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Friction modeling for dynamic system simulation

EJ Berger

CAE Laboratory, Department of Mechanical, Industrial, and Nuclear Engineering,

University of Cincinnati, PO Box 210072, Cincinnati, OH 45221-0072; ed.berger@uc.edu

Friction is a very complicated phenomenon arising at the contact of surfaces. Experiments indicate a functional dependence 
upon a large variety of parameters, including sliding speed, acceleration, critical sliding distance, temperature, normal load, 
humidity, surface preparation, and, of course, material combination. In many engineering applications, the success of models 
in predicting experimental results remains strongly sensitive to the friction model. Further-more, a broad cross section of 
engineering and science disciplines have developed interesting ways of representing friction, with models originating from 
the fundamental mechanics areas, the system dynamics and controls fields, as well as many others. A fundamental 
unresolved question in system simulation remains: what is the most appropriate way to include friction in an analytical or 
numerical model, and what are the implications of friction model choice? This review article draws upon the vast body of 
literature from many diverse engineering fields and critically examines the use of various friction models under different 
circumstances. Special focus is given to specific topics: lumped-parameter system models ~usually of low order!—use of 
various types of parameter dependence of friction; continuum system models—continuous interface models and their 
discretization; self-excited system response—steady-sliding stability, stick/slip, and friction model requirements; and forced 
system response—stick/slip, partial slip, and friction model requirements. The conclusion from this broad survey is that the 
system model and friction model are fundamentally coupled, and they cannot be chosen indepen-dently. Furthermore, the 
usefulness of friction model and the success of the system dynamic model rely strongly on each other. Across disciplines, it 
is clear that multi-scale effects can dominate performance of friction contacts, and as a result more research is needed into 
com-putational tools and approaches capable of resolving the diverse length scales present in many practical problems. 
There are 196 references cited in this review-article.

1 INTRODUCTION

1.1 Motivation

Friction plays a central, controlling role in a rich variety of
physical systems, and as such has been the topic of focused
research for more than 500 years. Indeed, the fundamental
experiments of Coulomb @1# have evolved into very sophis-
ticated surface and interface characterization techniques seen
today. In parallel to the experimental efforts, friction
models—both phenomenological and empirical—have
emerged to provide predictive capabilities and design tools.
However, far too frequently the predicted performance of a
system dynamic model is undermined by an inappropriate
friction model, or the accuracy of the friction model is lim-
ited by the system dynamic model. This can occur in a num-
ber of ways; for example, the friction literature is replete
with examples of velocity-dependent friction models, and
clearly single-coefficient friction models cannot account for
this parameter dependence. As a result, predictions of fric-
tion using a correct dynamic model but highly simplified

friction will be of limited value. On the other hand, consider
a friction model which accurately captures the interface shear
behavior of two components. If the system dynamic model
does not have the ability to represent variations in, say, nor-
mal force, then once again the performance predictions for
the system, despite the correctness of the friction model, will
be of limited value. This strong coupling must be carefully
considered when building a system model, but how can the
best combination of friction and dynamic model be defined?
What are the modeling choices available for friction? What
are their strengths and limitations? What are the implications
on computations and what are the likely computational ob-
stacles?

For the moment, it suffices to say that much of the con-
fusion and controversy in friction modeling is attributable to
the diversity of friction-related problems, and in order to
understand friction modeling more completely it will be nec-
essary to examine some typical problems from each of the
areas described above. Friction modeling and simulation are
important tools across a wide variety of engineering disci-
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plines: contact mechanics, system dynamics and controls,
aeromechanics, geomechanics, fracture and fatigue, struc-
tural dynamics, and many others. Each of these areas pos-
sesses its own view of friction and its importance. In addi-
tion, the required degree of sophistication for friction models
varies widely across these areas, and the reason for this is
related to the nature of the problems themselves. For cases in
which the sensitivity of the solution to changes in the friction
model is small, the friction models are rightly considered in
their simplest form. On the other hand, much more sophisti-
cated models are required in other resesarch areas. Finally,
within each broad category defined above, there exist spe-
cific problems for which friction modeling is critical, and
some of these problems will be explored throughout this re-
view.

This paper reviews the literature on friction modeling for
dynamic systems across a wide range of engineering and
science disciplines. Here we focus strictly on sliding contact;
see the book by Kalker @2# for a discussion of rolling contact
issues. The intent is to present the full variety of viewpoints,
to identify their commonalities, and to appreciate their dif-
ferences. As such, a complete bibliographic survey of the full
literature is not presented; rather, literature representative of
the variety of applications and relevant problems is cited. In
addition, a key point which is explored in detail in this paper
is the relationships between system dynamic parameters and
friction description. Developing an appropriate and ulti-
mately useful system model—including sufficient levels of
detail in both the dynamic and friction models—remains a
very difficult task. This paper aims to present researchers
across disciplines with a better understanding of the avail-
able modeling tools and techniques, along with some insight
about each, so that they can make informed decisions in
friction and system dynamic modeling.

This paper is distinct from other recent reviews in the
literature. Ibrahim @3,4# examines the literature and presents
a thorough bibliographic survey which emphasizes mechan-
ics of contact and parameter dependence of friction @3#, as
well as important nonlinear dynamics problems and their
modeling tools @4#. There is also a related web site at:

http://www.mi.uni-koeln.de/mi/Forschung/Kuepper/

English/friction.html.
Ferri @5# examines the literature related to friction damping,
focusing on nominally-stationary contacts such as joints,
stranded cables, and various passive damping treatments.
Feeny, Guran, Hinrichs, and Popp @6# present a historical
review of the evolution of friction research from antiquity
forward. Back, Burdekin, and Cowley @7# describe relevant
research for the machine tool industry, including implications
of joint stiffness, damping, and wear, and their relationship to
friction. Beards has frequently updated his review of passive
damping mechanisms for built-up structures ~eg, @8#!. Previ-
ously Goodman @9# and then Ungar @10# both examined joint
slip damping in structures. Each of these articles presents
valuable information about friction modeling. This review
distinguishes itself from those mentioned above by critically
examining the friction models available across a wide variety
of engineering disciplines, and drawing specific conclusions

about their similarities and differences, including multiple
length scale effects and their implications on friction system
simulation.

1.2 Experimental observations

and preliminary discussion

This section links key experimental observations of friction
to a general framework of notation that will be used consis-
tently throughout this article. The notation used here may
depart somewhat from that used by the original authors of
the references cited, but a unified notation will help highlight
similarities and differences in approaches across disciplines.
Where appropriate, specific notations will be introduced and
defined as we examine unique features within the literature.

Key experimental observations that will be examined in
more detail over the following sections are:
• velocity dependence of friction
• memory dependence, time lag, or critical slip displacement

of friction response
• multi-valued friction at zero relative velocity
• dwell time dependence of static friction
• pre-slip displacement

The mathematical descriptions of these phenomena are sum-
marized in Table 1, and a consistent approach is taken here to
define the friction constitutive behavior as follows for dis-
crete contacts:

F f5mFn (1)

or for continuous contacts:

Fig. 1 Notation for parameter-dependent friction: a! velocity de-
pendence, b! dwell time dependence, c! time lag, d! pre-slip dis-
placement

Table 1. Notation used throughout this article for various system pa-

rameters and friction features. Variables are illustrated schematically in

Fig. 1.

Feature Notation

relative velocity V rel
contact normal load Fn

contact friction force F f

applied normal load Fp

applied tangential load Fq

velocity dependence g(v)
memory dependence time lag: Dt

critical slip distance: dc

multi-valued sticking friction F f<Fs

time-dependent sticking friction F s5Fs(t;t` ,g)
pre-slip displacement xpre ,k t
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t f5msn (2)

where t f is the friction shear traction and sn is the contact
stress normal to the surface. The general parameter depen-
dence of friction is captured via variations in coefficient m or
changes in contact force/stress.

The notations shown in Table 1 are demonstrated in the
diagrams of Fig. 1, and the key variables are defined. Parts
a , b , c , and d of the figure indicate the velocity dependence,
dwell time dependence, time lag, and pre-slip displacement
of friction, respectively. There are clearly a number of im-
portant parameters to identify for accurate friction simula-
tions, and we will see throughout this article that these fric-
tion modeling parameters operate in concert with system
dynamic parameters to govern the overall behavior of the
system.

2 FRICTION AND DYNAMICS MODELS ACROSS

ENGINEERING AND SCIENCE DISCIPLINES

The friction-related literature consists of somewhat dis-
jointed contributions spanning many important engineering
fields. Friction plays an important role in each of the prob-
lems listed in Table 2, where the notation has been described
previously, and partial slip problems are clearly defined and
given special attention in Section 2.6.2. Note the broad dis-
tinctions drawn out in the table. There are two broad ap-
proaches to friction interface modeling: continuous
~mechanics-type problems! and discrete ~dynamics and con-
trol problems!. There are three classes of parameter depen-
dence: none ~quasi-static problems!, velocity dependence
~steady-sliding and forced response problems!, and general
rate and state dependence ~steady-sliding stability problems!.
There are two classes of contact: point contact ~dynamics
and control, some geomechanics problems! and distributed
contact ~including partial interfacial slip!. With so many
choices in modeling procedures, and so many possible foci
of friction and system dynamic analysis, the selection of ap-
propriate models can be difficult.

2.1 Preview

Across the literature presented in this section, several impor-
tant themes will be explored:
• Appropriate tuning between friction parameters and sys-

tem dynamic parameters can result in undesirable system
behavior, including a variety of self-excited instabilities.

• Highly localized details of contact interactions often dic-
tate component performance, efficiency, or durability; the
relevant contact length scale is often much smaller than the
relevant structural length scale.

• Both of these observations have important implications on
friction and system dynamic modeling, including coupled
structure-interface problem formulation, analytical tracta-
bility, appropriate discretization approaches, or efficient
numerical solution.

The remainder of this section examines some of the literature
across a variety of engineering and science fields, with an
emphasis on the diversity of applications for which careful
consideration of friction and system dynamic modeling is
important. Some rigor and detail of individual research ef-
forts is neglected in favor of a more global view supportive
of the three items listed above.

2.2 Friction and system dynamics

In order to develop a meaningful understanding of friction
experiments, and to predict dynamic system response and
performance, a robust friction model must be employed. As
such, parameter dependence of friction becomes an impor-
tant issue, and a large number of researchers have investi-
gated friction from a variety of viewpoints. In this section,
friction experiments and models typically used for dynamic
systems are introduced and reviewed.

Two key ideas have emerged over the past half century
concerning the nature of system dynamics and friction, and
they are: i! system dynamics can have a profound influence
on friction measurements, and ii! normal-tangential coupling
effects play an important role in friction oscillations. Indeed,
in many engineering applications, we find that the synergy of
the system dynamics and interface friction dominates system
performance, as in brake squeal for example. An unfavorable
combination of dynamics and friction behavior results in
noise generation, consumer dissatisfaction, increased war-
ranty costs, etc. Furthermore, because of a variety of weight
and packaging constraints, alterations to the system dynam-
ics ~using very thick brake rotors, for example! are often not
feasible. So the design of the dynamic system must explicitly
include consideration of friction, and a goal of designers is
always to tune the system dynamics to minimize the impact
of friction; as consideration of the substantial literature in
this area shows, this design task is usually easier said than
done.

2.2.1 Role of velocity and acceleration

Early work considering the role of dynamics in friction con-
tacts includes Sampson, Morgan, Reed, and Muskat @11# and
also Rabinowicz @12#, both of which observed not only ve-
locity dependence of friction, but also apparent acceleration
dependence. These two works in particular highlight an early
appreciation for the complicated nature of dynamic interface

Table 2. Common friction-related problems, analysis methods, and friction models

Engineering Field Relevant Analysis Typical Friction Model

contact mechanics quasi-static sliding t f5msn 1 partial slip
dynamics and controls steady-sliding stability m5m(V rel)
aeromechanics forced response of frictionally-damped structures F f5mFn 1 partial slip
geomechanics steady-sliding stability t f5t f(V rel ,u1 ,u2 , . . . )
fracture and fatigue forced response of frictionally-damped structures t f5msn 1 partial slip
structural dynamics forced response and energy dissipation ~joints! F f5mFn 1 partial slip
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contact. A key observation in both cases, and one which has
gone on to be perhaps the most celebrated and oft-cited cul-
prit in friction-excited vibrations, is the negative slope of the
friction-velocity curve. Alternately referred to as rate weak-

ening, this condition is illustrated schematically in Fig. 1a

and expressed mathematically as:

]g~V rel!

]V rel
,0 (3)

It will be shown in subsequent sections how this negative
friction curve slope manifests itself in dynamic systems as a
negative viscous damping term, which has a destabilizing
effect. The difference between the accelerating and deceler-
ating branches of the friction-velocity curve allowed
Rabinowicz @12# to first assert the idea of memory-dependent
friction, in which a time lag Dt of friction response is ob-
served. He proposed the physical mechanism that only after
sliding a critical distance dc would friction evolve to its
steady-state value at that particular system sliding speed. He
suggested that this critical length was on the scale of the
asperity spacing on the surfaces, perhaps 10 mm or slightly
more. This idea then suggests that memory effects will be
more pronounced during rapid changes in system state than
for quasi-static state changes, because rapid state changes do
not allow for stabilization of friction force and quasi-static
state changes do. As a result, the instantaneous slope of the
friction curve from Eq. ~3! is actually a multi-valued function
which depends upon the previous sliding history. This is pre-
cisely the experimental finding of a number of other re-
searchers @11,13,14#. A simple time-lag model can be pro-
posed as:

F f~ ẋ~ t !;Dt !5F f~ ẋ~ t2Dt !! (4)

where Dt is the characteristic time lag in the system, and is
in general an empirically-determined parameter. Hess and
Soom @14# measure this time lag for a variety of load and
lubricant combinations, and find Dt'3 – 9 ms, which over
the sliding velocities they investigate ~near zero to about 0.5
m/s! translates into a length scale dc ranging from 30–4500
mm. In order for Rabinowicz’s critical length scale related to
asperity spacing to come into play here, it seems that the
sliding velocity must be small. And it should be recognized
that there are a variety of lubrication-related effects contrib-
uting to the observations of Hess and Soom which may not
be fully explained by the critical length scale or time scale
argument. For example, viscous friction increases linearly
with sliding velocity, even for fairly thin films, and the con-
tribution of hydrodynamic effects may play a role here.
However, their basic conclusion is supportive of Rabinowicz’
observations, that a time lag or critical slip distance is re-
sponsible for multi-valued sliding friction.

Hunt, Torbe, and Spencer @15# performed detailed experi-
ments on steady sliding of machine tools and concluded that
velocity dependence of friction alone could not account for
all observed effects; they used phase plane tools to examine
the experimental results. A 1-dof dynamic model is used to
support the analysis and aid interpretation of the experimen-
tal results. Pavelescu and Tudor @16# present an informa-

tive history of the friction coefficient, tracing its develop-
ment from the origins of scientific investigation ~da Vinci,
Amontons, Coulomb! through its use for non-dry and three-
body contacts ~thin films, boundary lubrication, EHL!. Both
mechanics and empirical models are presented, as are con-
nections to wear, stick-slip, and other interface phenomena.
Energy approaches are cited as well. Lin and Wang @17# use
a drill string application as a candidate system for stick-slip
vibration analysis. Modeled as a single-dof torsional pendu-
lum, the drill string dynamic response is shown to be sensi-
tive to torsional natural frequency, driving velocity, and tor-
sional ~viscous! damping. The friction is modeled as an
exponential function of sliding velocity. A parameter study
indicates the existence of a critical natural frequency above
which stick-slip is precluded. An interesting connection to
observations of a beating phenomena in real drill strings is
proposed, although the explanation of beating as a stick-slip
response was not conclusively validated. The central impact
of these works relates to the observations of sophisticated
velocity and acceleration dependence of friction, and in fact
in a variety of applications tuning between friction param-
eters and system dynamics parameters provides insight about
overall system performance.

Popp @18# reviews some model problems for stick-slip
oscillations and chaotic response in dry sliding. He uses four
different friction laws with four different system dynamic
models ~two discrete and two continuous!, and reports on the
nonlinear response and bifurcation behavior under various
operating conditions. In addition, Bengisu and Akay @19,20#

describe friction-induced vibrations in multiple-dof systems,
described by a linear structural model and a nonlinear fric-
tion force input at only one of the lumped masses. In addi-
tion to a stability analysis for steady sliding, a bifurcation
process is described for changes in friction curve slope at the
steady-sliding equilibrium point. The total number of bifur-
cations observed is equal to the number of dofs in the prob-
lem, and as each bifurcation is passed the system response
becomes more dynamically rich and includes more funda-
mental frequencies. The conclusion is that even ~structurally!

linear systems can demonstrate a nonlinear response due to
the nonlinear friction force.

de Velde and Baets @21# develop a mathematical and com-
putational approach for exploring existence of stick-slip re-
sponse under decelerative motion. This is one of the very
few articles in the literature which considers non-constant
reference velocity, and their results indicate that stick-slip
can occur under deceleration for systems which exhibit no
stick-slip under steady sliding. Furthermore, a ~numerical!
parameter study of the single-dof dynamic model indicates
that stick-slip under deceleration is only possible for a suffi-

ciently high system stiffness, a conclusion in stark contrast to
other work which finds quite the opposite ~@22#, for ex-
ample!. The difference is the deceleration, and in particular
inertial forces play an important role in the overall force
balance. Also, in the presence of a very large negative fric-
tion curve slope, increasing system damping actually has a
destabilizing effect and can induce stick-slip.

Lim and Chen @23# describe the results of a numerical
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investigation of stick-slip behavior in a single-dof system
with state-dependent friction. They explore the roles of sys-
tem stiffness and driving velocity on existence of stick-slip,
and the phase plane results compare favorably with analyti-
cal predictions put forth by Rice and colleagues @24,25#

across a wide velocity range. The model captures both creep
~low velocity! and inertia ~high velocity! dominated re-
sponse, and the transition across the two response regimes is
characterized by either a Hopf bifurcation ~as stiffness in-
creases! or an inverted Hopf bifurcation ~as velocity in-
creases!.

2.2.2 Role of normal-tangential-angular coupling

In addition to velocity/acceleration-dependent friction, cou-
pling in the system dynamics has been examined as a con-
tributor to friction-related problems such as steady-sliding
instability or stick-slip oscillations. The first profound impact
in this area was made by Tolstoi @26#, who completed deli-
cate experiments which measured both the in-plane ~tangen-
tial! motion as well as the out-of-plane ~normal! motion of a
slider against a countersurface. He constructed a test rig to
determine the influence of small normal vibrations ~including
impacts! upon break-away behavior. He noticed two key
points: i) tangential slip events were invariably accompanied
by simultaneous upward normal motion, and ii) a normal
contact resonance condition could be observed under which
apparent friction was reduced. The argument here is that in
order for friction to change, the real area of contact must
change, and therefore the mean normal separation of the sur-
faces must also change.1 Nayak @28# and Gray and Johnson
@29# have also studied contact normal vibration problems
from both analytical @Nayak# and experimental @Gray and
Johnson# points of view. In particular, Gray and Johnson
examine the effects of surface roughness on normal vibra-
tions in rolling contact.

One of the early efforts in this area, about the same time
as Tolstoi, is the work of Godfrey @30#, who demonstrates an
apparent friction reduction due to normal vibrations. The
idea is similar to Tolstoi’s: normal vibrations influence the
mean surface separation, and therefore the real area of con-
tact. With the measured frictional shear being a function of
real contact area, there is an apparent reduction in friction
force with normal vibration. This was experimentally veri-
fied with contact resistance measurements as well, and im-
plications on wear are also considered. This work reinforces
the close connection between friction measurements and out-
of-plane system dynamics.

Antoniou, Cameron, and Gentle @31# used a simple dy-
namic model along with a reverse Lienard’s construction to
develop a bifurcating friction description for stick-slip data.
They conclude that a fundamentally important event is the
triggering oscillation, a normal vibration which signals the
onset of a friction jump from one branch to the other of the
characteristic curve. Both their experimental and analytical
work further support the role of the normal dof. Sakamoto

@32# used a pin-on-disk configuration to carefully examine
normal separation effects in sliding contacts; he emphasizes
the slip portion only of the stick-slip cycle. Clockwise
friction-velocity loops are observed, and the variation in fric-
tion is interpreted as a change in the real area of contact
during sliding ~as inferred from contact resistance measure-
ments!.

Bo and Pavelescu @33# propose a two-exponential-curve
model for sliding friction, one for accelerating motion and
the other for deceleration. Each branch of the model is a
function only of sliding velocity. They further report the re-
sults of experiments under oscillating sliding velocity that
mean normal separation increases during acceleration and
decreases during deceleration. Simplified friction equations
for the two branches are developed and used to approxi-
mately solve ~via the method of slowly varying parameters!
for the system motion during the slip phase of a stick-slip
cycle. Further, D’Souza and Dweib @34,35# show that
normal-tangential coupling plays an important role in self-
excited oscillations, and that increasing frequency mistuning

between normal and torsional modes helps suppress self-
excited system response.

The work of Soom and colleagues has recently contrib-
uted significantly to our understanding of system dynamics
~and specifically the role of out-of-plane response! in friction
contact. This group @36–38# examined roughness-induced
normal vibrations in a pin-on-disk friction test. The earlier
work uses frequency-domain tools to examine friction and
normal force variations in time. One important conclusion is
that the transfer function between normal and friction force
is independent of frequency ~a scalar with value roughly 0.33
for the results reported!, and the forces essentially respond in
phase. Moreover, peaks in the frequency spectra are ob-
served near the normal contact resonance. The later work
uses simulation tools and a simple, 2–dof dynamic system to
investigate the effect of surface texture on normal vibrations.
The result is that the effect of small surface features can be
amplified by the normal contact resonance, resulting in rela-
tively large fluctuations in normal force ~including potential
loss of contact! during start-up. Soom and Chen @39# perform
a similar analysis for steady-sliding conditions with a Hert-
zian contact and nonlinear contact stiffness.

Polycarpou and Soom @40,41# demonstrate, in this two-
part paper, that low-order linear dynamic models of the nor-
mal motion of a lubricated sliding system could be used to
interpret experimental data and develop predictive models
for dynamic friction. The 2D friction model is capable of
capturing transients in friction force due to impacts, in addi-
tion to any mean normal load effects. They further conclude
that the instantaneous normal separation plays a greater role
in determining the instantaneous dynamic friction force than
the normal load does, once again reinforcing the importance
of understanding the normal dof in sliding contact. They also
@42# examine the effects of normal surface separation in an
empirical dynamic friction model using contact resistance.
They develop two-parameter models to describe dynamic
contact situations, and demonstrate that indeed explicitly in-
cluding normal oscillation effects ~through contact resistance

1Micromechanical views of friction and asperity-based contact models are not covered
in detail here; the interested reader should refer to @3#, where surface roughness effects,
adhesion, and contact models such as Greenwood and Williamson @27# are described.
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measurements! allows a better fit to experimental data for
unsteady lubricated contact across a wide operating param-
eter range.

Rice, Moslehy, and Elmi @43# developed a pin-on-disk
apparatus and an accompanying modeling framework for
studying tribodynamic contact. In particular, the effect of test
rig dynamic parameters on friction and wear measurements
is the focus. The authors propose a detailed dynamic model
including properties of both the pin and disk sides of the
contact, as well as a nonlinear contact stiffness. Near-surface
plastic deformation is considered for its role in reducing
stiffness locally near the contact. Normal direction excitation
is provided by either asperity contact or debris between the
surfaces. The authors conclude that models of this sort, with
sufficient detail of the test rig dynamics and interface behav-
ior, can be useful in interpreting experimental data or under-
standing the role of normal contact oscillations in friction or
wear tests.

