Dtk) containing vλk
, and let

ϵk := C1+ϵ|g′(−tk)|1+ϵ. Applying Lemma 4.8 to hλ(z) := fnλ (z + vλ) − fnλ (vλ) and using
(8), we obtain the existence of c > 0 such that

(9) D(vλk
, cϵk) ⊂ Utk .

Finally, from equations (6) and (9), it is enough to prove that

(10)
e−tk(1−ϵ)

|g′(−tk)|1+ϵ
→ 0 as t→ +∞,

which follows from Lemma 4.6. This proves that fn+1
λk

(Utk) ⋐ Utk , and the result then follows
from Schwartz’s lemma. Note that (10) also implies that the multiplier goes to zero as k →
+∞, since the modulus of Utk \ f

n+1
λk

(Utk) tends to infinity. □

We now finish the proof of Theorem 4.4.

Proof of Theorem 4.4. By assumption, there exists tk → +∞ such that Φ−1(−tk) → x ∈ ∂Wλ0 ,
while fn(v) = x. Now, we wish to find a sequence (λk)k∈N in parameter space such that

(11) Φλk
◦ fnλk

(vλk
) = −tk.

Let G(λ) := ψ−1
λ ◦ fnλ (vλ) and recall that G(λ0) = fn(v) = x. Given the definition of Φλ,

(11) is equivalent to

(12) Φ ◦ ψ−1
λk

◦ fnλk
(vλk

) = −tk,
or

(13) G(λk) = Φ−1(−tk).
SinceG is a branched cover over a neighborhood of x by Lemma 2.15, there is such a sequence
(not necessarily unique if the local degree of G at λ0 is more than 1). We finally apply Lemma
4.9 to conclude. □

4.2. Creation of attracting cycles at active parameters. We conclude this section with the
construction of attracting cycles of high period near parameters with active singular values.
We begin with the easier case of critical values.

Proposition 4.10 (Super-attracting cycles are dense in the activity locus of critical values).
Let fλ0 be a non exceptional finite type map. Let vλ be a critical value, and assume that it is active
at λ0. Assume as well that there exists a critical point c(λ0) /∈ S(fλ0) such that fλ0(cλ0) = vλ0 .
Then there exists nk → +∞ and λk → λ0 such that vλk

is in a super-attracting cycle of period
nk.
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Proof. By Proposition 2.23, there exists nk → +∞ and λk → λ0 such that fnk
λk

(vλk
) ∈ ∂Wλk

.
We then apply Proposition 2.17 to find λ′k arbitrarily close to λk such that fnk+1

λ′
k

(vλ′
k
) = cλ′

k
;

in other words, vλ′
k

is a super-attracting periodic point of period nk + 1.
□

Proposition 4.11 (Attracting cycles are dense in the activity locus of asymptotic values). Let
fλ0 be a non exceptional finite type map. Let vλ be an asymptotic value, and assume that it is
active at λ0. Then there exists nk → +∞ and λk → λ0 such that fλk

has an attracting cycle of
period nk.

Proof. Let ϵ > 0 and N ∈ N: we will find λ∗ ∈ B(λ0, ϵ) with an attracting cycle of period
at least N . By Proposition 2.23, there exists nk → +∞ and λk → λ0 such that fnk

λk
(vλk

) ∈
∂Wλk

(non-persistently). Let k ∈ N such that nk ≥ N and d(λk, λ0) <
ϵ
2 . Let T be a

tract above vλ0 , and let Φ : T → H be a Riemann uniformization onto the left half-plane.
Let tℓ → −∞ be any sequence, and let γℓ(λ) := ψλ ◦ Φ−1(−tℓ). For all ℓ large enough,
γℓ(λ0) = Φ−1(−tℓ) /∈ S(fλ0). By Proposition 2.17, there exists λ∗ ∈ B(λk, ϵ2) such that
fnk+2
λ∗

(vλ∗) = γℓ(λ∗) = ψλ∗ ◦ Φ−1(−tℓ). By Lemma 4.9, for all ℓ large enough, fλ2 has an
attracting cycle of period nk + 3 > N , and we are done.

□

5. CHARACTERIZATION OF J -STABILITY: PROOF OF THEOREM 1.6

In view of Propositions 2.4 and 2.6, in the proof of Theorem 1.6 we can assume that
exceptional maps form a proper analytic subset in the natural family under consideration.
Indeed, affine endomorphisms of the complex torus and automorphisms have no singular
values; and for rational maps, entire maps, and meromorphic maps, Theorem 1.6 has been
proven in [MSS83], [Lyu84], [Lyu83], [EL92] and [ABF21] respectively.

The case of a natural family of finite type self-maps of C∗ with essential singularities at 0
and ∞ is not formally covered by the aforementionned articles. However, the proof given in
[EL92] (stated only for finite entire maps) applies verbatim to finite type self-map of C∗. We
will therefore only treat the case where the maps fλ are non exceptional.

Proof of Theorem 1.6.

• (1) ⇔ (2): This is a particular case of Theorem 1.5, since finite type maps are Ahlfors
island maps.