Further work in the dynamic modeling area comes from
Streator and Bogy @44#, who examine the role of transducer
dynamics in friction measurements. By modeling a pin-on-
disk arm as a cantilevered beam with discrete end mass, and
developing a transfer function to describe the beam/mass dy-
namics, they back-calculate the friction force from either a
strain gage response ~mounted near the beam root! or a dis-
placement response of the end mass. The authors conclude
that over a large frequency range, a single-dof transducer
model based upon beam strain is inadequate for accurate
interpretation of the measured data.

The idea of an angular contact degree of freedom has
been introduced by a number of researchers ~@45,46#, others!.
The inherent asymmetry of continuous friction contact is
shown schematically in Fig. 2, which demonstrates that the
normal and angular contact conditions are coupled through
the geometry of the component. As the friction force acts on
only one side of the component, a net twisting moment acts
on the body and an angular deflection results. Further, a con-
sequent change in normal deflection ~and normal contact
pressure! must occur due to the kinematics of the contact.
This normal-angular coupling ~also referred to as geometric
or kinematic coupling! has been investigated and found to
play a significant role in contact dynamics.

One of the seminal works in the area of geometric cou-
pling of deformation modes is by Jarvis and Mills @47#, who
present a thorough analysis of dry friction-induced vibrations

for a pin-on-disk-type experiment and a 2–dof dynamic
model for analysis. The generalized coordinates in the model
correspond to modal amplitudes of the pin ~tangential! and
disk ~normal! deflections, and the model parameters are
tuned from experimental measurements. Two important con-
clusions are given: i) velocity-dependent friction alone is
insufficient to maintain an instability, and ii) geometric cou-
pling of the motion of the two components can drive an
instability under constant friction coefficient. Also referred to
as a kinematic constraint instability in the paper’s discussion,
this mechanism can be controlled or suppressed by appropri-
ate design of the system, including control of, in this case,
pin length or contact radius on the disk.

Earles and Lee @48# developed a system dynamic model
including rotation to explain noise generation in pin-on-disk
experiments. The pin dynamic model consists of two trans-
lational ~tangential, normal! and one rotational dof, while the
disk model is composed of a single translational dof in the
normal direction. They conclude that a geometrically-
induced instability ~ie, one which relates to coupling of the
rotational dof to another system dof! is responsible for the
noise generation. Other related work @49# indicates that
squeal noise is most prominent when the pin vibrates in the
rotational mode, and that geometric coupling of the compo-
nents promotes response in the rotational mode. Similar re-
sults concerning the geometric coupling as an instability
mechanism were found using a more sophisticated dynamic
model @50#.

Swayze and Akay @51# use a 1–dof oscillator, with
coupled normal and angular motion, to demonstrate the cou-
pling between friction and system dynamics. Motion of the
rigid mass is excited by sliding friction, and phase plane
results indicate stability of equilibrium points. For undamped
systems, the friction coefficient determines a) the number of
equilibrium points, and b) their stability. As m varies from 0
to 0.6, the number of stable equilibria changes from three to
one; for the damped case, stable centers become stable
nodes.

Oden and colleagues have returned to the question of
normal-tangential-angular coupling on several occasions
@45,52,53#. They use a continuum approach to deriving inter-
face constitutive laws, and establish two power law expres-
sions for normal and tangential interface traction; the expres-
sion for normal stress is:

sn5cnamn2bna lnȧ (5)

where sn is normal stress, a is the normal approach of the
surfaces, cn ,bn are traction coefficients, and mn ,ln are the
exponents. This form includes both recoverable and non-
recoverable components, through the dissipation term
bna lnȧ , and is therefore able to capture energy dissipation
due to normal approach @54#. Tangential stress is expressed
as:

ut f u5H <c fa
m f stick

5c fa
m f slip

(6)

These power law expressions allow versatility in friction
modeling in that by careful choice of parameters, a variety of

Fig. 2 Contact system showing angular deflection for VoÞ0 ~due
to friction asymmetry!
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other friction laws can be recovered. For example, the au-
thors point out that Coulomb friction is modeled using m f

5mn and bn50. Subsequently, in order to ease the compu-
tational demands of solving the problem, a friction regular-
ization approach of the tan21(...) form ~Section 4.2! is used.

Several key accomplishments can be extracted from these
works:
• normal-angular coupling plays an important role in self-

excited oscillations, and their occurance is most likely
when normal and rotational natural frequencies are tuned,
and

• observations of static and kinetic friction are not intrinsic
properties of the materials/surfaces in contact, but are in-
fluenced strongly by the dynamics of the measurement de-
vice.

Each of these conclusions has ample support in the literature,
and in particular, the second has been substantiated in both
the dry friction @13,55# and wet friction areas @56#.

2.2.3 Role of normal force variations

It is difficult to envision a contact scenario in which the
contact normal force Fn is truly constant, independent of the
motion of the system. Similarly, for continuous contacts, it is
reasonable to ascribe some spatial variation to interface nor-
mal pressure, and in fact contact mechanics presents many
straightforward solutions. These two factors combine to spur
interest in general analyses of normal force variations in dy-
namic systems. Once again, it has been found that normal
force variations can play a significant role in friction contact.

Anderson and Ferri @57# demonstrate the behavior of a
single-dof system under a generalized friction law including
amplitude-dependent friction. Their generalized friction law
of the form:

F f5m~Fn ,o1Fn ,1uxu1Fn ,2u ẋu!sgn~ ẋ ! (7)

consists of a constant coefficient m along with amplitude and
velocity gains Fn ,1 and Fn ,2 ; Fn ,o is the constant part of the
normal force. Note that the gains effectively model
displacement-dependent or velocity-dependent normal force
variations, while other velocity dependence could be implic-
itly accounted for ~eg, the more common velocity-dependent
sliding friction coefficient!. The authors first examine solu-
tions using a one-term harmonic balance, although they cor-
rectly note that this solution is increasingly in error as the
percentage of stick over one forcing period increases. They
map sticking regions in the position-time phase space and
conclude that the interface stiffness ~ie, the gain Fn ,1! plays
an important governing role in a sticking response and pre-
slip displacement schematically shown in Fig. 1d. They also
note that percent sticking increases monotonically with in-
creasing gain Fn ,1 , an observation supported across the fric-
tion damping literature as well ~Section 2.6!. Other authors
considering the role of normal force variations include Menq
et al @58#, Dupont and Bapna @59#, and Berger et al @60#.
Each of these works found an important role can be played
by normal force variations, whether in forced response or
self-excited oscillations. Finally, in addition to dynamic sta-
bility analyses, variations in normal force play a key role in

determining frictional energy dissipation, the kinematic state
of the interface ~sticking or slipping!, as well as influencing
the overall structural integrity of jointed and built-up struc-
tures, as discussed in Section 2.6.

2.2.4 Stick-slip oscillations

One of the more vexing problems of friction and dynamics is
stick-slip oscillations. Early studies of stick-slip date back to
den Hartog @61#, who developed a piecewise analytical solu-
tion to the nonlinear, piecewise equations of motion for a
single-dof, harmonically forced oscillator undergoing stick-
slip. Subsequently, a linearized analysis was developed by
Blok @62# to predict a critical system damping value to sup-
press stick-slip oscillations. The critical damping was related
to the slope of the friction-velocity relation. Rabinowicz @12#

later noted that stick-slip is extinguished under sufficiently
high sliding velocity, a conclusion no doubt coupled to the
general characteristic of lower friction curve slope at higher
sliding velocity. Subsequently, Derjaguin, Push, and Tolstoi
@63# developed an expression for this critical speed, which is
a function of the sliding velocity and therefore the friction
curve slope. In a series of articles, Brockley and colleagues
developed further quantitative understanding of stick-slip os-
cillations. First, Brockley, Cameron, and Potter @64# describe
a critical velocity expression for the suppression of stick-slip
vibrations, and this expression is a function of system damp-
ing, normal load, and friction characteristic. In addition, the
system stiffness plays a role in the calculation. Brockley and
Ko @65# use phase-plane tools to carefully examine the stick-
slip limit cycles resulting from a variety of friction laws,
including a non-monotonic humped law showing net rate
strengthening as sliding velocity increases. The authors note
the existence of quasi-harmonic vibrations under certain fric-
tion conditions. In fact, a non-stick-slip limit cycle can be
observed with the humped friction law mentioned above, and
the mechanism of this is again related to the friction curve
slope. When the oscillator operates on a portion of the
friction-velocity curve with negative slope, energy is inserted
into the system; when it operates on a positive slope portion,
energy is dissipated from the system. The negative/positive
slope mechanism, in concert with the overall system damp-
ing, can produce a pure slipping solution which has a net
energy change over one cycle of zero. This isolated, closed
trajectory in the phase plane is therefore a non-sticking limit
cycle, and its existence is critically dependent upon the na-
ture of the friction curve and the system dynamics. A variety
of other important results have been reported in the litera-
ture, notably the contributions of Popp, Pfeiffer, and col-
leagues @66–68#. These authors in particular have played an
important role in the development of analytical formulations
for stick-slip friction oscillators, as described next.

Stick-slip problems have recently been addressed as
members of the broad class of non-smooth dynamic systems.
Similarities between the stick-slip problem and the impact
oscillator problem ~which itself possesses a large literature
base-see for example Budd @69# or Bishop @70,71#! have
been explored in detail by Hinrichs, Oestreich, and Popp
@72,73#, and Popp @74#. In particular, @72# reviews a wide
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variety of approaches relevant to non-smooth dynamic sys-
tem analysis, and emphasizes the rich bifurcation behavior
presented by such systems. The analysis tools include bifur-
cation maps, Lyapunov exponents, as well as a variety of
time histories and phase portaits. The authors conclude that
non-smooth system analysis tools are maturing and the
smoothing procedures ~see also Section 4.2! used previously
for these sorts of problems are becoming less necessary.

The dynamics literature in general points to the critical
role of both parameter dependence of friction and system
dynamics response—particularly out-of-plane response–in
governing overall performance of systems with friction. It
seems clear that both the friction model and the system dy-
namic model must be chosen carefully, because their synergy
dictates existence of self-excited responses.

2.3 Friction and control strategies

Friction presents a variety of obstacles to effective control of
machines. Compensation schemes must deal with the inher-
ent nonlinearity of friction problems under both sticking and
slipping conditions. Surveillance of friction contacts is diffi-
cult, so estimators for friction force are often a necessity for
robust control strategies. As a result, there has been a rela-
tively recent emphasis from the controls community on fric-
tion models specifically amenable to implementation in con-
trol strategies. One key goal of the controls models is an
integrated friction description which is continuous across op-
erating regimes ~ie, sticking and slipping! as much as pos-
sible, resulting in a model which is numerically non-stiff and
provides reasonable controller frequency response.

Haessig and Friedland @75# propose two new friction laws
for use in simulations, with an emphasis on control ap-
proaches. The bristle model consists of a statistical descrip-
tion of surface contact with bristle location and distance be-
tween bristles described by random variables. The authors
use the bristle model as a physically-motivated representa-
tion of the microscopic details of surface contact, although
the number of parameters in the model itself makes its use
challenging. The second model, the reset integrator model,
defines a position-dependent friction force which resists mo-
tion and represents bonding between surfaces during stick-
ing. When compared with other friction models from the
literature, these two new models perform reasonably well,
although computational efficiency suffers in some cases.
Each represents an attempt to smooth the inherently nonlin-
ear ~and discontinuous at zero relative velocity! friction force
to make simulation more efficient.

Armstrong-Hélouvry @76,77# examines the role of system
stiffness and PD control on stability of steady sliding, espe-
cially at low velocity. Plant and controller parameters are
included in the stability analysis, and the friction model in-
cludes time lag, velocity dependence, dwell time depen-
dence, and pre-slip displacement under sticking conditions.
The result, based upon an energy argument, is a prediction
for critical stiffness above which stick-slip is eliminated.
This stiffness can be interpreted as either a physical stiffness
~plant! or a controller parameter ~displacement gain!.

Dupont and Bapna @59# examine the role of variable nor-

mal force on stability of steady sliding in a single-dof system
with general rate- and state-dependent friction behavior. The
authors note that single-parameter friction laws ~ie, those for
which friction depends only upon instantaneous sliding ve-
locity! cannot generate values of critical stiffness above
which stick-slip oscillations are extinguished. The physical
example is a single-dof system with inclined spring, such
that effective normal load is a linear function of system dis-
placement. A further comparison between quasi-static ~ie, in-
ertial forces neglected! and fully dynamic models is pre-
sented, with the conclusion that system mass does play a role
in the existence of stick-slip.

Dupont @22# addresses the implications of state-dependent
friction on stability of steady sliding from a controls perspec-
tive. By interpreting system stiffness and damping param-
eters as analogies to controller gains, design criteria for PD
controllers can be developed. A critical stiffness, above
which stick-slip oscillations are not possible, is predicted,
and this result is contrasted with that of time delay friction
models ~of the form proposed in @14#! for which only regions

of stiffness provide stable sliding.
Armstrong-Hélouvry, Dupont, and Canudas de Wit

@78,79# review the general literature spanning the tribology
and controls community, focusing specifically on control op-
tions for low-velocity friction-induced vibration problems.
Stick-slip problems are examined in light of several model-
ing and analysis tools ~describing functions, algebraic analy-
sis, etc!, and various compensation approaches ~PD, integral,
model-based, etc! are examined. The authors conclude with
recommendations for future investigations, including
physics-based friction models ~instead of empirical models!,
adequate consideration of lubrication, and a more thorough
understanding of the repeatability of friction data. The con-
flict, with regard to typical controls applications, relates to
the fundamental trade-offs among model fidelity, physical
relevance, and computational intensity. For controls prob-
lems, frequency response is often of prime importance, and
high-fidelity models are simply not feasible. This theme re-
appears in Section 5.4.

Subsequently, another bristle model emerged for controls
applications, and the so-called LuGre model was presented
by Canudas de Wit, Olsson, Åström, and Lischinsky @80#.
Stemming from a collaboration among researchers at the
Lund Institute of Technology ~Sweden! and in Grenoble
France ~Laboratoire d’Automatique de Grenoble!, the LuGre
model captures a variety of behaviors observed in experi-
ments, from velocity and acceleration dependence of sliding
friction, to hysteresis effects, to pre-slip displacement. The
price paid for such a versatile model is that it is a six param-

eter model, and the friction force is defined as:

F f5S soz1s1

dz

dt
1s2V relDFn (8)

where so is a characteristic bristle stiffness, s1 is a damping
parameter, s2 is a viscous damping coefficient, z is the av-
erage bristle deflection, V rel is the relative velocity, and Fn is
the contact normal force. The bristle deflection is defined by:

Accepted Manuscript

8



dz

dt
5V rel2

souV relu

g~V rel!
z (9)

where the function g(V rel) contains information about the
velocity dependence of friction. Several varieties of g(V rel)
have been proposed, all using the general form:

sog~V rel!5mc1~ms2mc!e2u Vrel/vs ua (10)

where mc is the Coulomb friction coefficient, ms is the static
friction coefficient, vs is the Stribeck velocity ~helping to
define the velocity dependence of friction!, and a is an
application-dependent exponent which has been reported as
a52 @80# or a50.5 @81#. The limiting cases for this model
are worth exploring ~See Table 3!. Note here that each pa-
rameter plays a different role in determining system response
under different operating conditions. This approach does
present a unified model which, when coupled with an appro-
priate dynamic model and control scheme, models the sys-
tem across the entire range of potential responses.

Previously, a seven-parameter friction model was devel-
oped for control applications by Armstrong-Hélouvry @76#.
The model includes Coulomb, viscous, and Stribeck friction
plus frictional memory, time-dependent sticking friction, and
pre-slip displacement. It is an integrated model, in the same
sense as the LuGre model, and it captures relevant behavior
for a variety of sticking or slipping scenarios. Once again,
the price paid for this versatility and robustness is the neces-
sity for identifying seven different friction parameters. None-
theless, the model has been used in the controls literature,
and is expressed for sliding as:

F f~V rel ,t !52F Fc1F
v
uV relu

1Fs~g ,t2!
1

11S V̇ rel~ t2tL!

vs

D 2G sgn~V rel!

(11)

where these parameters are similar to those in the LuGre
model:

Fc5Coulomb friction force

F
v
5viscous friction force

vs5characteristic velocity in Stribeck curve

tL5time constant for frictional memory

In addition, other descriptions become appropriate for other
sliding scenarios:

pre-sliding displacement F f~x !52k tx (12)

static friction

Fs~ t;t` ,g !5Fs ,a1~Fs ,`2Fs ,a!
t2t`

t2t`1g
(13)

where Fs ,a is the magnitude of the Stribeck friction at the
onset of sticking, Fs ,` is the long-time value for static fric-
tion, t2t` is the sticking time, and g is a time constant for
static friction evolution. The authors describe the typical pa-
rameter ranges for this model, as well as the physical situa-
tions which most closely influence each parameters.

Recently, a new modeling approach for so-called hybrid

systems, those dynamical systems possessing time-domain
discontinuities, has emerged, as have numerical tools for
simulation of generic hybrid systems. Taylor has developed a
suite of Matlab software for hybrid system simulation which
takes advantage of the Hybrid Systems Modeling Language
~HSML! @82–84#. The algorithm is designed to efficiently
handle state-change events, including continuous-time,
discrete-time, or logic-based alterations in model behavior;
friction is one excellent example. Indeed, Taylor presents
@85# simulation results for an electro-mechanical system with
both saturation and stiction; the HSML implementation in
Matlab shows clear advantages in capturing state ~ie, stick-
slip! transitions. In addition to advances in simulation ap-
proaches for hybrid systems, a stability theory for such sys-
tems is continuing to emerge ~eg, Hou and Michel @86#!.

The controls literature has emphasized computationally-
efficient, multi-parameter friction models suitable for fast
simulation and providing reasonable controller frequency re-
sponse. The six-parameter LuGre model, for example, pro-
vides a well-integrated view of friction; using an appropriate
calibration approach to identify the model parameters can
result in a useful model for controls applications, and other
applications for which the highly localized details of inter-
face response ~ie, interface partial slip, slip displacements,
etc! are not required.

2.4 Friction and mechanics of materials

The mechanics of materials community has also examined
the friction interface problem, again with various approaches
to friction. The most common analysis approach seems to be

Table 3. LuGre model parameters and limiting behaviors

Case Condition Relevant Equation Controling Parameter

stiction V rel50 F f5mszFn stiffness so

hysteresis V rel5” 0 Ff5soz1s1FVrel2
souV relu

g~V rel!
zG1s2V rel damping s1 ,s2

break-away V rel50 soz5ms stiffness so , friction ms

stick-slip periodic equations ~8!, ~9!, ~10! velocity function g(V rel)
response friction mc , velocity vs
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a constant coefficient of sliding friction, with multi-valued
zero-velocity friction. This approach emerged as being very
reasonable considering the small interfacial slip velocity and
the analytical tractability of a constant friction coefficient
problem. Key problem quantities are shown schematically in
Fig. 3. The figure is based upon the classical result attributed
to Mindlin @87#, who showed that under constant normal-
plus-tangential loading of Hertzian-type contacts, a region of
slipping propagates inward from the contact edges with in-
creasing tangential load. This is a partial slip problem, in
which by definition part of the interface slips while part of
the interface sticks. In the figure, the stick zone of the contact
between two cylinders is defined for the region uxu,c , and
the slip zone is defined by c,uxu,a . The contact radius a is
derived from Hertz contact considerations, and the stick zone
size is governed by:

c

a
5S 12

Fq

mFp
D 1/2

(14)

where Fp is the global normal load, Fq is the global tangen-
tial load ~which may be reciprocating!, and m is the coeffi-
cient of friction corresponding to interfacial slip. Of course,
for non-constant coefficient of friction, the formulation be-
comes analytically less tractable, and in this sense a constant
friction coefficient seems to be a good choice. However, note
that the slip displacements ux(x ,t) in these partial slip prob-
lems tend to be quite small, certainly small compared to the
slip zone size. As a result, in order for ~say! velocity depen-
dence of friction coefficient to play a significant role, tangen-
tial excitation frequency under harmonic input according to:

Fq~ t !5Fq ,1 sin vqt (15)

would need to be very large such that the steady-state slip
velocity given by:

u̇x~x ,t !5vqux~x ,t ! (16)

is significant compared to velocity dependence of g(V rel)
5 u̇x . Here we have assumed a steady-state harmonic inter-
face response. For small-scale relative motion in cases like
these, we might expect that typical forms of parameter de-
pendence of friction coefficient would represent a second-
order effect. These types of analyses have been pursued

widely in the fretting fatigue community, and a variety of
interesting observations have been made concerning friction
modeling and the role of system dynamics.

Oden and Pires @88# propose nonlinear and nonlocal fric-
tion laws for elastic contact problems, and present a varia-
tional formulation for the contact boundary-value problem. A
nonlocal friction law is one which depends not only upon the
contact conditions ~ie, normal stress! at a point, but also
upon contact conditions in the near-vicinity of that point. The
value of these models lies in calculations for impending mo-
tion, and also as an interpretation of the partial slip problem
discussed elsewhere in this paper. Solution techniques for the
nonlinear and nonlocal laws are later reported in @89,90#.
Further, these non-local interface laws have overlap with ad-
hesive contact models such as the DMT model, which in-
cludes adhesion effects not only within the contact, but also
just outside the contact where the surface separation remains
small and the surface interaction is non-negligible–see
Greenwood @91# for a thorough numerical analysis and Sec-
tion 2.8 for a brief discussion.

In a series of articles, Adams has examined relative slid-
ing of two elastic half-spaces, including extensive analytical
work with the continuum elasto-dynamic equations of mo-
tion. Using a constant coefficient to describe the interface
contact @92#, he concludes that dynamic instabilities are pro-
moted by mismatch of the elastic wave speeds in the mate-
rials. Next, separation wave pulses are investigated for their
potential to induce relative motion in nominally sticking con-
tacts @93#. Their existence can indeed produce relative sur-
face sliding, under the condition that a small separation re-
gion propagates along the interface encouraging local

relative motion. He further shows @94# that the observed co-
efficient of friction ~far from the contact interface! can be
different from the actual interface friction coefficient, and a
mismatch of the shear wave speeds in the contacting materi-
als is identified as the mechanism of this behavior. This con-
clusion is similar to the assertions of Oden, who previsouly
indicated ~Section 2.2.2! that the friction coefficient is not a
fundamental surface property, but rather a composite func-
tion of surface interaction and system properties.

One of the most frequently-cited works in the fretting
literature is the fundamental contribution of Ruiz and Chen
@95,96#. They examined fretting fatigue in turbomachinery
blade/disk dovetail joints, and their bench-scale experiments
suggest a predictive criterion for fatigue crack initiation
which depends not only upon normal and tangential contact
stress, but also on frictional work:

k5sTt fux (17)

where sT is an in-plane tensile stress at the interface ~respon-
sible for driving any fatigue cracks which develop at the
surface!, t f is the interface friction shear stress, and ux is the
slip displacement. Here we see an important link between
interface friction t f and interface response ux , and it is pro-
posed that both are critical in determining component fatigue
life.

Nix and Lindley @97# provide indirect support for the Ruiz
and Chen fretting criterion by showing a sensitivity of fa-

Fig. 3 Schematic of Mindlin ~partial slip! result for nominal Hert-
zian contact: contact half-width a and stick zone half-width c,a
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tigue strength to slip displacement, with a minimum ob-
served for slip displacements on the order of 10–30 mm ~Fig.
14 of their paper!. However, the authors argue that an inter-
mediate parameter, the plateau value of friction force during
the experiment, provides the link between slip displacement
and fatigue life, and that it may be the fundamental govern-
ing parameter. Changes in this plateau value determine fa-
tigue life, and observed changes in slip displacement are
simply consequences of the change in friction force.

Kuno, Waterhouse, Nowell, and Hills @98# provide further
support for the Ruiz and Chen criterion by applying the
theory to a geometry fundamentally different from that used
in the original work @96#. A Hertzian contact is used to gen-
erate fretting parameter maps. The Ruiz and Chen parameter
correctly predicts the location and shape of the cracks ob-
served in experiments, and of course the slip displacement
~calculated from a Mindlin-type analysis! plays an important
role. Subsequent life calculations are based upon fracture
mechanics approaches.

In addition to providing further experimental support for
the Ruiz and Chen criterion, Nowell and Hills @99# also pro-
pose a further physical interpretation of the criterion. The
composite criterion described by Eq. ~17! is actually a bridge
criterion which quantifies the following two components
necessary for fretting fatigue to occur:

• fretting surface damage governed by frictional work t fux

provides nucleation sites for fatigue cracks, and
• bulk tensile stress sT opens the crack and drives its propa-

gation.

So, a sufficient combination of nucleation and propagation
effects must be present, or else either i! a crack will not
nucleate, or ii! it will self-arrest. Fretting fatigue predictions
are therefore very sensitive to our knowledge of the interface
stress state and displacements, and accurate predictions de-
pend upon good contact models and appropriate friction
models.

Waterhouse @100# comprehensively reviews the fretting
literature and emphasizes the important role played by fric-
tional work in fretting contacts, citing @95# and @96# and their
proposed criterion of Eq. ~17!. To complement the discussion
of analytical tools, the author cites a variety of experimental
efforts which support the conclusion that interface slip dis-
placement is a governing parameter in fretting fatigue crack
initiation. Furthermore, the location of crack initiation is
identified, under relatively low load conditions, as the stick-
slip boundary—thus reinforcing the idea that accurate fret-
ting fatigue behavior prediction relies upon a complete un-
derstanding of the interface response.

An interesting development in the fretting literature, and
an important link to other friction modeling approaches, is
the proposition of a critical length scale in fretting contacts.
When the slip displacement exceeds the characteristic asper-
ity spacing, then each asperity within the contact undergoes
more than one loading cycle for each cycle of motion. This
distinction between macro-scopic surface interaction ~many
asperity contact! and small-scale surface interaction ~single
asperity contact! has been examined in the fretting literature

as described next. If this important fretting length scale is
related to slip displacement ux and asperity spacing, then it
seems clear that performance and durability of large-scale
fretting components is substantially influenced by interac-
tions on much smaller length scales.

Hills, Nowell, and O’Connor @101# briefly review the lit-
erature and present new experimental results which demon-
strate a distinct size effect in fretting contacts. The authors
reproduce, using a slightly different test configuration, the
results of Brumhall @102#, who observed that below a critical
contact size, fatigue life is infinite. They then put forth two
hypotheses concerning the mechanism of this size depen-
dence, and one, the initiation-based criterion, relates the
critical contact size to the slip displacement ux . For smaller
contact size, the slip displacement remains small and the
Ruiz and Chen initiation criterion falls below the critical
crack initiation value. The work does not conclusively vali-
date the initiation hypothesis, but once again interface slip
displacement appears to play an important role in fretting
contacts.

Hills @103# further pursues the length-scale question in
fretting contacts by carefully examining the contact mechan-
ics of fretting. Referring to the basic solutions of Mindlin
@87# and Cattaneo @104#, Hills analyzes the test rig itself and
verifies the use of Hertz-type approach ~accounting for par-
tial slip!. The slip displacement is linked to the size-
dependent behavior by the following argument: if the slip
displacement is larger than the characteristic spacing be-
tween asperities, then each asperity experiences more than
one loading cycle for each cycle of motion. This behavior is
then independent of the contact size, an observation sup-
ported by experiments. In addition, Nowell and Hills @105#

previously examined the differences between typical fretting
fatigue tests, and fretting fatigue modeling. They specifically
compare the Mindlin-type solutions often used in fretting
analysis with the actual prevailing stresses in the test com-
ponents. They conclude that the bulk tension associated with
the fretting test significantly affects the interface shear trac-
tion and stick-slip behavior, and that the Mindlin approach
must be modified to account for bulk loading effects.

Szolwinski and Farris @106# present a new fatigue life
parameter, the so-called G parameter, defined as the product
of maximum normal stress and normal strain ~and indepen-
dent of slip displacement!, derived from the assumptions of
elastic, nominally Hertzian contact of isotropic components.
The G parameter correctly predicts the crack origin location,
the crack orientation, and ~approximately! the nucleation life
of fatigue cracks ~as compared to published data @99#!. How-
ever, the G parameter does not capture the observed size
dependence reported previously @103#, and the authors assert
that their elastic analysis cannot model the apparently plastic
effects associated with the size dependence. Recall that Hills
@103# suggested that this plastic behavior is critically related
to the ratio of slip displacement and characteristic asperity
spacing, reinforcing the idea that slip displacement is a fun-
damentally important parameter.

A critical link between the mechanics literature and other
friction-related areas is the apparent contact dynamics-
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dependence of fretting test results. Söderberg, Bryggman,
and McCullough @107# and Bryggman and Söderberg @108#

both critically examine the contact conditions in fretting,
with a keen eye on interface slip displacement, transition
from pure stick to partial slip to pure slip, and on frequency
effects in fretting contacts. In @108#, critical displacement
amplitudes indicating the transitions from stick to partial slip
(D1) and partial slip to pure slip (D2) show a strong depen-
dence on excitation frequency. The authors attribute this to
the competing effects of temperature ~which decreases sur-
face hardness! and strain hardening ~a plastic process which
increases hardness!, which combine in a complicated
frequency-dependent way. In @107#, high frequency fretting
experiments reinforce the observation that at low fretting
amplitudes ~ie, partial slip conditions!, fretting behavior is
very sensitive to excitation frequency. However, high ampli-
tude ~ie, pure slip! fretting experiments are proposed for ac-
celerated life tests, because the sensitivity of fretting fatigue
life to frequency was small across a wide frequency range for
this condition.

Subsequently @109,110#, these researchers closely exam-
ined the roles of various test parameters on a number of
measureable outputs. @109# details the effects of normal load,
excitation frequency, and fretting amplitude on wear scar
size, critical tangential displacement which governs transi-
tions from stick to partial slip to pure slip ~see @107,108#!,
and critical tangential force. The pronounced frequency ef-
fect indicates that accelerated fretting tests should not be
used for low amplitude fretting applications. As frequency
increases under constant fretting amplitude, different inter-
face regimes ~stick, partial slip, pure slip! are encountered;
this calls into question the validity of the accelerated life test
predictions. The work culminates in the development of fret-
ting maps which plot regimes of behavior in a two-parameter
space, one example of which is shown schematically in Fig.
4. Part a of the figure indicates that slip amplitude plays a
primary role in i! determining the interface response regime,
and ii! determining the fatigue life. The partial slip regime is
the most deleterious. Figure 4b shows a fretting map in fa-
tigue life-normal load space which again reinforces the criti-
cality of partial interface slip in governing fatigue life.
Schouterden, Blanpain, Çelis, and Vingsbo @111# again rein-
forced the frequency dependence of fretting results, indicat-
ing that extrapolation of results from one operating regime
~eg, low amplitude, high frequency! to another ~eg, high am-
plitude, low frequency! is difficult because the interface con-
ditions change as well. Further support is provided by Reh-
bein and Wallaschek @112#, who conclude that high
frequency contact is dominated by dynamic parameters in-
cluding time variation in both normal and tangential forces.
They introduce a time-averaged high frequency friction co-
efficient which on average is smaller than the sliding or static
coefficients. They invoke the essential argument of Tolstoi
@26#, proposing that the mean surface separation and, there-
fore, the real area of contact is smaller under the presence of
normal vibrations, and therefore, the apparent coefficient of
friction is smaller as well.

While at first the constant friction coefficient argument in

fretting fatigue analysis is appealing, experimental results
have been reported for which a constant coefficient cannot
adequately explain the observed behavior. It seems that more
complicated interface phenomena may be at work, including
spatial and temporal variations in normal force, critical slip
distance ~ie, memory! effects, temperature-dependent friction
coefficient ~perhaps indirectly via material hardness!, or sim-
ply operating in an interface response regime which is dif-
ferent from the application of interest ~ie, operating in pure
slip instead of partial slip!. The conclusion is that even
model geometries such as fretting contacts, which use nomi-
nal Hertzian contacts, must be approached with some cau-
tion, and a great deal of richness of response can be obtained
by varying operating conditions, contact size, and other
problem parameters.

2.5 Friction and geomechanics

Early work in the geomechanics area focused on earthquake
understanding and prediction. One of the most prominent
bodies of literature contains the work of Caughey and Iwan,
who developed simplified models of friction mechanics and
applied them to a variety of engineering systems within and
outside of the earthquake area. Their focus was a family of
bilinear hysteresis models for friction which were also ap-
plied to modeling elasto-plastic material behavior. The bilin-
ear hysteresis models are attractive because they include fi-
nite material compliance as well as slip behavior. As such
they can be used to model transitions from stick to slip,
originating in elastic material response as the loading is ini-
tiated, to break-away when the load reaches a critical value.
A number of articles on a variety of related subjects have
appeared @113–119#. Figure 5a shows the standard bilinear
hysteresis element composed of a single discrete spring and
Coulomb damper in series. The single, massless contact
point can either stick or slip, and because partial slip cannot
be obtained it is sometimes called a macroslip element. @119#
seems to be most frequently cited because in it the author
describes a procedure for defining a pseudo-continuum
model based upon a large number of bilinear hysteresis ele-
ments whose properties are distributed according to some
statistical function; Fig. 5b shows the parallel-series ~P-S!
models, while Fig. 5c shows the series-parallel ~S-P! models.
Furthermore, Iwan’s assertion that the parallel-series model

Fig. 4 Variation of fatigue life in fretting contacts as a function of
a! interface slip displacement ux and b! applied normal load Fn

~after Vingsbo and Söderberg @110#, Figs. 10 and 11 respectively!
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~Fig. 5b! is more suitable for dynamic system modeling has
been leveraged in much of the slip damping research refer-
enced in Section 2.6. Note that this model was originally
used by Masing @120#, who applied it to material behavioral
modeling, and in fact the so-called Masing rules have been
invoked by a number of researchers cited later in extending
the model from monotonic to cyclic loading scenarios.

Continuum mechanics approaches later emerged, includ-
ing Byerlee and Brace @121# and Byerlee @122# which fo-
cused on stable fault slip as well as stick-slip events. Dieter-
ich produced a series of rock-friction-related works in the
late 1970s which introduced a friction constitutive modeling
framework of general parameter dependence, specifically re-
lated to time-dependence of static friction @123#. Later, stick-
slip simulations @124# and pre-seismic slip predictions @125#
were undertaken, resulting in new insights concerning fric-
tion modeling and its effects on dynamic system perfor-
mance.

Subsequently, Rice and Ruina @24# put forth a new fric-
tion consitutive law derived from their experiences in geo-
mechanics research, and later extended it @25,126#. Related
to the work done previously by Dieterich, the so-called rate-
and state-dependent friction law has the following generic
form:

t f5t f~V rel ,u1 ,u2 , . . . ! (18)

This model includes not only an instantaneous friction re-
sponse to changes in system operating condition ~ie, sliding
velocity or normal load!, but also an evolutionary part. The
evolutionary portion of the response is governed by a critical
slip distance dc , which is related to the sliding distance re-
quired to make and break new populations of asperity con-
tacts. With a continually and rapidly changing population of
asperities in contact, the friction coefficient remains stable;
with the same population of asperities in contact the time-
dependence of sticking friction comes into play. Used prima-
rily in large-scale geomechanics simulations of fault slip and
earthquake events, this model’s utility in forced response cal-
culations has yet to be fully explored. Note also the similar-
ity in the physical argument behind the existence of a critical
slip displacement for the Rice friction model and contact size

effects in fretting contacts observed by Hills @103#, among
others. This notion is similar to Rabinowicz’ memory-
dependent friction in that it contains information about the
current sliding condition and also previous sliding history.
Rice’s work reports critical slip displacements on the order
of 10–100 mm, consistent with Rabinowics’ assertions 25
years previous. Further work along these lines was summa-
rized by Ruina @127#, and reported by Linker and Dieterich
@128#.

Rice subsequently assembled very large scale simulations
and linked the inherent friction length scale dc to domain
discretization requirements for numerical solutions. He
shows @129# that under a general rate- and state-dependent
friction law with weakening distance dc , a critical cell size
h* can be derived for the discretized system, and h* is an
explicit function of the friction constitutive model param-
eters and scales with dc . For discrete systems with cells of
size h,h*, the discrete model demonstrates a clear con-
tinuum limit ~ie, as h→0!. For larger cell sizes, the model
may respond as what Rice calls an inherently discrete sys-
tem, one with no well-defined continuum limit. The simula-
tions show that for large cells, each cell may respond
discretely—ie, independent of surrounding cells—unlike the
continuum formulation for h,h*. The outcome for h.h*
is extremely rich nonlinear dynamic slip behavior resulting
not from the fundamental elasto-dynamics of the original
governing equations, but from the local dynamics of the dis-
crete system. Rice demonstrates that this response complex-
ity ~in both time and length scales! is therefore not a funda-
mental property of the continuous system, but rather an
artifact of a coarse discretization. This idea was further ex-
plored and supported in subsequent work @130#, and dis-
cussed in the context of an elastic coherence length j ~a
characteristic length indicating the minimum size of a slip-
ping region at an interface! by Persson @131#. In fact, Persson
suggests that the relevant length scale governing discretiza-
tion is in fact j@dc , which relaxes the computational con-
straints somewhat, and presents a more practical guideline
for domain discretization.

The geomechanics literature has favored continuum-
mechanics-motivated models for friction, from Iwan’s elasto-
plastic material models using lumped-parameter elements, to
Rice’s general rate- and state-dependent friction. A key result
here is the observation of a critical slip displacement dc over
which friction evolves. This is in support of the time lag
observations made previously, and has important implica-
tions on both modeling formulation and appropriate discreti-
zation of continuous models.

2.6 Friction and energy dissipation

Dry friction as a mechanism for vibration control has been
used successfully for many years. Indeed, dry friction pro-
vides an inexpensive, passive, environmentally-tolerant ap-
proach to energy dissipation, and across a wide range of
applications friction damping has been explored. The dry
friction damping problem is usually approached from a
forced response perspective, for which the dynamic response
of the structure under ~usually! periodic forcing is obtained.
This is fundamentally different from much of the literature

Fig. 5 Lumped-parameter models for friction contact: a! mac-
roslip ~bilinear hysteresis! element, b! Iwan parallel-series model, c!
Iwan series-parallel model
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previously cited, which focuses on self-excited or unforced
problems, for which steady-sliding stability or stick-slip limit
cycles are predicted.

The early quantitative work in this area is attributed to
Mindlin and Deresiewicz @132#, who developed predictions
for energy dissipation in model contacts as an extension to
previous work @87#. The constant friction coefficient model
is employed to describe interface behavior. They predict hys-
teresis loops under cyclic loading, and in general this theory
has been corroborated through contact mechanics experi-
ments. A key result is the dependence of energy dissipation
on the third power of tangential load under light loads. The
result is in fact independent of the mean loading, and sensi-
tive only to the loading range. For a time-varying tangential
load defined as Fq(t)5Fq ,o1Fq ,1 sin vqt, the energy dissipa-
tion is functionally expressed as:

DE5A
~Fq ,1!

3

Fq ,max
(19)

where A is a collection of scalar parameters related to con-
tact geometry and elastic constants, and Fq ,max is the critical
tangential load required to produce gross slip of the inter-
face. Note that this result is independent of the mean tangen-
tial loading Fq ,o . ~This is in contrast to fretting experiments,
where component life is the focus, for which bulk stresses
related to Fq ,o are important, as described by Nowell and
Hills @99#.! This result has been scrutinized via careful ex-
periments by Goodman and Brown @133#, who report third-
power dependence of energy dissipation on tangential load
range, and present hysteresis loops to determine frictional
work. Johnson @134# reports the results of fretting experi-
ments essentially in support of the theory of Mindlin, show-
ing energy dissipation calculations based upon log decrement
measurements, as well as post-test wear scar examination.
Johnson points out the role of elastic hysteresis effects,
which, especially at light loads, can represent a significant
portion of the total dissipation. He further notes the apparent
variation in friction coefficient within the contact circle, and
attributes this observation to break-down of surface oxide
films within the slip annulus.

The key here is that the stick-slip nature of the interface
response plays a crucial role in providing energy dissipation.
Consider first a single-DOF problem with only one discrete
contact point loaded by a constant normal force Fn and a
cyclic tangential force Fq(t). The steady-state motion of the
mass may contain periods of stick and periods of slip, and
for displacement of the system denoted by x(t), a sticking
condition is ẋ50. Keeping in mind the general expression
for frictional work over one forcing period Tq52p/vq

DW5E
to

to1Tq

F f ẋdt (20)

the general trends are summarized in Table 4.
It is then clear that careful consideration of the interface

sticking and slipping state is required for accurate prediction
of energy dissipation. den Hartog @61# provided the first
complete solution for forced response with combined viscous
and Coulomb damping, although he assumed a constant co-
efficient of friction. den Hartog solved explicitly for slipping
and symmetric sticking motions, having two stops per forc-
ing cycle, and he also observed a smaller resonant peak and
a lower resonant frequency in the presence of friction. These
combined effects of amplitude and frequency modulation in
the presence of friction are characteristic and are observed
with other structural and friction models. Shaw @135# aug-
mented den Hartog’s work with a distinction between static
and kinetic friction, as well as an analysis of stability of
steady-state motions. He also examines bifurcations in the
forced response, including multiple stick events per forcing
period, and develops sticking maps in position-time space ~a
concept later used and extended by Anderson and Ferri @57#!.

2.6.1 Nominally-stationary joints

One of the key roles for friction at a contact interface is to
provide passive damping to the structure, and this perfor-
mance issue has serious implications in, for example, large
space structures and other built-up structures whose inherent
damping may be low. As such, the design of nominally-
stationary joints—bolted or riveted connections, clamped
boundaries, etc—requires careful consideration of friction
modeling. Once again, the structural dynamics can be tuned
to promote friction damping, although this requires robust
friction models.

The use of controlled interfacial slip for vibration sup-
pression has been pursued by Beards in a number of articles.
He has periodically reviewed the relevant literature in this
area ~eg, @8#!, and in fact returns to some general conclusions
concerning the role of frictional slip damping. First, he sur-
mises that roughly 90% of inherent damping in structures
arises from structural joints, and this assertion is echoed in
other areas including damping of turbine blades, in which
blade attachment damping, inherent material damping, aero-
dynamic damping, and other potential sources are small
compared to that of properly-designed friction dampers ~this
literature is reviewed more thoroughly later in this paper!.
Beards emphasizes the duality of joint clamp force which
plays a critical role both in friction damping and static struc-
tural stiffness, and as described in Table 5. Further, Beards
and Woohat @136# examined the influence of clamp force on

Table 4. Normal load effects on contact interface conditions

Normal Load Interface Condition Friction Force Sliding Velocity Energy Dissipation
Fn F f V rel DW

Low pure slip low high low
Moderate partial slip moderate moderate high
High pure stick high zero zero
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dynamic characteristics of a frame. They note that to a cer-
tain extent dynamic properties of the frame can be con-
trolled, and that both natural frequencies and mode shapes
can be substantially altered by varying the clamp force. The
design trade-off is of course that optimal damping character-
istics may undermine structural stiffness to an unsatisfactory
degree.

Ferri has revisited the friction dynamics problem several
times, and in addition to a recent review article @5#, Ferri and
Heck @137# present an interesting view of reduced-order fric-
tion damping models using singular perturbation theory.
First, a one-mode turbomachinery blade structural model
with friction damper of non-zero mass is presented. The lim-
iting cases of infinite damper stiffness ~studied originally by
den Hartog! and zero damper mass ~models such as those
studied by Griffin @138#, among many others! are easily ex-
tracted, but Ferri focuses more closely upon the general case
for analysis. Zeroth-order and first-order perturbation solu-
tions are compared with the classical solution of den Hartog
and time integration of the full nonlinear model for fre-
quency and amplitude changes with problem parameters.
Ferri observes that the best agreement between the perturba-
tion approximations and the full nonlinear solution is
achieved for light, stiff dampers under relatively large re-
sponse. This indicates that if the system truly does behave
like a 1-dof system ~and local damper dynamics are negli-
gible!, then a one-mode approximation and massless damper
~or, at least, a system with damper natural frequency well
above the excitation frequency! is justified and sufficiently
accurate. However, the results also suggest that heavier
dampers may provide excellent damping performance but
undermine the predicative capability of lower-order models
~as illustrated by Ferri’s Fig. 11!.

Previous work in this area includes Pierre, Ferri, and
Dowell @139#, who expand the solution to the nonlinear fric-
tion problem using multiple harmonics and an incremental
harmonic balance method ~HMB!. The incremental HBM
~IHBM! is capable of efficiently handling the sgn nonlinear-
ity at zero relative velocity by making small increments in
the argument ~ie, performing successive linearization of the
problem!. The authors conclude that three harmonic terms
are, in general, sufficient to capture the character of the so-
lution ~as Wang and Chen @140# also later reported!, but de-
tailed information about sticking and slipping response is not
obtained. Furthermore, for problems in which the amount of

sticking is substantial, the Fourier series representation of the
response clearly requires many more than three harmonic
terms, and the performance of the IHBM in such cases suf-
fers.

Dowell @141# has examined the case of damping in the
boundary supports of clamped beams and plates, with a pri-
mary emphasis on the case of pure slip ~ie, no stick-slip is
considered!. He finds that for sufficiently large motion—that
is, that the assumption of pure slip is essentially true—the
problem becomes a linear one in which the friction damping
is expressible as an equivalent viscous damping. Previously
he examined the case of a cantilever beam with dry friction
point contact damper attached @142,143#. Ferri and Binde-
mann @144# also examine the support damping problem for
vibrating beams, and they consider a variety of physical con-
figurations ~in-plane slip, transverse slip, etc!. In each case,
the harmonic balance method is used to approximately deter-
mine the response to harmonic forcing, and in each case
friction damping is found to be related to the response am-
plitude in a different way ~ie, invariant, proportional, in-
versely proportional, etc!. A key assumption for the analysis
is that the response is substantially in pure slipping, and that
a single harmonic term can adequately capture the response.
The authors conclude that design changes which alter the
geometry of contact interfaces ~ie, in-plane vs transverse
slip! may increase efficiency and overall damping of the
joint.