• (2) ⇒ (3): This part of the proof follows the same argument as in [MSS83] and
[Lyu84]. Assume that the Julia set moves holomorphically over U , and let Hλ be the
holomorphic motion respecting the dynamics as above. Then Hλ maps non-attracting
periodic points of fλ0 in J(fλ0) to non-attracting periodic points of fλ in J(fλ) of the
same period. Let N be the maximal period of attracting cycles for fλ0 . 1 Then for
all λ ∈ U , cycles of period more than N must be non-attracting, which implies that
attracting cycles have period at most N .

1Note that we only use a very weak form of Fatou-Shishikura’s inequality here, namely that a finite type map
f has at most cardS(f) attracting cycles (this is an obvious consequence of the fact that any attracting cycle
captures at least one singular value). Epstein has an unpublished proof of a strong version of Fatou-Shishikura’s
inequality in the setting of finite type maps, which we do not require here.
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• (3) ⇒ (1): Assume by contraposition that at least one singular value vλ is active at
λ0, and let N ∈ N. We must construct a sequence of parameters λk → λ0 such that
fλk

has an attracting cycle of period at least N .
We begin with the following remark: let us say that a singular value v1(λ) has a

predecessor if there exists another singular value v2(λ) and n > 0 such that for all λ ∈
M , fnλ (v2(λ)) = v1(λ). Then clearly v1(λ) is active at λ0 if and only if its predecessor
v2(λ) is also active at λ0. Moreover, a singular value is its own predecessor if and
only if it is persistently periodic; but in that case it cannnot be active. Therefore,
since there are only finitely many singular values, we may assume without loss of
generality that vλ has no predecessor.

If vλ is an asymptotic value, then we are done by Proposition 4.11.
We therefore assume from now on that vλ is a critical value with no predecessor.

Let cλ0 be a critical point such that fλ0(cλ0) = vλ0 . If cλ0 is not a singular value,
then we are done by Proposition 4.10. Otherwise, cλ0 is both a critical point and a
singular value, and then cλ := ψλ(cλ0) is its motion as a critical point and φλ(cλ0)
is its motion as a singular value. Since by assumption vλ has no predecessor, the
critical point cλ = ψλ(cλ0) cannot always be a singular value for all λ ∈ M . This
means that φλ(cλ0) ̸≡ ψλ(cλ0). Then the set H := {λ : φλ(cλ0) = ψλ(cλ0)} is an
analytic hypersurface of M , and by Lemma 2.22, we may find λ1 /∈ H arbitrarily
close to λ0 such that vλ is also active at λ1. Then cλ1 := ψλ1(cλ0) /∈ S(fλ1), and
fλ1(cλ1) = φλ1(vλ0) = vλ1 . So we can again apply Proposition 4.10 and conclude in
this case.

□

Proof of Corollary 1.7. The proof follows the same spirit as in [MSS83]: let λ0 ∈ M , and let
ϵ > 0. If all singular values of fλ0 are passive at λ0, then λ0 is in the stability locus. Otherwise,
at least one attracting singular value is active. If it is a critical value, then by Proposition 4.10
we can find λ1 ∈ B(λ0, ϵ) such that vλ1 is in a super-attracting cycle for fλ1 . In particular,
vλ becomes passive at λ1. If vλ is an asymptotic value, then we use Proposition 4.11 and
Theorem 4.4 instead to find λ1 ∈ B(λ0, ϵ) such that vλ1 is captured by an attracting cycle (and
in particular is passive at λ1).

Applying this successively to all active singular values, we find λ′ ∈ B(λ0, kϵ) (where k ≤
cardS(fλ0)) such that all singular values are passive at λ′. By Theorem 1.6, λ′ is then in the
stability locus. □

Proof of Corollary 1.8. We may choose without loss of generality λ0 as the basepoint of our
natural family {fλ}λ∈M , that is, we set f := fλ0 and we write fλ = φλ ◦ f ◦ψ−1

λ for all λ ∈M .
The singular value v(λ) is by definition φλ(v(λ0)).

By Proposition 2.24, there exists a parameter λ1 arbitrarily close to λ0 such that v(λ1) is
Misiurewicz, i.e. there exists a repelling periodic point z(λ) and n ∈ N such that

fnλ1
(v(λ1)) = z(λ1),

and this relation is non-persistent, i.e. fnλ (ϕλ(v(λ0)))− z(λ) ̸≡ 0 on the neighborhood of λ1.
Since singular values move holomorphically with the parameter, v(λ1) is also in the interior

of S(fλ1).
Moreover, we may choose z(λ) so that it is not a Picard exceptional value. Up to passing

to a covering (see Lemma 2.16 ) we can consider xλ such that fnλ (xλ) = z(λ) such that xλ0 =
v(λ0). Since vλ0 was in the interior of S(fλ0), up to restricting the parameter neighborhood we
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have that xλ is a singular value for fλ. Hence each such parameter has a Misiurewicz relation
which involves the singular value x(λ). On the other hand, for each λ∗ in a neighborhood,
λ 7→ x(λ) − ϕλ(x(λ∗)) is not identically zero, hence each such Misiurewicz relation is not
persistent and λ∗ is in the bifurcation locus, by Lemma 2.21 and Theorem 1.5.

This proves that λ1 is in the interior of the bifurcation locus, and since λ1 can be taken
arbitrarily close to λ0, we have that λ0 is indeed in the closure of the interior of the bifurcation
locus. □
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