In a two-part article, Makris and Constantinou demon-
strate an exact solution for constant or linear Coulomb fric-
tion laws @145#, and also that velocity-dependent friction can
have a profound effect on the dynamic response @146#. They
consider single and multiple stops per forcing cycle of a
single-dof oscillator, and include rigorous treatment of the
frequency cases for which no asymptotically stable periodic
motions exist ~under constant Coulomb friction!. With
velocity-dependent friction, the number of stops per forcing
cycle was observed to be smaller than for constant Coulomb
friction, and in addition the frequency content of the re-
sponse was also different.

Finally, the recent contribution of Gaul, Nitsche, and col-
leagues has been substantial in our understanding of dynamic
friction, particularly as it applies to mechanical joints. The
review article @147# presents a comprehensive look at joint
friction and includes specific aspects of various models de-
scribed here relevant to friction joints. They also examine

Table 5. Comparison of interface slip regime and normal load effects for fretting problems and interface energy dissipation problems; strong

similarities exist despite vastly different applications.

Interface

Regime

Normal

Load

Energy Dissipation Fretting Fatigue

pure slip low low frictional work due to low friction ~despite large slip! large slip wears away potential crack nucleation sites, improving
fatigue life

partial slip moderate large friction work with moderate slip provides optimal
energy dissipation

moderate slip does not wear away potential crack nucleation
sites, therefore reducing fretting fatigue life

pure stick high high friction but zero slip results in no frictional work and
no energy dissipation

zero slip provides for no frictional work and therefore no fretting
surface damage, extending fatigue life
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issues such as the role of surface roughness in joints, com-
putational approaches, and the randomness of friction forces.
They further describe truss and frame structures, as well as
semi-active joints, and the important role of friction in each
case. The idea of active vibration control is explored @148#,
and maximal energy dissipation is achieved through joint
normal force control. Nonlinear dynamics of friction joints
have also been investigated @149#, as has microslip behavior
in joints @150# ~see the next section!.

2.6.2 Microslip, partial slip, and passive damping

The term microslip is often used interchangably with partial

slip, although microslip leads to some confusion. A microslip
interface response is one which has small regions of slipping
while most of the interface is sticking. This term has been
used in the mechanics literature ~eg, @151#! as well as the slip
damping literature. It may lead to some confusion because it
is not clear whether micro refers to the size of the slip zone
~a – c from Eq. ~14!! or the slip displacement amplitude ~ux

from Eq. ~17!!. In this discussion, the term partial slip will be
used consistently to describe contact situations with a part of
the interface sticking while another part simulaneously slips.

A prominent body of work for partial slip friction damp-
ing has been developed by Griffin and colleagues in the gas
turbine community over the past 20 years, although these
approaches are equally relevant for any dynamic, partial slip
contact situation. The initial work by Griffin @138# consisted
of using a bilinear hysteresis element of the form shown in
Fig. 5a. Griffin identifies two key design parameters: damper
stiffness, and the force at which it slips. Note that the damper
stiffness is a semi-physical parameter ~see the discussion of
Section 2.5 on Iwan models! which broadly indicates the
pre-slip displacement behavior xpre of the damper. The stiff-
ness does not correlate to a structural property of the damp-
ing element itself ~for example, an in-plane stiffness!. Griffin
is able to capture the amplitude and resonant frequency shift
similar to den Hartog @61# for this airfoil damping applica-
tion. Similar bilinear hysteresis models were employed later
@152,153#. In addition, Menq and Griffin @154# investigate
approximate solutions composed of a single harmonic for the
blade damper problem using the macroslip element described
above. They observe that the steady-state solutions for the
approximate method correspond closely to those from time
integration. Further, Menq, Griffin, and Bielak @155# use a
displacement-dependent normal load ~which is equivalent to
using the gain Fn ,1 in the friction law of @57# cited in Eq. ~7!!

along with the bilinear hystersis element to model blade
damper performance. They conclude that the coupling ratio

~ie, the gain Fn ,1! plays an important role in determining the
point of optimal energy dissipation and therefore optimal
blade design.

Menq and Griffin published a series of articles in the mid-
1980s related to the forced response of frictionally-damped
structures. Their efforts produced an improved partial slip
model which allows for spatially-distributed interface re-
sponse, a feature which contrasts strongly with many previ-
ous analyses using point contact models. @156# and @58# in-

troduce this improved partial slip model and exercise the
model on various systems for comparison to experimental
results. The model is motivated by a continuous system, in-
cluding an elastic bar on an elasto-plastic shear layer foun-
dation ~or alternately two elastic bars connected in a lap joint
with an elasto-plastic shear layer!. When the shear layer is
strained, regions of stick and slip can develop, and the au-
thors derive various equations describing the system re-
sponse. The elastic stiffness of the shear layer plays a strong
role in determining the system dynamic response, just as it
does for the bilinear spring model described above. Experi-
mental evidence is given to support the model, although in
each case agreement between model and experiment requires
calibration of partial slip model parameters.

Despite the requirement for model tuning, the Griffin and
Menq partial slip model provides insight where others had
failed: the interface response is spatially distributed, the full
range of interface responses is considered ~pure stick, partial
slip, and pure slip!, and good quantitative agreement with
experiments can usually be achieved. The biggest liability of
this partial slip model lies in choosing the model parameters.
Indeed, subsequent work @157,158# suggests a damper opti-
mization procedure requiring model calibration via a test
program or historical data. The procedure suggested is not
sufficiently well defined to guarantee that the model param-
eters derived from experimental data are unique. Nonethe-
less, it is clear that the Griffin and Menq model provides
good value to the design process, and if properly tuned it can
be effective in blade damper design.

Muszynska and Jones @159# use a hysteresis friction
model and single-harmonic solutions to examine the blade
vibration problem for both tuned and mistuned bladed disk
problems. They allow for both frictional and elastic coupling
between adjacent blades, and conclude that the friction cou-
pling itself may be the source of mistuning. Other work in
this area includes the effort of Wang and Shieh @160# and
Wang and Chen @140#, who examine turbine blade vibrations
under conditions of velocity-dependent friction coefficient
and higher-order HBM approximations. Two key results are
demonstrated. First, @160# shows that velocity-dependent
friction may have a significant impact on damper perfor-
mance predictions for the one-mode structural model similar
to that proposed by Griffin. In particular, the resonant fre-
quency shift for both stiff and flexible dampers can be sub-
stantially overestimated—especially in the near optimal pre-
load range—if velocity dependence is neglected. This
emphasizes the prominent role of friction model in predict-
ing damper performance. Furthermore, resonant stress ampli-
tude in the near-optimal preload range is only affected
slightly by the inclusion of velocity-dependent friction. A
second critical result reveals the strength of nonlinearity in
many friction damper problems. @140# presents a multi-term
HBM approximation to the nonlinear solution and shows that
in cases of near-optimal preload, the linearized response us-
ing a one-term HBM solution is substantially in error as
compared to the three-term solution ~which itself is very
close to the time integration solution for the full nonlinear
equations of motion!. Their conclusion is two-fold: i) one-
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term HBM solutions may neglect critical system dynamics
~ie, nonlinearities! for relevant physical situations of near-
optimal preload, and ii) three-term HBM solutions seem to
provide an acceptable result as compared to time integration
solutions.

Other relevant work includes the contributions of the
group at Imperial College led by Sanliturk and Ewins. Their
efforts have also focused on HBM analyses of bilinear hys-
teresis elements. Sanliturk, Imregun, and Ewins @161# ex-
press the hysteresis element as a complex stiffness amenable
to frequency-domain analysis, with the bilinear hysteresis el-
ement parameters fit directly from experimental data. This
interpretation allows convenient analysis using the HBM,
and the results again reinforce the computational efficiency
and accuracy ~compared to time integration! of HBM. Later,
Sanliturk, and Ewins @162# extend the work to consider 2D
friction contact and return to the HBM for approximate so-
lution of the governing equations. The HBM solution accu-
rately predicts response amplitude as compared to the time
integration solutions.

Beyond the inclusion of damper dynamics lies the ques-
tion of appropriateness of approximations to the full nonlin-
ear solution of any dynamic model including friction. Con-
sider a single-dof system as shown in Fig. 6a, excited by
harmonic tangential force of the form Fq(t)5Fq ,1 sin vqt,
and studied by den Hartog under constant sliding friction
coefficient. Potential system response under two parameter
sets is shown schematically in Figs. 6b and c , where part b

shows a case of very short duration sticking per cycle, and
case c shows longer-duration sticking per cycle ~these dia-
grams are similar to den Hartog’s Fig. 3!. If we overlay on
each part of the figure a one-term harmonic approximation to
the velocity response, we see clearly with only two HBM
response parameters to adjust ~magnitude and phase!, only
case b under limited sticking can be adequately captured. If
the discussion is resricted to cases of F f,Fq ,1 , then case b

is only weakly nonlinear, and in fact if sticking is precluded,
den Hartog shows that the solution under pure slip conditions
is nearly harmonic ~his Figure 2!. On the contrary, it is clear
that for more strongly nonlinear cases, a one-term approxi-
mation will not adequately capture the true dynamics.

This issue becomes important for microslip analysis, be-
cause it has been reported that the optimal system damping is
achieved under conditions of approximately 50% sticking
per forcing cycle @138#, ie, much closer to case c ~strongly
nonlinear! of Fig. 6 than to case b ~weakly nonlinear!. It is
clear from Fig. 6 that a response with substantial sticking
contains a great deal of high frequency information, and so it
should not be surprising that single-term harmonic solutions
do not capture the qualitative nature of the response—even if
they do accurately predict the slip response amplitude. This
is a critical feature of one-term solutions, because no energy
is dissipated during the sticking segment of the response. As
a result, the caveats in the literature seem relatively clear:
one-term HBM should be used with caution, particularly in

parameter regions yielding substantial microslip (as opposed

to almost pure slip or pure stick).
However, there is an important distinction between the

work of @138#, and the work of den Hartog. In Griffin’s
work—and this is characteristic of bilinear hysteresis
approaches—the structural mass itself never experiences

sticking. Indeed, it is only the massless damper which may
stick, and regardless of the kinematic state of the damper, the
structural mass has a smooth response which is captured
fairly accurately using a small number of harmonic func-
tions. This is an important distinction which is explored more
fully in Section 4.3.1.

The energy dissipation problem has been treated by both
mechanics and dynamics researchers, with the recent empha-
sis lying on lumped-parameter models using bilinear hyster-
esis elements. In general, because damping in, for example,
structural joints plays an important role in overall structural
stiffness and vibration response, it is important to accurately
represent friction energy dissipation. However, because the
joint is one part in a much larger structure, computational
demands favor the lowest model order possible for represent-
ing joint damping, and this usually leads to point-contact
models with a limited number of friction parameters. As re-
ported in Section 4, this low-order approach is reasonable,
but not without its limitations.

2.7 Friction and stochastic processes

An important issue which has seen somewhat less attention
in the friction and dynamic systems literature is the stochas-
tic nature of dynamic surface interactions. The familiar static
rough surface models proposed by Greenwood and William-
son @27# have been augmented and extended by many re-
searchers, including Whitehouse and colleagues @163–165#.
Whitehouse asserts that two important length parameters
govern rough surface characterizations: the asperity rms
height and the correlation length. The correlation length is on
the order of ~and perhaps slightly larger than! the asperity
spacing—an important length scale which we have seen ear-
lier. These analyses suggest, and our intuition supports, the
notion that if the normal contact of rough surfaces is de-
scribed non-deterministically, then certainly the sliding con-
tact of rough surfaces will exhibit a similar non-deterministic
nature. Indeed this is the case, as described by Kilburn @166#
who shows that friction under nominally constant sliding

Fig. 6 Single-dof stick-slip oscillations, two possible cases: a!
single-dof forced system, b! short stick response, c! long stick re-
sponse
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conditions can be described by a constant value plus broad-
band noise; the instantaneous coefficient of friction can be fit
by a normal distribution. The suspicion that random normal
contact vibrations play a critical role in friction’s random
nature has subsequently been examined by a number of au-
thors who model or measure normal and/or tangential vibra-
tions @28,29,37,39#.

In itself, the observation that friction is a random process
is important and helps us to explain and interpret experimen-
tal data. Certainly the random nature of friction will intro-
duce some error into our quantitative predictions of friction
behavior. But a more critical issue arises: does the random-
ness of the friction interface behavior play a qualitative role
in the overall system response? A number of recent articles
have examined this question, and we focus here on the work
of Ibrahim and colleagues. Through their experimental work
and modeling efforts @167–169#, the authors have examined
the stochastic dynamics of disc brake-type systems and they
conclude that friction force probability density function is
affected by normal load, becoming less Gaussian with in-
creasing load. Moreover, they conclude that random friction
force fluctuations of sufficient magnitude can indeed alter the
qualitative character of the dynamic response, ie, change the
stability of an equilibrium configuration. This is an important
result which indicates the random component of friction
force may be critical for successful modeling in some appli-
cations. This issue is also addressed by Hinrichs, Oestreigh,
and Popp @73#, who apply a bristle-type model to introduce
random variation in friction force. They similarly conclude
that random friction behavior has an important effect on ~for
example! bifurcation maps and other system response mea-
sures.

A related topic is that of response sensitivity. We have
seen the role of random vibrations in dynamic system behav-
ior, but the brake squeal literature also presents studies of
general eigenvalue sensitivity and stability predictions. Pri-
mary contributions in this area include those of Brooks,
Crolla, and colleagues, as well as Mottershead, Cartmell, and
colleagues. First, Mottershead et al have examined the sta-
bility of elastic discs subject to friction loads on their sur-
face, with either the disc stationary and the load rotating, or
the disc rotating and load stationary @170–173#. These mod-
els include follower force approaches to friction ~also found
in @174#!, as well as hybrid analytical/FE models for the
rotor-pad-caliper system. The important results from these
articles are the stability maps for variations in a number of
problem parameters. A number of these maps—particularly
those for friction and damping—show a striking sensitivity,
with very small changes in system parameters resulting in
qualitative response changes @170#. This aspect of the squeal
problem is well established by experiments as well as every-
day experience, and in large part explains why brake squeal
remains an active, important research area. Further studies in
sensitivity are more explicitly carried by Brooks et al, who
use eigenvalue analysis to examine dynamic instabilities
@175–177#. Sensitivity of squeal modes to important physical
parameters such as contact locations, brake pad length, and
brake pad material properties is explored. These studies il-

lustrate that sensitivity of system response to not only fric-
tion parameters, but also operating conditions and physical
properties, can be extreme in some cases. When coupled
with the nonstationary nature of many friction-related prob-
lems, and the stochastic nature of friction itself, the sensitiv-
ity problem highlights the continued challenges of modeling
systems with friction.

2.8 Friction and microÕnanoscale contacts

With the development over recent years of various micro-
and nanoscale contact investigation tools, and the trend to-
wards miniaturization in engineering and science, nano-scale
science has become more accessible and better understood.
Not surprisingly, friction has emerged as a dominant feature
of small-scale contact which often limits performance, us-
ability, fabrication, or other critical design criteria for small
components. This is demonstrated dramatically in MEMS
devices, where power requirements and failure ~ie, stiction!
are dominated by adhesive contact forces. This section is not
intended as a comprehensive review of micro-scale or nano-
scale developments; other excellent reviews have appeared
over the past few years, and the interested reader is referred
to them @178–180#. Rather, nano-scale observations of fric-
tion are examined here in light of their substantial
similarity—on a qualitative level—to macro-scale friction
experiments and models.

2.8.1 Adhesion in small-scale contacts

Small-scale contacts behave fundamentally different than
their large-scale counterparts, and one of the most important
reasons for this change in behavior is the importance of sur-
face interactions ~ie, adhesion!. When surface energy ap-
proaches the same order of magnitude as other energy com-
ponents of the system ~elastic strain energy, kinetic energy!,
adhesive effects can become dominant, and this occurs
readily at small-scale contacts. Close-range interactions be-
tween materials are governed by an interaction potential, the
most well-known being the Lennard-Jones potential, which
indicates the interaction strength as a function of separation
distance. For very large distances, the interaction is very
small, but for short distances on the order of a characteristic
length zo , the interaction can become substantial. This char-
acteristic distance is related to the lattice spacing in the struc-
ture of the material, on the order of 1 – 10 Å. So, by intro-
ducing an interaction potential into the problem, a new
length scale is inherently integrated into the model. This is in
stark contrast to traditional continuum mechanics, which
possesses no inherent length scale. The usual approach to
interaction modeling follows the Lennard-Jones ~L-J! poten-
tial, given as:

f~z !5

8w

3zo
F S z

zo
D 29

2S z

zo
D 23G (21)

where w is the work of adhesion, zo is the equilibrium sepa-
ration, and z is the actual separation. It is also customary to
express the adhesion work in terms of surface energy g, and
L-J potential functions of this form are often encountered.
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Early efforts toward integrating adhesion effects into con-
tact mechanics solutions resulted in the well-known Johnson-
Kendall-Roberts ~JKR! model @181# for adhesion in normal
contacts. Under Hertz-type elastic contact interactions, the
JKR model predicts the role of adhesion snap-to-contact and
pull-off force in small-scale contacts. JKR theory predicts
only the role of adhesion in the contact pressure, and ne-
glects contributions outside the Hertz contact zone ~ie, where
the surfaces are not in contact, but their separation is small
enough that the interaction potential predicts a non-
negligible force!. This approach was later extended to in-
clude potential interactions outside the contact, and this view
of adhesive contact was later unified by Tabor @182#, who
proposed a dimensionless parameter m which compares the
role of elastic energy and surface energy in contacts:

m5F Rw2

E*2zo
3G 1/3

(22)

This parameter indicates regions of suitability of the various
adhesion models developed and can be interpreted as the
ratio of surface energy to elastic energy. Detailed adhesion

maps have been constructed recently @183# to reveal the role
of small-length-scale interactions in contact mechanics.

2.8.2 Micro-scale measurements

Micro-scale contact mechanics and friction measurements
have been achieved using the surface force apparatus ~SFA!
~eg, @184#!, shown schematically in Fig. 7. Thin sheets of
mica, cleaved to be atomically smooth, are adhered to cylin-
drical glass substrates using epoxy; the cylinders are then
brought into normal contact and tangential load is applied.
The contact radius in SFA is on the order of 10–30 mm. Note
that although the schematic shows the cylinders as being
axially aligned, in general the cylinders contact in a crossed
configuration, resulting in a general elliptical contact area.
The surfaces are lubricated either by a liquid lubricant or by
a pressure- and humidity-controlled ambient atmosphere.
The SFA has been used to measure friction and lubrication
properties of very thin luricant layers, down to a single Å,
and can characterize sliding friction over several orders of
magnitude of relative velocity. Further, a variety of interest-
ing small-scale friction-related behavior have been observed,
including atomic-scale stick-slip ~Section 2.8.4! as well as a
so-called superkinetic friction state @185#.

2.8.3 Nano-scale measurements

Nano-scale contacts are relevant in the present discussion not
for their fundamental nature and the interaction potential
which governs attractive or repulsive forces, but rather for
the measurement devices used to interrogate small-scale con-
tacts. This discussion focuses on the atomic force micro-
scope ~AFM!, but the spirit of the discussion is equally rel-
evant to other apparatuses. AFM measurements are made
using a cantilevered beam outfitted with a contact tip, typi-
cally of small radius on the order of 10–100 nm; see Fig. 8.
By applying force at the root of the cantilever as shown, the
tip contacts the specimen surface, and the tip can then be
scanned across the surface at small sliding velocities Vo on
the order of 102 – 104 nm/s. Measurements are usually made
using an optical system consisting of a laser which is re-
flected off the cantilever tip, with the light collected by a
photodetector. The apparatus can be calibrated such that in-
cident light on the photodetector can be correlated to canti-
lever motion, which in turn can be correlated to normal and
tangential contact forces ~see Fig. 8!. Note that both bending
and torsion of the cantilever occur as a result of the contact
forces at the tip, Fn and F t . Furthermore, the bending de-
flection u and the angular deflection u are coupled through
the geometry of the beam, and calibration and interpretation
of the results can be challenging. Nonetheless, the AFM is a
very versatile instrument which has been used for materials
characterization, nanoscale friction testing, topology mea-
surements, and a variety of other configurations. It has also
been used to observe atomic-scale stick-slip behavior, which
is the focus of the remainder of this discussion.

2.8.4 Atomic-scale stick-slip

Atomic-scale stick-slip behavior is shown schematically in
Fig. 9; for concreteness, this discussion relates to AFM mea-
surements, and atomic stick-slip is of interest here because: i!
atomic-scale stick-slip response manifests itself as observ-
able ~ie, large scale! motion of the sensing cantilever; and ii!
the cantilever structure can be treated with traditional con-
tinuum mechanics models. Measurement of stick-slip re-
sponse in nano-contacts relies not only upon the details of
the contact interactions, but also upon the measurement sys-
tem, and in this sense atomic-scale stick-slip appears to be no
different than macro-scale stick-slip. The sticking portion of
the cycle allows elastic strain energy to build in the system,
and in AFM measurements this includes deformation of the

Fig. 7 SFA experiment schematic showing glass substrate, epoxy,
and atomically-smooth mica sheets

Fig. 8 AFM experiment schematic: a! AFM cantilever and tip,
with incident light for displacement measurement, b! AFM cantile-
ver deformed shape
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cantilever and tip. During slipping the elastic energy is re-
leased and the displacement relaxes, and energy is dissipated
due to contact dissipative mechanisms, heating, material hys-
teresis, etc. In this sense, atomic-scale stick-slip shares many
similarities with macro-scale observations, and indeed Fig. 9
bears a resemblance to Fig. 18 for a macro-scale system.

Various observations in small-scale contact investigations
reveal behavior conspicuously similar to that observed at the
macro-scale. For example, it has been observed @186# that
relatively compliant cantilevers in AFM experiments are
more likely to result in atomic-scale stick-slip than stiffer
cantilevers. This conclusion is supported by a large number
of observations from the tribology, controls, and geomechan-
ics literature. Further similarities to macro-scale observations
relate to a critical slip velocity ~scan rate in AFM experi-
ments! above which stick-slip is extinguished, and this again
is a well-known result from the tribology literature. On the
macro-scale, the mechanism of this behavior is the velocity-
dependence of friction, and for small-scale contact it might
be suspected that some rate-dependent interaction is respon-
sible, although this has yet to be proven.

Many researchers have noted the existence of a critical
system velocity above which atomic stick-slip is extin-
guished ~eg, @187,188#!. Note further that a critical system
stiffness ~above which no stick-slip is observated! results
from friction constitutive behavior which possesses some in-

herent length scale ~see @24,76#, others!. Here, the length
scale inherent in the friction law is the physical connection to
macro-scale systems. As described above, the lattice spacing
of the material is the important length scale in nano-scale
contacts, as it directly influences the potential interaction of
the tip-specimen interface. The lattice spacing, scan rate, and
system stiffness have all been implicated in atomic stick-slip
observations, and their synergy seems to produce observa-
tions not inconsistent with those made at the macro scale.

The key analogy to macro-scale systems is now more
clear: stick-slip processes at the micro- and nano-scale are
the build-up and subsequent relaxation of elastic strain en-
ergy in the structure, just as in macro-scale systems. Further,
the observation of a critical system velocity and a critical
system stiffness above which stick-slip is extinguished fol-
lows closely the macro-scale observations. Further, there is
another important analogy to macro-scale systems. The fric-
tion observation in both SFA and AFM experiments is

achieved using sensing elements which are large compared
to the contact size, and therefore our interpretation of friction
is critically dependent on interface interactions occurring on
a length scale much smaller than the length scale of the

sensing element. For example, the AFM cantilever is a
micro-scale component, with a 10–100 nm tip radius, cap-
turing variations in friction occurring over only 1–10 Å. In-
deed, for reciprocating sliding in nano-scale experiments,
hysteresis loops of the form shown in Fig. 24 can be ob-
served with a short-wavelength stick-slip event superim-
posed @189#. The wavelength of this stick-slip event is the
characteristic lattice spacing, roughly 1–5 Å. So, while the
fundamental physics governing micro- and nano-scale com-
ponent interactions are quite different than a traditional
macro-scale Coulomb-type friction law ~or even a length-
scale law like general rate- and state-dependence! the quali-
tative character of many small-scale observations closely re-
sembles those on a larger length scale. While this
observation does not allow us to comment on the fundamen-
tal nature of small-scale surface interactions, we can draw
some general conclusions about friction and simulation
across diverse length scales.

2.9 Modeling summary

Despite the large variation in applications and interests
across the tribology, controls, dynamics, geomechanics, con-
tact mechanics, aeromechanics, and mechanics of materials
communities, several common themes have emerged. First,
velocity-dependent friction is almost universally used, and in
fact this form of parameter dependence allows prediction of
a key physical mechanism to controlling friction-excited os-
cillations: larger system damping promotes stability. Further,
other physical mechanisms have been observed in different
applications. The friction memory models and the general
state- and rate-dependent friction laws possess the common
feature of a critical length or time scale over which the slid-
ing friction force evolves to a steady-state value. This length
~time! scale has been linked to surface roughness character-
istics including asperity spacing, which also has implications
in low-amplitude fretting analyses and observations of
contact-size-dependent fatigue life.

But the overwhelming theme in the literature presented
here is that friction response is intimately related not only to
interface descriptions, but also to system dynamics. Indeed,
in each case listed above the interface friction constitutive
behavior manifests itself in a variety of ways, but a critical

system dynamic parameter could often be predicted to sup-
press unwanted friction-excited behavior. In this way, it be-
comes clear that the choice of system dynamic model and the
choice of friction model are closely coupled. Furthermore, it
seems that two fundamental varieties of system modeling
approaches have emerged ~see Table 6!.

Each modeling option has implications on the dynamic
system simulation, including both computational cost and
formulation complexity. Indeed, a common theme across the
literature seems to be that small-scale contact interactions
play a very significant role in determining system perfor-
mance or durability. Energy dissipation and fretting fatigueFig. 9 Atomic-scale stick-slip response
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are both extremely sensitive to the highly localized details of
contact interactions, including the stick zone size and slip
displacement. Steady-sliding stability in engineering or geo-
mechanics systems is sensitive to contact details over some
critical slip displacement dc which is on the order of the
asperity spacing, or perhaps the elastic coherence length j
@dc . Control strategies and controller gains are influenced
also by state- and rate-dependence of interface response. The
challenge which has been recognized so far in the literature
is that the dynamic model must be sufficiently sophisticated
to capture surface interactions on the small length scale, and
in the next section, some example results from a variety of
applications are presented to illustrate the use and impact of
various friction and dynamic models.

3 SELF-EXCITED VIBRATIONS

OF SYSTEMS WITH FRICTION

In this section, a variety of friction models are introduced
and applied to a simple one-dof friction-excited system as
shown in Fig. 10. The general equation of motion for this
system is given by:

mẍ1cẋ1kx5F f~ ẋ ,x ,t ,Fn , . . . ! (23)

where

F f5mFn (24)

and both m and Fn can possess general parameter depen-
dence. The conclusions of this section are two-fold: i) dy-
namic system response is intimately tied to both the struc-
tural model and the interface model, and ii) a large variety
of dynamic responses can be predicted using different com-
binations of structural and friction model.

First, steady-sliding stability calculations are introduced,
beginning with low-order friction models and progressing to
models with more sophisticated forms of parameter depen-
dence. Then, self-excited, stick-slip oscillations are intro-
duced and their characteristics examined. First, we define the
notation for the sliding configurations in Fig. 10 as follows.
For a reference velocity Vo of the moving surface, the rela-
tive velocity is defined as:

V rel5Vo2 ẋ (25)

with two special cases of motion possible:

steady sliding: ẋ50⇒V rel5Vo (26)

sticking: ẋ5Vo⇒V rel50 (27)

3.1 Constant and velocity-dependent friction coefficient

The most prominent friction model in the system dynamics
literature is given by a simple velocity dependence, often
assumed to be monotonically weakening with increasing ve-
locity. In general a monotonic sliding friction coefficient can
be described by a functional relationship to relative velocity
and three independent friction parameters:

m~V rel ;mo ,m1 ,a !5mo1m1 exp~2auV relu! (28)

The parameter mo governs the large relative velocity behav-
ior, m1 controls the low velocity behavior, and a.0 controls
the rate of change of friction with changes in relative veloc-
ity; this is shown schematically in Fig. 11. With a friction
coefficient defined as in Eq. ~28!, the sign of m1 corresponds
inversely to the sign of the friction curve slope ~the impor-
tance of this will become apparent later!.

When the friction law of Eq. ~28! is applied to the single-
DOF system with constant normal force, the following equa-
tion can be derived for sliding motion:

mẍ1cẋ1kx5@mo1m1 exp~2auV relu!#Fn (29)

It will be helpful to normalize this equation using the follow-
ing scaling parameters:

vn5A k

m
(30)

t5vnt (31)

Table 6. Low-order and high-order approaches to modeling dynamic systems with friction

Model Low-Order High-Order

structural lumped model with ,5 dof’s FEM or modal for continuous system dynamics
friction point contact with simple parameters dependence sophisticated parameter dependence ~eg, LuGre model

with six friction parameters! or continuous contact model
with partial slip

Fig. 10 Single-dof structural model for study of self-excited
problems

Fig. 11 Velocity-dependent friction curve showing dependence
upon three independent parameters (mo ,m1 ,a)
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xst5
moFn

k
⇒ x̂5

x

xst
(32)

d

dt
5vn

d

dt
5vn~¯ !8 (33)

d2

dt2 5vn
2 d2

dt2 5vn
2~¯ !9 (34)

V̂ rel5
V rel

vnxst

(35)

which results in the following dimensionless equation:

x̂912j x̂81 x̂511m̂1 exp~2âuV̂ relu! (36)

where j5 c/Akm and m̂15m1 /mo and the friction coeffi-
cient is a normalized function of V̂ rel .

3.1.1 Constant friction coefficient

The case of constant friction coefficient can be easily ex-
tracted from Eq. ~36! by setting m̂150. The result is a linear,
second-order differential equation with constant forcing
whose homogeneous solution is stable for all j.0. The long-
time solution is x̂→1 as t→` . For this structural model,
which is linear with constant coefficients, an unstable re-
sponse can only result from negative viscous damping of the
structure, and the friction law cannot drive an unstable re-
sponse. Furthermore, it is the homogeneous solution which
becomes unstable under negative viscous damping, indicat-
ing a truly self-excited response.

3.1.2 Velocity-dependent friction

For the case of velocity-dependent friction, the question of
steady sliding stability requires more analysis. The right-
hand-side of Eq. ~36! can be linearized via Taylor series
about the steady sliding equilibrium point V̂ rel5V̂o , with the
following result:

(37)

The linearized governing Eq. ~37! can be mapped into a
state space with two state variables: ( x̂ , x̂8)⇒(a ,b). The re-
sulting first-order system equations are:

H a8

b8
J 5F 0 1

21 2~2j1S !
G H a

bJ 1 H 0
1J (38)

Eigenvalues of the coefficient matrix are:

l1,25
2~2j1S !6A~2j1S !2

24

2
(39)

clearly indicating that the steady-sliding equilibrium point is
stable for:

2j.2S⇒2j.âm̂1 exp~2âuV̂ou! (40)

This classical result shows that the negative slope of the
friction curve ~ie, m̂1.0! is a necessary, but not sufficient,
condition for steady sliding instability of systems like this
one. A stability map in the parameter space (m̂1 ,â) can be
developed from Eq. ~40!. Figure 12 shows a map of the

parameter space for the case j50.05, with a family of
curves indicating the stability boundary for a number of dif-
ferent reference velocities. Each line on the map corresponds
to the marginal stability condition for which 2j1S50.
Above each line, the equilibrium point is unstable, and below
each line the equilibrium point is stable. Note that the steady
sliding stability of single-dof systems with friction defined as
in Eq. ~28! is independent of the parameter m̂o51.

3.2 Time- or displacement-dependent normal forces

It is difficult to envision a real engineering system in which
the normal contact force is either temporally or spatially con-
stant. Motion-dependent ~ie, displacement-dependent! nor-
mal forces arise naturally as a result of the function of the
component; in addition, a component may operate in an en-
vironment which exposes it to a variety of time-dependent
external forces possibly unrelated to its motion. In fact, a
number of researchers have examined the profound influence
that normal force variations can have on steady sliding sta-
bility, due to either friction excitation or some form of dy-
namic coupling/internal resonance phenomena.

Berger, Krousgrill, and Sadeghi @60# have demonstrated
an unstable steady sliding solution related to time-dependent
normal forces. For the system shown in Fig. 10, we assume
the normal force Fn is composed of two parts:

F̂n~t !5F̂n ,o1F̂n ,1 sin Vt (41)

where F̂n ,1 sin Vt is possibly the result of external inputs or
represents normal force fluctuations due to normal contact
vibrations. The equation of motion for the system is:

x̂912j x̂81 x̂511F̂n ,1 sin~Vt !1m̂1 exp~2âuV̂ relu!

1m̂1F̂n ,1 exp~2âuV̂ relu!sin~Vt ! (42)

which is similar in form to Eq. ~36!, with the addition of a
dimensionless time-dependent normal force F̂n ,1(t)
5 Fn ,1(t)/Fn ,o . The linearized form of Eq. ~42!, analogous
to Eq. ~37!, is:

x̂912j x̂81 x̂511F̂n ,1 sin~Vt !2S@11F̂n ,1 sin~Vt !# x̂8

(43)

Fig. 12 Stability map for velocity-dependent friction and single-
dof structural model
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where S has the same definition as in Eq. ~37!.
Another change of coordinates y5 x̂21, and isolating the

y8 terms on the left-hand-side, results in:

y91@d1g sin~Vt !#y81y5F̂n ,1 sin~Vt ! (44)

where d52j1S and g5SF̂n ,1 . Equation ~44! is a linear,
parametrically-excited second-order differential equation,
and as such may exhibit ~friction-excited! parametric dy-
namic instabilities. A steady-sliding stability analysis of this
system can be carried out using the method of averaging.
Using a coordinate transformation of the form
(y ,y8)⇒(a ,b), the stability criteria of Table 7 can be devel-
oped for the three frequency tuning cases of interest, which
are the primary ~linear! resonance V'1, the 1/2-
subharmonic resonance V'1/2, and the traditional paramet-
ric resonance V'2. The parameter « indicates the tuning
relationship for each resonance case; for example, the para-
metric resonance frequency tuning parameter is «5V22.

The information in Table 7 can be used to develop a sta-
bility equation in the parameter space including
@j ,F̂n ,1 ,« ,S# . By substituting the definitions of the param-
eters g and d into the parametric resonance stability criterion,
the following quadratic equation for the critical value of fric-
tion curve slope Scrit emerges:

~ F̂n ,1
2

24 !Scrit
2

216jScrit24~4j2
1«2!50 (45)

Figure 13 shows stability maps for two different values of
frequency tuning «5V22 near the parametric resonance.
Each contour represents that critical value of friction curve
slope S for which the response in the (j ,F̂n ,1) parameter
space becomes unstable. The stability map indicates that for
a given damping value j, frequency tuning «, and friction
curve slope S , the oscillatory part of the normal force must
lie within a specified envelope for a steady-sliding instability
to appear. First, notice that there are two branches of each
stability contour, corresponding to the two roots of the qua-
dratic Eq. ~45!. Further, note that at the convergence of the
two branches in the parameter space, both real solutions dis-
appear in favor of complex solutions ~and thus non-physical
values for friction curve slope!. Second, for a given fre-
quency tuning ~say, «50.001!, a higher system damping j
requires a more negative friction curve slope to induce an
instability; this is consistent with the conclusions from
simple velocity-dependent friction. Next, as the frequency
mistuning u«u increases, a more negative friction curve slope
is required to promote an instability. The general character-
istics of both parts of the figure—that is, the roughly para-
bolic nature of the stability boundary branches and the gen-
eral decreasing trend indicated by the dashed line—are
strongly reminscent of stability solutions for other

parametrically-excited systems such as Mathieu’s equation;
see @190# for more details. In addition, parametric instability
has been identified as a mechanism of disc brake squeal; see
@170,171# for examples. Finally, note that in general the ex-
istence of a steady-sliding instability of this sort is restricted
to a fairly small segment of the parameter space, including
large friction curve slopes and good frequency tuning «
→0.

3.3 Rate- and state-dependent friction

The geomechanics community has developed a class of gen-
eral friction constitutive laws for use in simulation of earth-
quake events, although these models have been applied to a
variety of other problems as well. Earthquakes arise due to
unstable steady sliding events, and Rice has devoted consid-
erable research effort to their modeling and analysis. He for-
mulated a general rate- and state-dependent friction law @24#
of the form in Eq. ~18!, where t f is the frictional shear stress
at the interface, V rel is the relative sliding velocity, and the u i

are interfacial states related to potentially time-evolving con-
tact conditions. The characteristics of the friction model of
Eq. ~18! are shown schematically in Fig. 14. For a step
change in the sliding velocity V rel from Vo to Vo1DV at
time t5t8, the corresponding change in friction shear stress
is composed of an instantaneous reaction ( f DV) and an evo-
lutionary part h(t2t8)DV , which occurs over a critical slip
distance dc . The requirements for this model include:

lim
(t2t8)→`

t f~V rel ,u1 ,u1 , . . . !→tss~V rel! (46)

Fig. 13 Stability map for velocity-dependent friction and single-
dof structural model, with time-dependent normal force: a! «
50.001, b! «50.01

Table 7. Stability criteria for a single-dof system with time-dependent

„harmonic… normal force

Frequency Tuning Stability Criterion Comment

V'
1
2

d.0 negative slope instability only
V'1 d.0 negative slope instability only
V'2 g,2Ad2

1(V22)2 parametric instability
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indicating that the friction shear stress evolves to a steady
state value which is only a function of the sliding velocity
V rel . The instantaneous jump in friction shear stress gener-
ally follows:

]t f

]V rel
.0 (47)

such that step increases in velocity induce increases in fric-
tional shear. Furthermore, the steady-state frictional shear de-
scription is consistent with a large variety of other experi-
mental observations, ie, it has a negative slope:

dtss

dV rel
,0 (48)

~where these are no longer partial derivatives because the
steady-state frictional shear is a function of sliding velocity
alone!. Finally, h(t) can be modeled as a monotonically de-
creasing function, often a first-order impulse response:

h~ t !5ho exp~2at ! (49)

~where a is a characteristic decay time! and because f .0

E
0

`

h~ t !dt. f (50)

to ensure the negative slope condition ~48!.
Rice then suggests a specific form of Eq. ~49!, namely

ho5(11l) f a , which results in:

dtss

dV rel
52l f (51)

which is independent of the decay time a and the size of the
velocity perturbation DV . The resulting equation of motion
for the sdof system governed by this sort of friction relation
is a perturbation of Eq. ~36!:

x̂912j x̂81 x̂1 f x̂82E
0

t

~11l ! f a

3exp@2a~ t2t8!# x̂8~ t8!dt85 q̂~ t ! (52)

where q̂(t) is an arbitrary small perturbing force applied at
t50 which disturbs the equilibrium position and potentially
triggers the steady-sliding instability. In Rice’s original pre-
sentation @24#, explicit damping of the form j in Eq. ~52! was

not considered. However, it is trivial to include it in the
steady-sliding stability analysis because it manifests itself as
a larger positive instantaneous damping in the friction con-
stitutive relation; ie, f 85 f 12j . The result is that the steady-
state friction curve slope required to overcome the combined
effects of system damping j and positive viscous damping f

must be larger—more negative—in order to promote a
steady-sliding instability. In subsequent analysis, we assume
that the parameter f includes such system damping. The sta-
bility analysis, presented by Rice as a root locus-type analy-
sis, yields a characteristic equation in the s-domain which is
independent of the perturbation function q̂(t) ~which appears
in the numerator of the system input-output relation!. Roots
of the characteristic equation with positive real parts indicate
parameter combinations for which steady-sliding motion is
unstable.

The resulting stability analysis predicts a critical stiffness
above which steady sliding is stable; Rice’s original equation
can be written:

kcr52

Vo

dc

dtss

dV relF 11

mVo

dc

]t

]V rel

G (53)

where dc is the critical slip distance over which frictional
shear stress evolution takes place; Rice notes that dc is
largely independent of Vo . It should be reinforced that this
stability criterion, despite the presence of the linearized fric-

tion curve slope S5
dtss

dV rel
in the equation, is distinct from

other negative-slope instabilities in that it also relies upon the
slip history effects. The outcome is a prediction of critical
system stiffness for steady sliding stability, where traditional
analyses of negative-slope instabilities predicts a critical
damping value.

This result can be rewritten in a dimensionless form by
using a normalization procedure developed previously, ex-
cept that in this case we choose the reference length for the
problem xst to be equal to the critical slip distance dc . Then,
several important dimensionless groups emerge:

V̂5

Vo

dcvn

5

Vo

dc

Am

k
dimensionless velocity (54)

f̂ 5

] t̂

]V̂
5

1

mvn

]t

]V rel

5

1

Amk

]t

]V rel
dimensionless instantaneous viscosity

(55)

Ŝ5

d t̂ss

dV̂
5

1

mvn

d t̂ss

dV rel

5

1

Amk

dtss

dV
steady-state friction curve slope (56)Fig. 14 Step-plus-evolutionary response of state-variable friction

laws to step changes in sliding velocity
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These equations introduce three composite friction-system
dynamic parameters in a natural way, linking a critical fric-
tion length scale (dc) to a system-dependent time scale (vn)
and other friction parameters. Introducing this length scale
into the problem has the most impact on the dimensionless
velocity V̂ , which is now an expression of the sliding veloc-
ity, the critical slip distance, and the system natural fre-
quency. The critical stiffness Eq. ~53! can now be rewritten
as:

kcr

k
52V̂ŜF 11

V̂

f̂
G (57)

We can now examine the three-parameter space (V̂ , Ŝ , f̂ ),
which represents combinations of friction and system dy-
namic parameters for steady-sliding stability by recognizing
the stability boundary in the parameter space is defined as
kcr5k:

2V̂ŜF 11

V̂

f̂
G51⇒

1

f̂
V̂2

1 ŜV̂1150 (58)

which has real solutions for V̂ only if Ŝ2
.4/ f̂ . Figure 15

shows the stability boundary on the (V̂ , Ŝ) parameter plane
as a solid line for various values of f̂ . Note that in the plot,
no specific friction constitutive model has been considered,
and the three parameters are considered to be independent.
Nonetheless, the figure demonstrates the regions of the pa-
rameter space in which one of the parameters dominates the
stability condition. First note that above each solid line on
the plane, the values of kcr/k.1, ie, the response is unstable.
For points below each line, the response is stable. There also
exists a region of the parameter space of unconditional in-

stability corresponding to the region above the dashed line
on the figure. This boundary can be defined by massaging
Eq. ~57! to show:

11

V̂

f̂
5

1

2V̂Ŝ
⇒1>2V̂Ŝ (59)

which can be derived by considering the underlying con-
straints f̂ .0, V̂.0, and Ŝ,0. The dashed line on the figure
is the hyperbola 2V̂Ŝ51, and above this line kcr /k.1 and
the steady-sliding response is unstable, regardless of the in-
stantaneous viscosity f̂ . The general trend of the result is that
for a given sliding velocity, either a large instantaneous vis-
cosity f̂ or a large steady-state slope (2 Ŝ) is required to
drive an unstable steady-sliding response.

The existence of a steady-sliding instability depends upon
the evolution of the friction shear stress from the moment
immediately after the velocity change, say t81, until it con-
verges to the value tss(Vo1DV). Specifically, the total shear
evolution must occur over a sufficiently short time scale, and
the ratio of these ~consider Fig. 14! is:

Dt f

Dt
5

~ f 2S !DV

dc

Vo1DV

(60)

which indicates that a large evolutionary slope—defined as
Se5Dt f /Dt—can be achieved by having f large, (2S)
large, or dc small. The evolutionary slope is a composite
function of the instantaneous and steady-state viscosities,
and therefore presents a picture of the contributions of each
to steady-sliding instabilities. The key is that both larger
shear evolution ( f 2S)DV and smaller critical slip distance
dc tend to be destabilizing mechanisms. Further consider-
ation of the normalization scheme used here shows that in-
creasing mass m tends to destabilize the system, a conclusion
previously stated by Rice.

It should be noted that a wide variety of experiments from
the geomechanics community support the state-dependent
friction model discussed here. In addition, a number of ex-
periments on engineering-scale systems have indicated the
existence of a critical stiffness which suppresses friction-
induced vibration ~specifically stick-slip!. Because a critical
stiffness cannot be predicted from a simple velocity-
dependent friction law, it seems clear the Rice model in-
cludes an important effect that other friction models neglect.
Finally, it should be mentioned that similar instantaneous-
plus-evolutionary friction behavior has been observed under
step changes in normal load as well.

An interesting connection to other work in the friction
area can be made by developing a discrete analog of the Rice
model—that is, a lumped parameter model similar to the
Iwan models discussed in Section 2.5. In order to capture the
instantaneous-plus-evolutionary behavior of the friction rela-
tion of Fig. 14, a lumped model of the form shown in Fig. 16
is proposed. The nodes in the model are labeled a ,b ,c; the
spring of stiffness k

v
is in series with the Coulomb damper

with friction force F f( u̇c) and a discrete viscous damping
element described by the parameter c

v
. The total reaction

force provided by this collection of discrete elements is F
v

.
Consider a steady-sliding condition in which all components
translate at a velocity Vo such that u̇a5 u̇b5 u̇c5Vo . For a
step change in velocity DV at node a at time t5t8, the
dashpot ~ie, u̇b2 u̇a! will not respond instantaneously, and
therefore all instantaneous response results in compression of
the spring and an increase in the spring force of k

v
Dubc ,

Fig. 15 Stability map in the ( Ŝ ,V̂ , f̂ ) parameter space: a family of
stability boundaries ~solid lines! above which the steady-sliding re-
sponse is unstable; response is unconditionally unstable above
dashed line
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where Dubc5uc(t8)2ub(t8). This corresponds to Rice’s
positive instantaneous viscosity term f . The spring force
then relaxes over time as the dashpot responds, and if we
postulate further that the Coulomb damper force is a weak-
ening function of sliding velocity F f5F f( u̇c), the friction
force model can be described in terms of the lumped param-
eters as follows. For a step change in velocity DV at time t

5t8,

F
v
~ t2t8!5F f~Vo1DV !1ho expF2

~ t2t8!

tr
G (61)

where

ho5k
v
Dubc2

dF f

dV rel
U

Vo

DV (62)

tr5

c
v

k
v

(63)

The critical slip displacement dc of Fig. 14 manifests itself
here in the relaxation time tr for the model, and therefore the
equivalent dashpot parameter c

v
is related to dc and the slid-

ing velocity Vo . This lumped model obeys all of the same
criteria put forth by Rice:

instantaneous positive viscosity:
]F

v

]V rel
.0

general rate weakening:
dF f

dV rel
,0

limiting behavior: F
v
~Vo!→F f~Vo!;

~ t2t8!→`

and of course the discrete model parameters have relation-
ships to the continuous model. Note that this model actually
has important physical appeal for situations other than steady
sliding, ie, sticking. The spring and dashpot in parallel also
allow nonlinear pre-slip displacement of a friction interface,
similar to that observed in creep experiments under varia-
tions in applied stress. Although Iwan has proposed collec-
tions of simple spring-Coulomb damper elements for pre-slip
displacement modeling, that approach develops a piecewise-
linear fit to experimental data which requires a large number
of bilinear hysteresis elements to yield a high-fidelity model.
On the other hand, for changes in applied force at node a ,
the lumped-parameter model proposed above shows time-
dependent strain response until the applied force overcomes
the limiting friction value and slipping ensues.

This argument simply recasts the friction behavior as a
viscoelastic material model ~specifically a Maxwell model!
with parameters k

v
and c

v
, although it differs slightly from

traditional Maxwell models in that the parameters ~including
F f! will in general be a function of the sliding velocity u̇c .
This suggested model is highly nonlinear and no results are
presented here. This interpretation does however provide a
link to the seminal work of Iwan @119# who proposed spring-
Coulomb damper series models for elasto-plastic material
behavior. The so-called bilinear hysteresis element has en-
joyed wide success in friction modeling ~as described else-
where in this article!, and perhaps the Rice model of rate-
and state-dependent friction can be viewed as an important
extension to the Iwan family of models which implements a
critical slip displacement dc .

3.4 Stick-slip oscillations

The steady-sliding stability calculations reported in the pre-
vious section rely largely upon linearization techniques and
traditional stability analyses for response predictions. But
linearization approaches predict time responses for the lin-
earized, homogeneous system which exhibit one of three
possible responses:

i! stable—response asymptotically approaches zero
ii! marginally stable—response neither grows nor decays
iii! unstable—response grows unbounded

However, the response of the nonlinear system is typically
bounded by the nonlinearity itself, and one mechanism of
this is for the system to achieve a stick-slip limit cycle.

We first consider the appropriate governing equations for
stick-slip oscillations. For the single-dof system described
above sliding against a surface moving at a constant refer-
ence velocity Vo , the equations of motion can be summa-
rized:

slipping: x̂912j x̂81 x̂5F̂ f ; F̂ f5mF̂n (64)

sticking: x̂85V̂o ~ x̂950 ! (65)

Note here that under slipping conditions, the motion of the
system is unknown and is described by a second-order non-
linear differential equation, and the friction force is known.
Under sticking conditions, the motion is prescribed by a ki-
nematic constraint equation, and the friction force, which can
be interpreted as a kinematic constraint force, is unknown.
During sticking, the friction force must obey the inequality
constraint:

F̂ f<F̂s (66)

where F̂s is the limiting value of sticking friction. The largest
challenge in the solution of stick-slip system response is de-
termining the transition times from one system state ~ie,
sticking or slipping! to the other. Table 8 summarizes the
requirements for transitions from one regime to the other.

Fig. 16 Lumped-parameter ~viscoelastic! model for rate- and
state-dependent friction

Table 8. Summary of transition criteria for stick-slip oscillations

Transition Criteria

slip-to-stick ~i! x̂850
~ii! F̂ f,F̂s

stick-to-slip F̂ f5F̂s
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Note that for a slip-to-stick transition, x̂850 is a necessary
but not sufficient condition for sticking to occur. This is pre-
cisely the area in which Taylor’s Hybrid Systems Modeling
Language ~eg, @82#!, briefly described in Section 2.3, pro-
vides an excellent, general approach for capturing state tran-
sitions. Of course, the growing body of literature on analyti-
cal approaches to non-smooth dynamic systems @72# lends
insight here as well.

With this background in mind, stick-slip oscillations can
be examined from a more quantitative standpoint. Figure 17
shows an example time response @part a# and phase plane
response @part b# for stick-slip oscillations. Several observa-
tions can be made. First, the oscillations are clearly bounded,
indicating a qualitative difference between the linearized and
nonlinear responses, as expected. Next, the response is peri-
odic, indicated by a single closed trajectory in the phase
plane; further, this response is an isolated closed trajectory,
indicating that it is indeed a limit cycle oscillation. Stick-slip
occurs even in the presence of non-zero system damping, as
shown here. Finally, an energy argument can be made:
• system ~potential! energy increases during sticking, as the

spring is stretched, and
• system ~kinetic! energy is dissipated during slipping

through the viscous damper;
• therefore, the stick-slip limit cycle is the isolated, closed

trajectory on the phase plane which balances energy input
during the sticking portion and energy dissipation in the
slipping portion of the cycle.

The frequency of the stick-slip oscillations is in general simi-
lar to, but not the same as, the damped natural frequency of
the system.

Figure 18 shows the time history of the friction coeffi-
cient, which is defined here as:

slipping: m5m~V rel! (67)

sticking: m5

2jV̂o1 x̂

F̂n

(68)

In this single-dof system, under the sticking constraint x̂8

50 defined above, the sticking friction coefficient can be
explicitly defined in terms of the reference velocity V̂o , the
displacement x̂ , and the normal load F̂n . Note a few features
about the sticking friction coefficient:
• it grows at the rate m85 V̂o /F̂n , and

• at the slip-to-stick transition, the friction coefficient instan-
taneously drops from the limiting value m(V rel50) to a
new value dependent only upon the position x̂ of the mass
when sticking commences.

The transition criteria described in Table 8 provide clear
guidelines for transitions from one kinematic state to another,
although implementing them in a computationally-efficient
way is challenging. As a result, a number of approximation
schemes have emerged to deal with this issue, including the
low velocity tolerance band approach of Karnopp @191# and
a variety of friction smoothing procedures using arctan-type
functions. The result of these approaches is that true sticking

behavior is precluded in favor of low-velocity creep. In these
cases, the computational efficiency must be weighed against
the goals of the simulation, ie, is error associated with using
a friction smoothing approach too large a price for the in-
creased computational efficiency?

In general, stick-slip oscillations present a very difficult
nonlinear problem which has previously been analyzed using
one of two usual methods: graphical tools ~eg, @65#! or nu-
merical tools as described above. Analytical tools for these
types of non-smooth dynamical systems are also maturing
@74#. Stick-slip response has been shown to play a primary
role in many dynamics and controls problems, fretting fa-
tigue, geomechanics, and friction damping. Further, imple-
menting stick-slip algorithms on systems other than point
contact models has historically been difficult, unless one of
the friction approximation schemes described above has been
used. In Section 4, two continuum-based partial slip/stick-
slip formulations are presented, and their results contrasted
against more traditional lumped-parameter models.

3.5 Summary

The literature on self-excited vibrations provides a broad
view of the friction modeling approaches, and the key result
is the close connection between friction parameters and sys-
tem dynamics parameters. In each of the cases examined
here—and this is generally true across the literature—a criti-
cal system dynamic parameter could be predicted for stabil-
ity, and this system dynamic parameter is invariably a func-
tion of one or more of the friction parameters. A critical
system stiffness or damping value can be derived based upon
a critical slip displacement or velocity dependence of fric-
tion, respectively. Further, normal force variations are shown

Fig. 17 Stick-slip response: a! time history, b! phase plane
Fig. 18 Time response of friction coefficient in stick-slip oscilla-
tions
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to be important in promoting self-excited response. A variety
of other tangential-normal-angular coupling mechanisms
have been implicated in self-excited vibrations as well. This
literature points to the critical need to consider the system
dynamics and friction model as an integrated unit which can-
not be de-coupled in an easy way.

4 FORCED RESPONSE OF SYSTEMS

WITH FRICTION

Forced response calculations using various friction models
are considered in this section. Forced response under general
friction conditions presents many obstacles, and the govern-
ing equations are often highly nonlinear, because of the dis-
continuous friction behavior at zero relative velocity. Two
typical approaches to this problem are: i) detailed ~usually
numerical! stick-slip calculations which clearly delineate re-
gions of sticking and slipping in the parameter space, and ii)
friction approximations which smooth the discontinuity at
zero relative velocity but still result in a nonlinear ~but con-
tinuous! model. The second case above precludes a true
sticking response, and therefore this simplification should be
carefully considered in light of the specific application.

The general piecewise nonlinear equations of motion for a
forced single-dof oscillator undergoing stick-slip response
~Fig. 6! can be summarized based upon the normalized Eq.
~36!:

x̂912j x̂81 x̂5F̂q~t !2F̂ f~ x̂8! x̂8Þ0 (69)

F̂ f5F̂~t ! x̂850 (70)

where F̂q(t) is a general time-dependent forcing function,
and it is assumed that the sliding mass moves against a sta-
tionary countersurface such that V̂ rel5 x̂8. Here, the slipping
equation is a nonlinear second-order differential equation,
while sticking is described by an algebraic equation. The
piecewise nonlinear nature of the exact governing equations
has inspired researchers to seek approximations to the gov-
erning equations and their solutions, although some analyti-
cal work has been completed, as described next.

4.1 Analytical analyses

The starting point for discussion on forced response calcula-
tions with friction is usually den Hartog @61#, who developed
an analytical solution explicitly considering stick-slip oscil-
lations for a single-dof system with constant friction coeffi-
cient. He developed frequency response curves and a
frequency-dependent stick-slip boundary which indicates the
existence of sticking response. He focused on the analysis of
symmetric system response, ie, two instances of sticking per
forcing cycle. The exact solution in the presence of both
viscous and friction damping is quite complicated, but can be
written in closed form. Shaw @135# presents a thorough
analysis and extension of den Hartog’s work by including
non-constant friction coefficient, and implementing stability
analysis for the periodic oscillations. He develops bifurcation
criteria which indicate the genesis of new ~unsymmetric!
motions under negative damping conditions. He also alludes
to the existence of much more rich dynamic behavior of

stick-slip oscillations, and in fact cites Pratt and Williams
@192# who show numerically that the number of sticking in-
stances per forcing cycle approaches ` as the forcing fre-
quency goes to zero ~this is the pure stick case!. A typical
result using Shaw’s approach can be generated via iterative
solution of the governing equations he presents, and is
shown in Fig. 19 @Shaw’s Fig. 5#, where the frequency re-
sponse curves show pure slip as well as stick-slip motions
for various values of forcing amplitude ratio b and frequency
tuning V5 v f /vn . b is the ratio of tangential forcing am-
plitude to limiting interface sticking friction, and V is the
ratio of forcing frequency to natural frequency. Only re-
sponse curves for V.0.3 are presented, because as Shaw
points out, the low frequency stick-slip behavior is quite rich
and complicated, and is not easily described via the analyti-
cal approach he pursues. Note that the response amplitude is
continuous through the stick-slip boundary, indicating a
smooth transition from non-sticking to two-sticking-
instances per cycle solutions. While these analytical solu-
tions provide significant insight into the stick-slip problem,
they are limited to linear structural models and parameter-
independent friction ~ie, F fÞF f(V rel)!, although Shaw does
analytically consider the case msÞmk , but with mk

Þmk(V rel). More complicated structural models or general
parameter dependence of the problem usually make analyti-
cal forced responsed calculations which explicitly include
sticking largely intractable, and numerical methods are
implemented. Nonetheless, these analytical solutions con-
tinue to be cited as important contributions with significant
lasting value, because they represent various limiting cases
of other friction/dynamic models cited in the literature.

4.2 Friction smoothing procedures

Owing to the analytical obstacles to examining discontinuous
friction at zero sliding velocity, a number of friction smooth-
ing procedures have been developed. There are two main
classes of friction smoothing:

Fig. 19 Sample calculations from Shaw @135# showing frequency
response of stick-slip oscillations with continuous amplitude curve
through the stick-slip boundary
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a! those which approximate the discontinuous friction
force at zero relative velocity by a smooth function; for
example using F f5F f ,o arctan(cVrel)

b! those which smooth the friction behavior using an as-
sumed smooth solution to the nonlinear governing equa-
tion, as in harmonic balance method ~HBM! solutions.

For case a), the governing equations remain nonlinear, and
in fact in the vicinity of zero relative velocity the differential
equations can be quite stiff; in case b) a harmonic solution is
sought to represent the nonlinear, piecewise solution. The
impact of these approaches will be considered next.

4.2.1 Case a): Friction force smoothing

In this case, a smoothing procedure is applied directly to the
friction expression itself, and this idea has been implemented
widely in the literature due to its simplicity and computa-
tional efficiency. Figure 20 shows a typical approach in
which an arctan-type approximation is given for the friction
behavior. A number of researchers have used this approach,
including for example Oden and Martins @45#. The important
features of this approach are the single-valued friction at zero
relative velocity and the high friction gradients through V rel
50. The resulting numerical stiffness can be significant, and
the choice here is between continuous, stiff differential equa-
tions, and piecewise, non-stiff equations. A further approach
to smoothing the discontinuity at V rel50 is to define a ve-
locity tolerance V rel

tol within which very low relative velocity
creep—although not true sticking—is permitted. This is the
approach suggested by Karnopp @191#.

4.2.2 Case b): Solution smoothing

Frequently in the literature, approximate solutions to the
nonlinear governing equations have been pursued, and a
common tool is the harmonic balance method. The HBM
assumes the system responds with a harmonic solution to
harmonic forcing; an assumed solution is substituted into the
nonlinear governing equation, the nonlinear terms are ex-
panded in Fourier series in the forcing frequency vq , and the
coefficients of like terms ~ie, sin vqt, cos vqt, sin 2vqt,
cos 2vqt, etc! are collected and equated. A one-term har-
monic balance includes only the first harmonic of the forcing

frequency in the solution. Depending upon the type of non-
linearity in the solution, the HBM is a powerful and accurate
tool for approximate analysis of nonlinear equations. In fact,
the HBM can be shown to be equivalent to several perturba-
tion approaches, including the method of multiple scales and
the ~first-order! method of averaging. The one-term HBM
solution is most accurate when the full nonlinear solution is
nearly harmonic, ie, when the nonlinearity is small. For fric-
tion problems, the effect of the friction nonlinearity is rela-
tively small under conditions of near-pure slip or near-pure
stick. So, for two extremes of system response, for which the
governing equations are more weakly nonlinear, the HBM
provides a reasonably accurate solution.

A good example of this type of calculation is the work of
Ferri, who has applied the HBM ~or a modified version of it!
to a variety of forced response calculations. Ferri and col-
leagues ~eg, @144#! have developed much of the theory relat-
ing to displacement-dependent normal forces and other types
of friction boundary conditions. They begin with a continu-
ous system with end support whose clamp force is a function
of system response ~and whose contact is modeled as a dis-
crete point!, as shown in Fig. 21. Each case has a different
support boundary condition, but in each case the solution to
the continuous, elasto-dynamic governing equations can be
approached using a one-term Galerkin expansion of the
form:

w~x ,t !5z~ t !f~x ! (71)

where w(x ,t) is the transverse displacement, z(t) is the
modal amplitude time response, and f(x) is the mode shape
used in the expansion. f(x) is chosen in each case according
to appropriate boundary conditions on the beam, and the
modal amplitude under harmonic forcing in each case can be
approximated using a one-term harmonic expansion:

z~ t !5A cos vt (72)

where A is the modal amplitude and v is the forcing fre-
quency. For each of the three cases shown in Fig. 21, the
governing equation for the modal response can be written as
a single, second-order nonlinear differential equation of the
form:

m@ z̈1vn
2z#5 f ~ t !1F f~ t ! (73)

where F f(t) is the friction force at the support boundary, and
is different in each case depending upon the mechanism of
parameter dependence. m and vn are mass and natural fre-
quency parameters related to beam geometry (L ,I), material
elastic and inertial properties (E ,r), and the assumed mode
shape f(x). The governing equation of the form ~73! can be
expanded using the assumed HBM solution ~72!, and
amplitude-frequency relationships can be derived. In addi-
tion, equivalent viscous damping ratio and damped natural
frequency can be derived.

Within the discussion Ferri and Bindemann correctly
point out that their one-term harmonic balance solution pre-
supposes a response of nearly pure slipping, and they intro-
duce constraint equations which define sticking boundaries

Fig. 20 Smoothing of friction discontinuity using an arctan-type
approximation: mutli-valued friction at zero relative velocity ~and
therefore inclusion of true sticking! is neglected
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in the (z ,t)-space, along the lines of the previous work in
this area @57,135#. Thus, sticking maps can be used to assess
the validity of the harmonic balance solution. Within this
context, Ferri and Bindemann present results for only those
cases of pure slipping, and compare the HBM solution with
time integration results. In light of the pure slip response, the
comparison of HBM solution and time integration is excel-
lent, and a schematic of the result for Case II ~displacement-
dependent normal force, with angle g! is shown in Fig. 22
for various values of contact angle. Various features can be
observed. First, increasing the contact angle g is equivalent
to increasing the magnitude of the normal force variations,
and therefore increasing the friction force ~and hence friction
damping! over one forcing cycle. The peak amplitude for
increasing values of g decreases. Further, there is also a fre-
quency shift, and indeed this type of boundary support con-
dition introduces a nonlinear ~hardening! stiffness term in the
governing equation. Under sufficiently large g, three HBM
solutions can be found; two branches are stable and one
branch ~the middle branch! is unstable. As a result, this sort

of support boundary condition can give rise to a jump phe-
nomena for quasi-stationary variations in forcing frequency
v.

The damping results for all three cases are summarized in
Table 9, where Vn is the damped natural frequency, and the
c i are scalars related to the mode chosen for the Galerkin
expansion ~the mode itself is denoted by f(x) and f(x

5L)5fL!, the friction coefficient, the normal contact stiff-
ness kn ~for Cases II and III!, the contact angle g ~Case II
only!, and the preload normal force Fn ,o . The important re-
sult here is that friction manifests differently in each case,
specifically the equivalent damping’s dependence upon re-
sponse amplitude and frequency. All cases have equivalent
damping inversely proportional to frequency, but very differ-
ent dependence upon response amplitude. The conclusion is
that contact geometry, orientation of friction interface ~with
respect to the structure!, and parameter dependence of nor-
mal force all play a significant role in the amount and type of
friction damping. The authors emphasize the pure slip nature
of the response, and indicate that under other conditions, the
HBM solution may be suspect for its neglect of sticking
conditions. However, they present a very thorough analysis
of the structural response and provide clear guidelines for the
appropriateness of their procedures, which amount to condi-
tions under which an essentially pure slipping response can
be expected.

4.3 Forced response of continuous contacts

Continuous contact systems present a special set of chal-
lenges for forced response calculations. If the contacting
bodies are not assumed to respond as rigid bodies, then it is

Fig. 21 Three continuous systems with different boundary friction
conditions: a! coulomb friction support, b! in-plane displacement-
dependent normal force, c! out-of-plane displacement-dependent
normal force ~schematic from Ferri and Bindemann @144#!

Fig. 22 Schematic of result from Ferri and Bindemann @144#
showing hardening behavior with increasing contact angle ~case II
from Fig. 21b!

Table 9. Summary of results for equivalent damping under various support conditions in continuous systems „from Ferri and Bindemann †144‡…

Support Boundary
Friction Condition Damping Behavior Comment

I. transverse slip zI5

2mFnfL

pAmvnv

qualitatively the same as the classical result of @61#;
standard dry friction behavior inversely proportional to response
amplitude

II. in-plane displacement-dependent normal force zII5

c21c3A
2

2mvVn

traditional hardening behavior of cubic-nonlinear systems, with
damping related to response amplitude squared

III. out-of-plane displacement-dependent normal force zIII5

c4A

2mvVn

damping linearly related to slip amplitude
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wholly unlikely that all points on the contact interface will
stick or slip in unison. Rather, the more likely scenario is that
a partial interface slip condition will prevail, and so forced
response calculations must contain an accurate measure of
the frictional energy dissipation which occurs only in the
slipping regions. Such forced response problems are fre-
quently encountered in a number of important engineering
applications ~bolted and riveted connections, turbine blade
vibration damping, large space structures, etc!, with implica-
tions on contact conditions in fretting as well.

4.3.1 Partial slip modeling: Lumped-parameter models

Partial slip modeling using bilinear hysteresis elements, or
more sophisticated versions of them, dates back to the 1960s.
Iwan @119# proposed a class of models for elasto-plastic ma-
terial behavior modeling, and the simplest form is the famil-
iar bilinear hysteresis model shown in Fig. 5a. Collections of
macroslip elements, arranged as shown in Fig. 5b or c or
other potential configurations, allow each contact point to
stick and slip independently, and therefore allow for partial
slipping of the interface. For a model with N macroslip ele-
ments, there are 2N independent parameters describing the
model; they are k i and F f ,i , i51,.. . ,N . As a result, an effi-
cient, accurate calibration process for partial slip model iden-
tification must be developed in order to completely specify
the model parameters.

Model calibration can be achieved in the following way.
Experimental measurements made under monotonically in-
creasing loading indicate a force-displacement curve of the
form shown in Fig. 23. The solid line ~–! in the figure shows
the experimental data, and the friction force increases toward
a maximum value at which point break-away occurs and
gross interface slipping ensues. All points previous to break-
away represent pre-slip displacement. The model can be
tuned by choosing 2N critical points along the loading curve,
xcr ,i for i51,.. . ,2N , and noting the corresponding critical
values of force Fcr ,i5F f(xcr ,i). Then, using an appropriate
curve fitting procedure, the 2N model parameters can be
identified. The corresponding behavior of the model under
cyclic loading is shown in Fig. 24, where the pre-slip dis-
placement is indicated. The actual behavior of a partial slip
interface is therefore captured as a piecewise-linear fit of the
actual data described by discrete springs and Coulomb
dampers. The question of application of a model calibrated
under monotonic loading to situations involving cyclic load-

ing is addressed by several researchers who cite the so-called
Masing rules ~eg, @156#! which ensure validity of the model
under cyclic loading. Several observations can be made
about the modeling and calibration procedures:
• The fitting procedure is a collocation approach in which

the model matches the experimental data at 2N discrete
points, and approximates the model with linear interpola-
tion elsewhere.

• A better fit to the experimental data can be achieved by
increasing the model order N , or by concentrating critical
points xcr ,i in regions where dF f /dx is large.

• Increasing the order of the model decreases the physical
appeal of each individual parameter in the model, with
each model parameter having mathematical significance
for curve fitting experimental data, but limited physical
relevance.

Figure 25 shows a single-DOF system with bilinear hys-
teresis friction damper attached to it. The damper itself is
allowed to either stick or slip, and it is considered as a point
contact. There is no friction between the mass m and ground,
and the forcing function Fq(t) excites the system in the tan-
gential direction. Note that because the bilinear hysteresis
element is massless, the system retains only one dof, and the
damper displacement is denoted by the internal dof ud(t). A
brief consideration of solutions of the sticking and slipping
governing equations for the single-dof system with bilinear
hysteresis friction element helps shed some light on the per-
formance of such friction models. The equation of motion
must use a piecewise friction definition, and for harmonic
forcing of the form Fq(t)5Fq ,1 sin vqt the normalized struc-
tural response equation of motion can be generically stated:

Fig. 23 Calibration of lumped-parameter partial slip models using
monotonic loading and a collocation procedure at discrete points
xcr ,i ~monotonic loading!

Fig. 24 Cyclic loading behavior of lumped-parameter partial slip
models showing hysteresis ~single-element model of Fig. 5a, multi-
element model of Fig. 5b!; pre-slip displacement for single-element
model is shown

Fig. 25 Single-dof structural model with bilinear hysteresis fric-
tion damper
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x̂912j x̂81V2x̂5F̂q~t !2F̂d~ x̂ ! (74)

where for this forced response problem, the normalizations
are slightly different than those for the self-excited problem:

t5vqt (75)

xo5

Fq ,1

k
(76)

j5

c

2mvq

(77)

V2
5

vq
2

vn
2 (78)

F̂q~t !5

Fq ,1

mvq
2xo

sin t5F̂q ,1 sin t (79)

The piecewise nature of the equation is revealed by consid-
ering the friction damper force F̂d :

F̂d5H F̂ f ; slipping

gV2~ x̂2 ûs!; sticking
(80)

where ûs is the damper position at the onset of sticking, F̂ f

5F f /mvq
2xo , and g5 kd /k is a stiffness ratio which indi-

cates the impact of the damper dynamics. Note that in Eq.
~80!, appropriate signs must be attached to the damper force,
depending upon which branch of the hysteresis loop ~Fig.
24! the slider operates on.

It is important to emphasize here that the structural model
~ie, the mass m itself! never experiences sticking, and so the
governing equation for this system is always a second-order
differential equation—it is only the massless damper which
can experience sticking. So in fact this approach is a type of
friction smoothing procedure in the sense that the dynamics
of the structure are never described by an algebraic equation
of the form ~70!. Recall that the bilinear hysteresis element is
a special case of Fig. 23 in which elastic-perfectly plastic
behavior is exhibited ~that is, only one collocation point xcr

is used to calibrate the model!. Then, the friction element
functions as a saturation element with the maximum restor-
ing force equal to 6F̂ f . Under this normalization, the piece-
wise equations of motion can be written:

x̂912j x̂81V2~11g !x̂5F̂q~t !2gV2ûs sticking (81)

x̂912j x̂81V2x̂5F̂q~t !2F̂ f sgn~ x̂8! slipping (82)

The limiting behavior of this system will be examined
first. The fundamental dynamics of the system under sticking
and slipping conditions are summarized in Table 10, which
shows that sticking brings about an increased natural fre-
quency, but a decreased effective damping. Both of these
effects result from the damper spring stiffness being arranged
in parallel with the system stiffness in Fig. 25. Furthermore,
if the system is assumed to operate in a condition of pure slip
~or nearly pure slip!, then the HBM solution suggested ear-
lier will likely be appropriate. Note that cases of substantial
stick-slip cannot be approached using the procedures out-
lined by den Hartog or Shaw because at the stick-slip tran-

sition an instantaneous change in effective stiffness occurs
~ie, in this case the dynamics at the stick-slip transition are
not smooth!. An exception to this is the limiting case g
→` , which corresponds exactly to the analyses of den Har-
tog ~constant friction coefficient! and Shaw ~different static
and kinetic friction coefficients!.

Harmonic excitation F̂q(t)5F̂q ,1 sin(t) produces a re-
sponse x̂(t) which in general is not harmonic due to the
nonlinearity of the friction damper. For a pure sticking case,
in which the forcing amplitude F̂q ,1 is insufficient to induce
slipping, the equation of motion becomes linear ~Eq. ~81!
with ûs50 for all time t!, with solution of the form x̂o(t)
5X̂o sin(t1f), with:

X̂o5

F̂q ,1

AF12S 1

vn
stD 2G 2

1F2zst
1

vn
stG 2

(83)

where vn
st and zst are defined in Table 10, along with the

phase angle f. For a near-pure slipping case, the HBM can
be used to approximate the response as a pure harmonic and
the error of such an approach is likely to be small.

Because it is the massless damper which may respond in
stick-slip, the structural response under mildly nonlinear
conditions is likely to be substantially harmonic, regardless
of the kinematic state of the damper. This is shown clearly in
Fig. 26, which illustrates the response of the mass x̂(t)
against time under single-frequency harmonic input. The
dashed lines correspond to conditions of damper slipping
while the solid lines correspond to damper sticking. We
might estimate that the damper response ûd(t) sticks
roughly 60% of the time over one forcing cycle in this simu-
lation, yet fundamentally the response x̂(t) is single-
frequency harmonic. This idea can be further investigated by
varying the coupling parameter g and examining the system
response, as is shown in Fig. 27. X̂ss is the steady-state re-
sponse amplitude calculated from numerical simulation, and
it is a non-monotonic function of the coupling parameter g
which peaks for small values of g. Percent sticking of the

damper per cycle is a monotonically-decreasing function of
g, with small g corresponding to pure stick, and large g
corresponding to pure slip. From Table 10, the range of g
shown on the figure corresponds to a maximum resonant
frequency shift of over 20%.

Table 10. Comparison of slipping and sticking system parameters for

a single-dof model with bilinear hysteresis friction element

Parameter

Slipping

Eq. „82)
Sticking

Eq. „81)

natural frequency vn
sl

5V vn
st

5VA(11g)

equivalent damping ratio zsl
5

j
V

zst
5

j

VA~11g !

damper force F̂d
sl

5F̂ f F̂d
st

5gV2( x̂2 ûs)
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With reference to the hysteresis curve for a single-element
model of Fig. 24, the relationship among the friction force,
damper stiffness, and pre-slip displacement is:

kdxpre52F f (84)

which indicates that for large damper stiffness kd , the poten-
tial sticking region becomes very small, and the parallelo-
gram of Fig. 24 begins to look more like a rectangle with
vertical sides. The physical implication is that as kd in-
creases, the pre-slip displacement ~and therefore the amount
of sticking per forcing cycle! decreases, and the problem
becomes more weakly nonlinear with the damper force Fd

56F f , depending upon the sign of the sliding velocity. In-
deed, we can use g→` and apply den Hartog’s approach to
predict an asymptote of X̂ss→1.85 for this case. The impli-
cation is that for moderately large g, the steady-state re-
sponse amplitude is very insensitive to the kinematic state of
the damper; as such, an HBM solution for the response x̂(t)
is likely to correctly predict the amplitude regardless of the
kinematic state of the damper.

This is the key difference between implementing friction
damping using massless Iwan-type models and non-zero
mass contact models of the type considered originally by den
Hartog. Indeed, under sticking, systems with bilinear hyster-
esis elements still retain a single dof, with the consequent

changes in frequency and damping characteristics shown in
Table 10. On the other hand, a single-dof point contact model
similar to den Hartog’s possesses kinematically constrained
motion during sticking and therefore zero dofs; further, the
concepts of natural frequency and damping ratio are essen-
tially meaningless during sticking.

A key question, as yet not fully explored in the literature,
is the effect of an Iwan-type model which has non-zero mass,
equivalent to replacing the Coulomb damper in Fig. 25 with
a mass md under normal load experiencing point contact
with friction coefficient m. The spirit of Iwan models indi-
cates that the mass ratio b5 md/m should be small; if b
assumes a larger value, then the damper dynamics begin to
assert themselves, and it stops behaving like a damping ele-
ment and starts behaving more like another structural dof.
So, if the discussion is restricted to small values of b, the
analysis lends itself well to perturbation approaches, and this
is precisely the analysis used by Ferri and Heck @137#, which
indicates that damper mass md may have an important effect
on overall damping characteristics. They used the singular
perturbation theory to determine steady-state response of the
mass m under various values of the parameter b, and the
results ~their Fig. 11! show that indeed mass can have a
qualitative effect, particularly in situations where substantial
stick-slip takes place. In operating regions of near-pure-slip
or near-pure-stick, a variety of lower-order approaches is suf-
ficient. As shown in the calculations presented in Fig. 28 ~a
partial result corresponding to Ferri and Heck’s Fig. 11!,
damper mass can play a dramatic role, especially in the vi-
cinity of resonance. These results correspond to b50.2 and
demonstrate that a bilinear hysteresis approach significantly
overestimates steady-state response under stick-slip condi-
tions.

Finally, three performance issues for bilinear hysteresis
elements should be recognized. First, these elements describe
phenomenological models which are consistent with a key
experimental observation—they allow for pre-slip displace-
ment through stretching of the spring ~see Fig. 1d!!. Second,
they are attractive for modeling systems with changing
boundary conditions, such as turbine blades for which the

Fig. 26 Steady-state response x̂(t) under single-frequency excita-
tion; damper sticks more than one-half of the time per forcing cycle
yet x̂(t) is substantially harmonic

Fig. 27 Steady-state response amplitude X̂ss and time-averaged
percent sticking per forcing cycle variations with coupling param-
eter g

Fig. 28 Damper mass effects on steady-state forced response. An
example result from Ferri and Heck @137# showing a qualitative
difference in predictions for massless ~bilinear hysteresis! and non-
zero-mass models.
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models have seen the most use. Indeed, if the single-dof
system considered here is interpreted as a one-mode expan-
sion for the response of a continuous system, then it is clear
that the bilinear hysteresis elements allow for a change in
natural frequency of that mode, by a factor of A(11g) in
Eq. ~81!, under a pure sticking boundary condition. This pre-
sents another means of calibrating the model as well: kd can
be chosen to match an experimentally-observed frequency
shift as the boundary condition changes from pure slip to
pure stick. Third, from a computational standpoint, the dif-
ferential equations describing the structure only reflect the
sticking or slipping state of the damper through Fd , and the
structure itself is never described by a sticking algebraic con-
straint equation. This provides two attractive features: i)
computational efficiency in that the response x(t) is smooth
and its derivatives are smooth, and ii) this lends itself to
HBM-type solutions because the structure never undergoes
sticking. The liabilities of these models include their only
indirect access to interface response parameters, and the re-
quirement for calibration of the models against a database of
performance data.

4.3.2 Partial slip modeling: Continuum approaches

Several researchers have examined partial slip contact and
forced response using continuum approaches. The most com-
mon procedure is to apply Hertz theory and Mindlin’s ap-
proach to capture regions of slip and stick in the contact, slip
displacement, energy dissipation, etc. These approaches as-
sume quasi-static loading conditions and Coulomb friction.
These models have enjoyed great success in the mechanics
community and fretting fatigue in particular, and they work
well for contacts which can be reasonably modeled using
Hertz theory. Many large-scale FEM codes of today offer a
computational framework within which partial slip calcula-
tions can be efficiently made for contact geometries other
than Hertzian. However, they prove largely unsuitable for
dynamic system simulation except in relatively simple cases,
mainly because of the computationally intensive nature of
contact mechanics solutions. As a result, dynamic system
simulations have focused more closely on nominally flat
contacts, or at least contacts for which variations in contact
size can be neglected. Several approaches have emerged for
detailed stick-slip investigations of continuous contacts.

Oden and colleagues have developed a continuum
mechanics-motivated interface constitutive law ~see Section
2.2!. However, they use a friction regularization procedure to
smooth the discontinuity at zero relative velocity, and so true

interface sticking is never achieved in their models. Rice’s
rate- and state-dependent friction model ~Section 2.5! also
includes a continuum approach, but it has been applied either
in self-excited response and steady-sliding stability prob-
lems, or to describe the forced response of a single-point
contact.

Another partial slip model was proposed by Menq and
Griffin in the mid-1980s @58,156#. Originally developed for
turbine blade damping calculations, the model has since been
applied to passive damping in joints of built-up structures, as
well as a variety of other energy dissipation calculations. The
model is based upon the schematic geometry shown in Fig.
29, which shows a lap joint of two elastic bars connected by
an elasto-plastic shear layer. The length L interface, de-
scribed by elastic parameter k and limiting shear stress tm ,
is sheared by the applied force F . The elastic bars are de-
scribed by effective elastic moduli and cross sectional areas
E i and A i , i51,2. Two key dimensionless groups are
formed:

l1
2
5

kL2

E1A1
(85)

r5

E1A1

E2A2
(86)

l1 indicates the relative stiffness of the shear layer to the top
elastic bar, while r compares the effective stiffness of the
two elastic bars.

The performance of the model is shown schematically in
Fig. 30, which shows regions of sticking and slip, plus the
distributed shear traction, at the elasto-plastic shear layer for
four different values of applied load F . In the slipping re-
gions, the shear traction is equal to the maximum shear, t
5tm . Note also that as F is increased, the slip zones propa-
gate inward from the edges of contact; this is supported by
many observation in the mechanics community ~see @151#!.
Further, under monotonically increasing load, the force-
displacement curve can be generated as shown in Fig. 31,
and a comparison is made to the bilinear hysteresis model
presented elsewhere in this article ~see Fig. 5a)!. Because of
the continuous nature of the contact, it is not surprising that
the loading curve contains more information than the simple
bilinear hysteresis curve discussed earlier.

Fig. 29 The Menq-Griffin two elastic bar partial slip model
Fig. 30 Menq-Griffin partial slip model characteristics (F1,F2

,F3,F4)
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This partial slip model, and various permutations, has
been shown to qualitatively capture the relevant features of
turbine blade vibration response across a wide range of op-
erating conditions. The full range of possible interface con-
ditions is considered ~pure slip, partial slip, pure stick!, and
the consequent effect upon the system dynamics ~ie, shifts of
resonant frequencies or changes in mode shape! can be cap-
tured. Further, it is interesting to note that this model is
analogous to the shear-lag models used for fiber pullout
analyses in ceramic matrix composites ~eg, @193#!. The big-
gest liability of this model, and the extensions reported in the
literature and used in the gas turbine industry, is the chal-
lenge of model calibration.

Another partial slip model has recently been proposed and
applied to continuous contacts by Sextro. He proposes @194#
that microslip arises from normal contact pressure variations
related to surface roughness. Based upon a statistical rough-
ness description, he derives a nonlinear normal contact law
which is related to contact area and normal surface penetra-
tion. This is essentially a power law expression along the
lines of those described in Section 2.2.2. From this, the tan-
gential contact stiffness is derived, and it contains the famil-
iar softening behavior expected of partial slip contacts. The
result is a point contact model which captures the important
normal pressure variations of a spatially-distributed rough
contact. This is a useful low-order model which can again be
analyzed using the HBM. The author reports good agreement
with experiments in a turbine blade shroud damping applica-
tion.

A new formulation for partial slip problems has recently
been presented by the author @195#. This model uses a 2D
elastic continuum approach to model the structure, with an
interface description based upon contact normal stresses and
Coulomb-type friction. The model couples the structural re-
sponse to the interface response in a physically-motivated
way, and interface sticking is explicitly allowed. The model
uses straight-forward time integration to determine the time
history of response. As a result, this model circumvents some
of the obstacles described previously in the literature: i) the
model does not use a friction regularization procedure, and
sticking is explicitly accounted for at each interface node in
the discretized model; and ii) the solution is not based upon
a single harmonic, and the full richness of the interface re-
sponse can be captured. Of course, the price paid for these
features is increased computational intensity over other par-

tial slip models and solution procedures. Nonetheless, the
model does show promise in capturing energy dissipation in
partial slip contacts, mainly because it substantially relieves
the requirement for model calibration so critical for many
other partial slip contact models. In addition, it captures the
continuous variation in system dynamics as the boundary
condition changes.

An example result using this approach is shown in Fig.
32, which demonstrates the break-away behavior of the fric-
tion force and clearly shows pre-slip displacement occuring
over a finite time tpre . An elastic block is pressed into a
rigid, stationary countersurface by the uniform distributed
load po such that *0

Lpodx5Fn . The uniformly distributed
tangential shear traction along the top surface of the block
q(t) increases monotonically from zero to a maximum value
which is greater than mkFn , ie, the block will eventually
experience pure slipping. The friction force F f is given by:

F f5E
0

L

t fdx (87)

where:

t f5H mksn slipping

<mssn sticking
(88)

where no distinction has been made between static and ki-
netic friction ~ie, ms5mk!. The pre-slip displacement of each
location in the elastic body will be different, and therefore
the definition of xpre in this case is not explicitly clear. None-
theless, all points on the structure away from the interface

experience displacement through this initial loading phase
before gross slip. Further, sticking friction is truly multi-
valued at zero relative velocity, in contrast to other friction
regularization procedures detailed earlier in this paper. The
model contains no non-physical parameters; the structural
properties are determined using traditional FEM procedures
and material and geometry parameters, while the interface
constitutive behavior is defined by the interface friction co-
efficient and the contact normal force, which is explicitly
determined at each step of the simulation. Despite the com-

Fig. 31 Comparison of Menq-Griffin partial slip model and bilin-
ear hystersis model under monotonic loading

Fig. 32 Break-away behavior of elastic block on rigid support
under monotonically-increasing tangential load; inset: schematic of
system geometry and loading
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putational intensity of this approach, it adds value to partial
slip calculations because the only model tuning parameter is
the friction coefficient itself.

4.4 Summary

Forced response calculations have traditionally relied upon
lumped-parameter, point-contact models to describe friction,
as it has been the structural response which is of primary
interest. Indeed, using the simplest appropriate friction
model presents a very attractive approach, and tuning the
model against experimental data requires curve fitting of
only a few friction parameters. However, even for low-order
models of friction at structural supports, we have seen that
contact details, including orientation of the slip direction
with respect to the structure and parameter dependence of
friction, can have a qualitative effect on the overall level of
friction damping. Further, we have seen that bilinear hyster-
esis friction dampers perform well over some parameter
ranges ~ie, near-pure slip or near-pure stick!, but they neglect
potentially important effects under primarily stick-slip re-
sponse. Finally, we have seen the emergence of several
continuum-based partial slip contact formulations which pro-
vide improved access to interface response parameters, but
require substantially more effort in model formulation and
solution.

5 DISCUSSION

A wide body of literature has been examined throughout this
article, and sources from a number of research communities
have been cited. At first glance, the sheer number of friction
modeling approaches, levels of sophistication, methods of
coupling to system dynamics, approximation techniques for
friction, and simulation frameworks is staggering. Making
complete sense of the all the literature is quite a formidable
task, which we will surely not achieve here. However, we
can make some observations of broad truths, relevant across
disciplines, which underlie the results presented here. The
intent of this section is—to the extent possible—to unify our
understanding of these diverse approaches and techniques,
identify similarities and differences, and draw some conclu-
sions about work which remains to be done.

5.1 Nature of friction observations

Friction and system dynamics cannot be decoupled because
the act of measuring friction involves use of a sensing ele-
ment with finite compliance. In addition, test components
themselves are non-rigid ~consider the disk of a pin-on-disk
apparatus!, their support frames are also non-rigid, and even
when one goes to great lengths to achieve vibration
isolation—as Tolstoi did over 30 years ago—the dynamic
character of friction measurements always seems to assert
itself. This being the case, we need to place more emphasis
than ever on understanding test rig dynamics and how they
affect friction measurements. This is not a new idea, and
experimental observations made decades ago support this no-
tion. It appears that friction between two contacting bodies is
not strictly a function of the materials in contact and the
contact conditions, but also of measurement approach. As

such, velocity-dependence of friction measured in a pin-on-
disk machine may not be an intrinsic property of the contact
interface, but rather a property of the structure-interface sys-

tem. We must recognize that there exists no canonical experi-
ment which will provide, without error or misrepresentation,
an accurate and unique picture of a contact interface behav-
ior under dynamic conditions. The reason is that the interface
response and the structural response are strongly coupled,
and friction measurements are a complicated function of
structural mechanical and thermal response, operating condi-
tions, environment, material combination, surface chemical
composition, and other factors. Uniqueness of friction de-
scription, it appears, will remain an elusive goal, and perhaps
the best we can do is to recognize the role of non-interface
factors in determining friction, and use them appropriately in
simulation.

5.2 Friction similarities across disciplines

A key observation across the literature is the role of sliding
distance ~in point contacts! or slip displacement ~in continu-
ous contacts undergoing partial slip!, which critically relate
to memory-dependence, time lag, or a critical slip distance
for friction. The memory-dependence and time lag ap-
proaches have both been used in the dynamics community to
explain observations of friction loops in which friction is a
function of sliding acceleration as well as sliding velocity.
Further, Rice has shown the sensitivity of steady-sliding sta-
bility calculations to the critical slip displacement dc , and
derived a critical system stiffness above which steady-sliding
is stable.

The mechanics community also has two important contri-
butions in this area. First, the Ruiz and Chen fretting criteria
relies closely upon interface slip displacement as a predictor
of fatigue crack nucleation. Second, Nowell and Hills exam-
ine the observed size effect in fretting contacts and attribute
it to the difference in slip displacements for large contact vs
smaller contacts. In small contacts, the slip displacements are
small—perhaps smaller than any inherent friction length
scale in the problem. This is proposed as a difference be-
tween single-asperity sliding and multi-asperity sliding, and
clearly the important parameter to examine is the ratio of slip
displacement to characteristic asperity spacing. Further, the
geomechanics community has identified this critical distance
as something of a material parameter. Rice proposes the use
of a critical slip displacement dc over which friction evolves
as a new population of asperities come into contact. For slip
displacements well below the critical value, no significant
evolution takes place because no new asperities were brought
into contact. In micro-scale contacts, adhesion plays a sig-
nificant role for component performance, and the character-
istic material lattice spacing is the relevant parameter in this
case. Similarly, for nano-scale contacts such as those in AFM
or FFM experiments, a small-scale interaction potential plays
an important role.

Another important theme across much of the literature is
the role of out-of-plane response in friction oscillations. A
variety of researchers have emphasized the critical role
played by both the normal and angular dof in sliding friction
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problems, and the mechanism of coupling among the three
dofs is a natural one—kinematic coupling related to problem
asymmetry ~Fig. 2!. Further, contact normal vibrations may
result from surface asperity interaction, and the observation
of a normal contact resonance is common. The fundamental
feature here is that any non-planar response—either rota-
tional or normal translation—alters the contact conditions by
changing the contact normal force Fn , and affects the real
area of contact by changing the mean surface separation. The
implications of this can be profound and have been observed
in applications as diverse as brake squeal, fretting fatigue,
joint damping, and others. Further, AFM measurements in
nano-scale contacts show substantial coupling between tan-
gential and torsional motions of the cantilever beam, and the
coupling arises due to cantilever beam geometry. Even on the
micro- and nano-scales, normal-angular-tangential coupling
effects are important. A related issue is the variation of inter-
face parameters with changes in system position, included
either through one of the mechanisms proposed by Ferri, or
through explicit time dependence of normal load. In any
case, realistic contact scenarios across disciplines require
careful consideration of out-of-plane vibration effects and
their implications on observations and predictions of inter-
face response.

5.3 Multiple scale effects

One of the more intriguing observations that can be extracted
from the literature is the general dependence of friction on a
critical length parameter which is in general several orders

of magnitude smaller than the length scale of the contacting

components. For example, Rice’s work shows that unstable
fault slip—with physical system size on the order of km—is
critically dependent upon the critical slip distance dc , which
may be on the order of tens of mm. Recall that Rice presents
two important implications: i) the critical system stiffness is
related to the parameter dc , and ii) appropriate discretiza-
tion schemes rely upon cell sizes being smaller than the
length parameter dc . This is a remarkable result which links
two length parameters over perhaps ten orders of magnitude
in the same problem. But friction contact problems in gen-
eral possess a number of length scales which fundamentally
impact the problem.

For example, in contact mechanics and fretting fatigue
scenarios, the components in contact are on the macro-scale,
with dimensions on O(cm), while the contact size itself may
be sub-mm in size. Further, the slip zone at the edge of

contact will be even smaller, and the slip displacements
within the slip zone smaller yet. If we revisit the Ruiz and
Chen fatigue criterion, we see that the durability of macro-
scale components is often linked to interface behavior ~slip
displacement! which occurs at the micro-scale. Energy dissi-
pation in partial slip contact presents yet another case of
multiple-scale effects. In partial slip contacts, such as those
in joints of built-up structures or friction dampers in turbo-
machinery components, the structural response is controlled
by contact interactions on the scale of microns or tens of
microns—the frictional work at the interface is a function of
the friction force and the slip displacement.

This argument scales down even further if we consider
AFM measurements and nanomechanics. A micro-scale can-
tilever beam is used to measure nano-scale surface features
or surface force interactions. The response of the beam is
closely related to the interaction potential between the AFM
tip and the surface being scanned; the critical length scale for
the interaction potential is the atomic spacing, and clearly
once again the structural response of the AFM cantilever is
governed by contact interactions on a length scale three or-
ders of magnitude smaller.

Table 11 presents a small overview of the length scale
variations in some example problems. The common thread
among each is the critical dependence of system
performance/efficiency/durability on a contact interface pa-
rameter with length scale several orders of magnitude

smaller than the associated structural scale. The two basic
interface length scales which influence structural response
are:
• 1 – 100 mm: This includes a critical slip distance dc in

rate- and state-dependent friction laws, characteristic as-
perity spacing discussed in reciprocating sliding problems
and memory-dependent friction, and interface slip dis-
placement which partially governs fretting fatigue life and
scale effects in fretting contacts.

• 0.1– 10 nm: Atomic spacing which governs small-scale
contact interactions through potential function such as Eq.
~21!.

5.4 Implications for dynamic friction simulations

This variation in length scale presents substantial problems
and requirements for capturing parameter dependence of
friction in simulations: if the behavior of a system is domi-
nated by response at a particular length scale, then any dis-
cretization schemes must be built around that length scale.

Table 11. Similarities in friction observations across length scale and problem type

Application Length Scales „m… Problem Type Comments

earthquakes 104
21026 self-excited stable sliding critically related to material parameter dc

fretting fatigue 100
21026 forced fretting fatigue strongly dependent upon small-scale interface response

joint damping 100
21026 forced energy dissipation and structural response related to frictional work

controls 100
21026 forced controller gains ~ie, closed loop stiffness! related to critical slip displacement dc

or time lag of friction
MEMS 1025

210210 forced stiction of MEMS components and adhesion effects

nano-mechanics 1026
210210 self-excited AFM cantilever calibration and friction measurements sensitive to normal-angular-

tangential coupling of deformation modes and atomic-scale potential interactions
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Again, this is precisely the result demonstrated by Rice, who
indicates a qualitative difference between the response of an
appropriately discretized system possessing a clear con-
tinuum limit, and one which is inherently discrete, with no
continuum limit. The implication is that appropriately dis-
cretized dynamic systems quickly become computationally
unwieldy, especially in light of the disparity between typical
interface length scales and structural length scales. Rice dis-
cusses this issue in detail, and in many of his simulations he
chooses an artificially large critical slip displacement dc in
order to make the computations reasonable. Berger, Begley,
and Mahajani have also pursued such high-fidelity models
with detailed structural and interface discretization, and the
computational overhead of their simulations is also substan-
tial. Further, the dynamic model used in the simulation must
be capable of capturing the relevant interface response pa-
rameters, including macro-scale tangential-normal-angular
coupling or micro-scale slip displacement at the interface, as
appropriate for the problem.

The choice of friction and structural model can therefore
be broken down into three broad categories.
i! Low-order, lumped-parameter models: The structure is

described by a lumped model, and the contact is ideal-
ized as a single point, or at most a few contact points
connected by collections of springs and dampers. Total
number of dofs is low, on the order of 1–10.

ii! High-fidelity continuum-based models: The structure
and interface descriptions are derived from continuum
mechanics approaches, discretized with a cell size pos-
sibly related to a critical friction length scale. Total
number of dofs is very high, and is dictated by the ratio
of structure size to cell size.

iii! Hybrid model with high-fidelity interface and modal

structural models: The structure is described by time-
dependent modal amplitudes and spatial mode shapes,
and the interface is discretized into appropriately sized
cells; the interface model and structural modal can be
coupled, resulting in a modest number of dofs gov-
erned by the interface cell size and the number of
modes in the structural response.

Assets and liabilities of these approaches are listed in Fig. 33
as a function of eleven criteria for friction/structural model
performance. The key trade-offs observed in the table are
computational efficiency against solution details, including
access to interface response parameters and contact geometry
modeling.

In light of these observations, it is clear that choice of
friction and structural models must then not only depend
upon the application, but also upon the simulation objective.
Each of the three approaches proposed above has assets and
liabilities, and the decision about appropriate interface/
structural modeling rests on the importance of the evaluation
criteria of Fig. 33 for a specific application. For example, it
seems likely that fretting fatigue calculations would empha-
size physics and fidelity criteria because of life prediction
dependence upon slip displacement, slip zone size, contact
geometry, etc. However, the dynamic aspects of the problem
may be de-emphasized, and therefore the ability to capture

general parameter dependence may be of little consequence
for a quasi-static problem. On the other hand, for controls
applications, high-fidelity structural/interface models are in-
appropriate because of solution time constraints and the re-
quired controller frequency response. As a result, idealized
lumped-parameter models which emphasize computational
efficiency criteria take precedence.

But in some cases the choice of approach is not straight
forward. For example, it is clear from Eq. ~20! that energy
dissipation in nominally stationary joints is very sensitive to
friction force, slip zone size, and slip displacement. So, high
fidelity models which emphasize direct access to interface
response parameters seem the most promising for these ap-
plications. However, when simulating the dynamic response
of a large structure with a number of joints, the simulations
quickly become unreasonable, and the low-order models in-
crease in attractiveness. In fact, with ample experimental
data, Iwan-type models of the form in Fig. 5b can be quickly
generated, calibrated, and applied to structural analysis ap-
plications. It is precisely this line of thinking which gives
rise to non-parameterized methods of nonlinear structural
identification which have been reported over the past 20
years ~eg, @196#!. Contact details in this case are sacrificed
for a more global understanding of structural response in the
presence of friction.

The key conclusions to be drawn concerning the sophis-
tication of structural and friction models are two-fold:
• high-fidelity prediction of interface response usually re-

quires resolving disparate length scales in numerical simu-
lations, and this adds to the model formulation complexity
as well as solution cost, although

• the required degree of sophistication of a friction model is
highly application specific, and is dependent upon the sys-

Fig. 33 Comparison of friction modeling approaches against key
performance criteria: ability to capture relevant problem physics,
computational efficiency, and model fidelity

Accepted Manuscript

38



tem dynamics, computational allowances ~eg, frequency
response for controllers!, and acceptable level of spatial
filtering of the interface response ~ie, going from a high-
order FEM model to a low-order, lumped parameter
model!.

By confronting these related issues, designers can appropri-
ately choose a friction model which suits design and analysis
needs.

6 CONCLUSIONS

Although the literature on friction modeling spans hundreds
of years and multiple engineering and science disciplines, we
can extract some common themes based upon the observa-
tions here. First, modeling of the four key experimental ob-
servations shown in Fig. 1 is very accessible, and researchers
now have available a number of options and tools for each
important behavior. Second, structural models which capture
the contact kinematics using normal-angular-tangential cou-
pling are also available, and they have applications across
dynamics, controls, and other emerging micro- and nano-
scale research areas. Third, there exists a wide variety of
friction regularization and solution schemes, which typically
seek to simplify the analytical formulation or reduce the nu-
merical cost for the problem.

A key conclusion, drawn from consideration of the litera-
ture presented here, is the multiple-length-scale nature of
friction modeling for system dynamics. In a huge variety of
applications, the structural length scale is several orders of
magnitude larger than the relevant friction/interface length
scale. The implication is that system simulation approaches
face a difficult multi-scale modeling problem in which the
performance of the components is governed by behavior oc-

curing at a length scale much smaller than the overall di-

mensions of the parts. This interface length scale drives ap-
propriate discretization schemes, and computational
efficiency quickly becomes unreasonably poor. Sections 5.3
and 5.4 present several potential approaches to this problem,
although each approach possesses its own assets and liabili-
ties. The conclusion is that friction and structural modeling
for dynamic simulations must include careful consideration
of not only the information required as output of the simula-
tion, but also the simulation objectives themselves for com-
putational efficiency, accuracy, and fidelity.

Although this conclusion may appear self-evident, it is
not an understatement to say that a substantial amount of
work remains in friction modeling on several fronts. The
fundamental questions on the nature of friction and the sci-
ence of surface interactions will be a vital research area for
many years to come, especially in light of the trend toward
engineering miniaturization and the role of friction/adhesion
at small length scales. In addition, appropriate descriptions
for parameter dependence, and their role in determining sys-
tem response, will also continue as important research areas.
Perhaps the most effort in friction simulation—especially in
light of the continuing advancement of computational tools,
parallel computing, etc—should be directed toward resolu-
tion of the diverse length scales required for high-fidelity

simulations. Focused efforts toward developing hybrid mod-
els of the sort described in Section 5.4 may go a long way to
easing the computational burden, and the result will be more
convenient use of fundamental interface response calcula-
tions for slip zone size or slip displacement for overall com-
ponent performance predictions.

This article has focused primarily on a discussion of
experimentally-motived friction modeling tools, along with
some examples of the types of information available from
analysis using different friction and structural models. Fur-
ther, it has emphasized the diversity of applications for
which information about friction interface response is cru-
cial. The intent is to provide researchers with an improved
appreciation for the similarities in friction modeling ap-
proaches across disciplines, and to emphasize the obstacles
to efficient and accurate friction simulation. Through contin-
ued interdisciplinary study and consideration of research
across traditional disciplinary lines, progress in friction and
dynamic simulations will continue, and many more options
will be available to researchers in the future.
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Veröffent. aus dem Siemens Konzern 3, 135–141.

@121# Byerlee JD and Brace WF ~1968!, Stick-slip, stable sliding, and
earthquakes-effect of rock type, pressure, strain rate and stiffness, J.
Geophys. Res. 73, 6031–6037.

@122# Byerlee JD ~1970!, The mechanics of stick-slip, Tectonophysics 9,
475–486.

@123# Dieterich JH ~1978!, Time-dependent friction and the mechanisms of
stick-slip, Pure Appl. Geophys. 116, 790–806.

@124# Dieterich JH ~1979!, Modeling of rock friction 1: Experimental re-
sults and constitutive equations, J. Geophys. Res. 84, 2161–2168.

@125# Dieterich JH ~1979!, Modeling of rock friction 2: Simulation of pre-
seismic slip, J. Geophys. Res. 84, 2169–2175.

@126# Ruina AL ~1983!, Slip instability and state variable friction laws, J.
Geophys. Res. 88, 10359–10370.

@127# Ruina AL ~1986!, Unsteady motions between sliding surfaces, Wear
113, 83–86.

@128# Linker M and Dieterich JH ~1992!, Effects of variable normal stress
on rock friction: Observations and constitutive equations, J. Geophys.
Res., [Solid Earth] 97, 4923–4940.

@129# Rice JR ~1993!, Spatio-temporal complexity of slip on a fault, J.
Geophys. Res., [Solid Earth] 98~B6!, 9885–9907.

@130# Ben-Zion Y and Rice JR ~1997!, Dynamic simulations of slip on a
smooth fault in an elastic solid, J. Geophys. Res., [Solid Earth]
102~B8!, 17771–17784.

@131# Persson BNJ ~2000!, Sliding Friction: Physical Principles and Appli-
cations, Second Edition, Springer-Verlag.

@132# Mindlin RD and Dereciewicz H ~1953!, Elastic spheres in contact
under varying oblique forces, ASME J. Appl. Mech. 20, 327–344.

@133# Goodman LE and Brown CB ~1962!, Energy dissipation in contact
friction: Constant normal and cyclic tangential loading, ASME J.
Appl. Mech. 29, 17–22.

@134# Johnson KL ~1961!, Energy dissipation at spherical surfaces in con-
tact transmitting oscillating forces, J. Mech. Eng. Sci. 3~4!, 362–368.

@135# Shaw SW ~1986!, On the dynamic response of a system with dry
friction, J. Sound Vib. 108~2!, 305–325.

@136# Beards CF and Woohat A ~1985!, The control of frame vibrations by
friction damping in joints, ASME J. Vib., Acoust., Stress, Reliab. Des.
106, 26–32.

@137# Ferri AA and Heck BS ~1995!, Vibration analysis of dry friction
damped turbine blades using singular perturbation theory, Proc of
ASME Int Mech Eng Congress and Exposition, AMD-Vol 192, ASME,
New York, 47–56.

Accepted Manuscript

41



@138# Griffin JH ~1980!, Friction damping of resonant stresses in gas turbine
engine airfoils, ASME J. Eng. Power 102, 329–333.

@139# Pierre C, Ferri AA, and Dowell EH ~1985!, Multi-harmonic analysis
of dry friction damped systems using an incremental harmonic bal-
ance method, ASME J. Appl. Mech. 52, 958–964.

@140# Wang JH and Chen WK ~1993!, Investigation of the vibration of a
blade with friction damper by hbm, ASME J. Eng. Gas Turbines

Power 115, 294–299.
@141# Dowell EH ~1986!, Damping in beams and plates due to slipping at

the support boundaries, J. Sound Vib. 105~2!, 243–253.
@142# Dowell EH and Schwartz HB ~1983!, Forced response of a cantilever

beam with dry friction damper attached, Part I: Theory, J. Sound Vib.

91~2!, 255–267.
@143# Dowell EH and Schwartz HB ~1983!, Forced response of a cantilever

beam with dry friction damper attached, Part II: Experiment, J. Sound

Vib. 91~2!, 269–291.
@144# Ferri AA and Bindemann AC ~1992!, Damping and vibration of

beams with various types of frictional support conditions, ASME J.

Vibr. Acoust. 114, 289–296.
@145# Makris N and Constantinou MC ~1991!, Analysis of motion resisted

by friction, I. constant coulomb and linear/coulomb friction, Mech.

Struct. Mach. 19~4!, 477–500.
@146# Makris N and Constantinou MC ~1991!, Analysis of motion resisted

by friction, II. Velocity-dependent friction, Mech. Struct. Mach. 19~4!,
501–526.

@147# Gaul L and Nitsche R ~2001!, The role of friction in mechanical
joints, Appl. Mech. Rev. 54~2!, 93–105.

@148# Gaul L and Nitsche R ~2000!, Friction control for vibration suppres-
sion, Mech. Syst. Signal Process. 14~2!, 139–150.

@149# Gaul L and Lenz J ~1997!, Nonlinear dynamics of structures as-
sembled by bolted joints, Acta Mech. 125~1–4!, 169–181.

@150# Lenz J and Gaul L ~1995!, The influence of microslip on the dynamic
behavior of bolted joints, Proc of 13th Int Modal Analysis Conf,
Nashville, TN, 248–254.

@151# Johnson KL ~1985!, Contact Mechanics, Cambridge Univ Press,
Great Britain.

@152# Sinha A and Griffin JH ~1984!, Effects of static friction on the forced
response of frictionally damped turbine blades, ASME J. Eng. Gas

Turbines Power 106, 65–69.
@153# Griffin JH and Sinha A ~1985!, The interaction between mistuning

and friction in the forced response of bladed disk assemblies, ASME

J. Eng. Gas Turbines Power 107, 205–211.
@154# Menq C-H and Griffin JH ~1985!, A comparison of transient and

steady state finite element analyses of the forced response of a fric-
tionally damped beam, ASME J. Vib., Acoust., Stress, Reliab. Des.

107, 19–25.
@155# Menq C-H, Griffin JH, and Bielak J ~1986!, The influence of a vari-

able normal load on the forced vibration of a frictionally damped
structure, ASME J. Eng. Gas Turbines Power 108, 300–305.

@156# Menq C-H, Bielak J, and Griffin JH ~1986!, The influence of mi-
croslip on vibratory response, part i: A new microslip model, J. Sound

Vib. 107~2!, 279–293.
@157# Cameron TM, Griffin JH, Kielb RE, and Hoosac TM ~1987!, An

integrated approach for friction damper design, ASME Design Book-
let, The Role of Damping in Vibration and Noise Control, ASME
DE-Vol 5, 205–211.

@158# Kielb RE, Griffin JH, and Menq C-H ~1988!, Evaluation of a turbine
blade damper using an integral approach, AIAA/ASME/ASCE/AHS
29th Structures, Structural Dynamics and Materials Conf (AIAA 88-
2400), 1495–1500.

@159# Muszynska A and Jones DIG ~1983!, A parametric study of dynamic
response of a discrete model of turbomachinery bladed disk, ASME J.
Vib., Acoust., Stress, Reliab. Des. 105, 434–443.

@160# Wang JH and Shieh WL ~1991!, The influence of variable friction
coefficient on the dynamic behavior of a blade with friction damper,
J. Sound Vib. 149, 137–145.

@161# Sanliturk KY, Imregun M, and Ewins DJ ~1997!, Harmonic balance
vibration analysis of turbine blades with friction dampers, ASME J.
Vibr. Acoust. 119, 96–103.

@162# Sanliturk KY and Ewins DJ ~1996!, Modeling two-dimensional fric-
tion contact and its application using harmonic balance method, J.
Sound Vib. 193, 511–523.

@163# Whitehouse DJ and Archard JF ~1970!, The properties of random
surfaces of significance in their contact, Proc. R. Soc. London, Ser. A
A316~1524!, 97–121.

@164# Whitehouse DJ and Phillips MJ ~1978!, Discrete properties of random
surfaces, Philos. Trans. R. Soc. London, Ser. A A290~1369!, 267–298.

@165# Whitehouse DJ and Phillips MJ ~1982!, Two-dimensional discrete

properties of random surfaces, Philos. Trans. R. Soc. London, Ser. A
A305~1490!, 441–468.

@166# Kilburn RF ~1974!, Friction viewed as a random process, J. Lubr.
Technol. 96, 291–299.

@167# Qiao SL and Ibrahim RA ~1999!, Stochastic dynamics of systems
with friction-induced vibration, J. Sound Vib. 223~1!, 115–140.

@168# Ibrahim RA, Zielke SA, and Popp K ~1999!, Characterization of in-
terfacial forces in metal-to-metal contact under harmonic excitation,
J. Sound Vib. 220~2!, 365–377.

@169# Ibrahim RA, Madhavan S, Qiao SL, and Chang WK ~2000!, Experi-
mental investigation of friction-induced noise in disc brake systems,
Int. J. Veh. Des. 23~3/4!, 218–240.

@170# Mottershead JE, Ouyang H, Cartmell MP, and Friswell MI ~1997!,
Parametric resonances in an annular disc, with a rotating system of
distributed mass and elasticity; and the effects of friction and damp-
ing, Proc. R. Soc. London, Ser. A A453~1956!, 1–19.

@171# Ouyang H, Mottershead JE, Cartmell MP, and Friswell MI ~1998!,
Friction-induced parametric resonances in discs: Effect of a negative
friction-velocity relationship, J. Sound Vib. 209~2!, 251–264.

@172# Ouyang H, Mottershead JE, Cartmell MP, and Brookfield DJ ~1999!,
Friction-induced vibration of an elastic slider on a vibrating disc, Int.
J. Mech. Sci. 41, 325–336.

@173# Ouyang H, Mottershead JE, Brookfield DJ, and James S ~2000!, A
methodology for the determination of dynamic instabilities in a car
disc brake, Int. J. Veh. Des. 23~3/4!, 241–262.

@174# Lee D and Waas AM ~1997!, Stability analysis of a rotating multi-
layer annular plate with a stationary frictional follower load, Int. J.
Mech. Sci. 39„10…, 1117–1138.

@175# Brooks PC, Crolla DA, and Lang AM ~1992!, Sensitivity analysis of
disc brake squeal, Proc of Int Symp on Advanced Vehicle Control,
~AVEC’92!, Yokohama, Japan, Paper No. 923005, 28–36.

@176# Brooks PC, Crolla DA, Lang AM, and Schafer DR ~1993!, Eigen-
value sensitivity analysis applied to disc brake squeal, Braking of
Road Vehicles, Paper C444/004/93, Inst of Mech Eng, 135–143.

@177# Lang AM, Schafer DR, Newcomb TP, and Brooks PC ~1993!, Brake
squeal-the influence of rotor geometry, Braking of Road Vehicles,
Paper C444/016/93, Inst of Mech Eng, 161–171.

@178# Carpick RW and Salmeron M ~1997!, Scratching the surface: Funda-
mental investigations of tribology with atomic force microscopy,
Chem. Rev. 97, 1163–1194.

@179# Bhushan B, Isrealachvili JN, and Landman U ~1995!, Nanotribology:
Friction, wear and lubrication at the atomic scale, Nature (London)
374, 607–616.

@180# Bhushan B ~1999!, Nanoscale tribophysics and tribomechanics, Wear
225–229, 465–492.

@181# Johnson KL, Kendall K, and Roberts AD ~1971!, Surface energy and
the contact of elastic solids, Proc. R. Soc. London, Ser. A A324, 301–
313.

@182# Tabor D ~1977!, Surface forces and surface interactions, J. Colloid
Interface Sci. 58, 2–13.

@183# Johnson KL and Greenwood JA ~1997!, An adhesion map for the
contact of elastic spheres, J. Colloid Interface Sci. 192, 326–333.

@184# Israelachvili JN ~1992!, Adhesion forces between surfaces in liquids
and condensable vapours, Surf. Sci. Rep. 14~3!, 109–159.

@185# Yoshizawa H, McGuiggan P, and Israelachvili JN ~1993!, Identifica-
tion of a second dynamic state during stick-slip motion, Science 259,
1305–1308.

@186# McClelland GM ~1989!, Adhesion and Friction, Springer Series in
Surface Science, Springer, New York.

@187# Yoshizawa H, Chen Y-L, and Israelachvili JN ~1993!, Recent ad-
vances in molecular level understanding of adhesion, friction and lu-
brication, Wear 168, 161–166.

@188# Yoshizawa H and Israelachvili JN ~1993!, Fundamental mechanisms
of interfacial friction; stick-slip friction of spherical and chain mol-
ecules, J. Phys. Chem. 97, 11300–11313.

@189# Mate CM, McClelland GM, Erlandsson R, and Chiang S ~1987!,
Atomic-scale friction of a tungsten tip on a graphite surface, Phys.
Rev. Lett. 59~17!, 1942–1945.

@190# Nayfeh AH ~1981!, Introduction to Perturbation Techniques, John
Wiley and Sons, New York.

@191# Karnopp D ~1985!, Computer simulation of stick-slip friction in me-
chanical dynamic systems, ASME J. Dyn. Syst., Meas., Control
107~1!, 100–103.

@192# Pratt TK and Williams R ~1981!, Non-linear analysis of stick-slip
motion, J. Sound Vib. 74, 531–542.

@193# Hutchinson JW and Jensen HM ~1990!, Models of fiber debonding
and pullout in brittle composites with friction, Mech. Mater. 9~2!,
139–163.

@194# Sextro W ~1999!, Forced vibration of elastic structures with friction

Accepted Manuscript

42



contacts, Proc of ASME Design Eng Tech Conf, DETC/VIB-8180,
ASME, New York.

@195# Berger EJ, Begley MR, and Mahajani M ~2000!, Structural dynamic
effects on interface response—Formulation and simulation under par-

tial slipping conditions, J. Appl. Mech. 67, 785–792.
@196# Masri SF, Chassiakos AG, and Caughey TK ~1993!, Identification of

nonlinear dynamic systems using neural networks, J. Appl. Mech.
60~2!, 123–133.

Accepted Manuscript

43


