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H I G H L I G H T S

We introduce a new discrete element
model for calendering Li-ion battery elec-
trode.
This model involves a contact law ac-
counting for both active and CBD ma-
terials.
Calendering speed affects the elonga-
tion of the electrode and its internal
anisotropy.
Calendering leads to vertical tensile con-
tacts and horizontal compressive con-
tacts.
Electronic and ionic conductivities are
controlled by connectivity and porosity.
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A B S T R A C T

The electronic properties of Li-ion batteries crucially depend on the microstructure of their electrodes. One
step of the manufacturing process, called ‘calendering’, consists in compressing the electrodes between two
counterrotating cylinders to increase their density. Through a new simulation model, we investigate the effect
of calendering on microstructural and electronic properties of the electrodes. Our model takes into account
the real geometry of the rotating cylinder and a new contact law involving the elastic behavior of the active
material and the cohesive-plastic behavior of the binder layer. Our results align well with experimental data for
porosity, final thickness, and elongation. We show that the bonding structure induced by calendering involves
mostly vertical tensile contacts and horizontal compressive contacts. This unexpected observation highlights
the importance of shear deformation induced by rolling and thickness reduction. Using the FFT method, we
also investigate the ionic and electronic conductivities of the numerically calendered electrodes.
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1. Introduction

Li-ion batteries have proven their worth for many years in several
domains and play a key role for various technologies [1–4]. The manu-
facturing process of their electrodes involves several stages designed to
create a controlled material capable to store and deliver large amounts
of energy. The conventional Li-ion cell manufacturing process involves
a slurry preparation, coating, drying and calendering steps for their
electrodes [5]. The calendering step concerns the compaction of the
electrode between two rotating cylinders to reduce its thickness. This
compaction of the electrode increases its energy density and enhances
its storage capacity. However, this process also decreases the ionic
conductivity of the electrode and thus the ability of the battery to store
and deliver energy quickly [6,7]. The reduction of porosity increases
the tortuosity and leads to the clogging of the pore network. The
link between calendering parameters and the final microstructure and
performance of batteries is therefore a crucial feature of manufacturing
Li-ion batteries that remains, however, poorly understood [8].

In this paper, we are interested in the link between the final prop-
erties of the positive electrode and the calendering parameters. Since
the Li-ion electrode has a granular microstructure, we employ the well
known Discrete Element Method (DEM) to compute the mechanical be-
havior of the material during the calendering process [9]. This method
is based on explicit representation of the active material particles and
their interactions and has been recently employed by several authors to
simulate the manufacturing process of electrodes [10–14]. These DEM-
based models use different representations of the electrode within the
algorithmic constraints imposed by the framework of DEM.

A natural DEM approach proposed by some authors consists in
introducing two types of particles, namely the NMC active material and
CBD (Carbon Binder Domain) [15]. The CBD is usually composed of
sub micron carbon conductive additive particles and PVDF binder. This
approach implies, however, a high computational cost as it requires
hundreds of small CBD particles for each active material particle.
Computationally affordable models are based on the representation of
active material as rigid particles while the CBD is taken into account
through contact interactions between particles. For example, the sim-
plest DEM models of the electrode use a Hertzian-bond contact model to
account for the elastic behavior of the active material particles and an
adhesion force accounting for the action of the binding material [16].
This approach considers a solid bond formed by the binder during the
drying step between the active material particles. Some models have
improved this representation by adding a plastic component to the
contact law, which allows one to simulate the damage of active material
particles [10,11,17,18]. Some other models assume that the binder
induces a constant attraction force between the active material particles
and the particles follow an elasto-plastic behavior [19–21]. The use
of irreversible cohesive force by some authors in this context implies
irreversible loss of cohesion, which contradicts the chemo-physical
nature of CBD.

Another aspect of DEM-based calendering models concerns the sim-
ulation of the external forces applied to the system. The loading applied
on the material during the calendering process is usually represented
by a triaxial compression test with a confining pressure applied on the
lateral walls and vertical compression at constant speed. This simplified
representation is based on the fact that the diameter of the calendering
roll is much larger than the length of its contact with the electrode.
The contact zone between the calendering roll and the electrode is
therefore assumed to be flat, neglecting the curvature of the roll and
thus, also, the resulting shear stress. Several studies have also been
reported in which the compression is modeled with periodic bound-
ary conditions along horizontal directions and vertical compression
between two platens [12,19,20]. Since the horizontal cell dimensions
are fixed, such a configuration is equivalent to uniaxial compression
and cannot account for the free spreading of the material and its lateral
2

extension during calendering. The shear stresses induced by friction
with the cylinders are also neglected like in triaxial compression and
the contact surface is assumed to be flat. However, during the industrial
process, the motion of the electrode between two counter-rotating
rollers is driven by friction forces mobilized between the rollers and
the surface of the electrode. Hence, shear stresses induced by friction
and rolling are intrinsic to the process and might not be neglected. The
effect of these shear stresses is probably less crucial for understanding
the process at low calendering speeds. The models using simplified
boundary conditions can therefore be relevant for low calendering
speeds (< 1 m/min) usually employed in laboratory setups while the
speeds used in industry are usually close to 10 m/min. The calendering
speed affects horizontal elongation [22,23], and, beyond a certain level
of elongation, the collector may break during winding [24].

In this work, we present a new DEM-based model for the simula-
tion of the calendering process of Li-ion battery electrodes. The CBD
material is represented by its adhesive-plastic behavior at the inter-
face between NMC particles and most parameters are calibrated from
experiments. We also model the calendering process by introducing
a cylinder that drives the electrode by its rotation. We carry out a
detailed parametric investigation by varying thickness reduction ratio
and calendering speed and analyze their effect on porosity reduction,
elongation, microstructure, and electronic properties of the calendered
zone. Our results will be compared to previous DEM simulations re-
ported in the literature when possible and, as we shall see, the full
modeling of the calendering process and contact interactions turns out
to be crucial for the simulated behaviors.

In the following, we first introduce in Section 2 the numerical
method with focus on the interaction laws, calendering process, system
calibration, boundary conditions, and FFT method for the computation
of electronic conductivities. In Section 3, we analyze in detail the
time evolution of system-scale and particle-scale variables and the
influence of system parameters on the final state (porosity, elongation,
microstructure, and conductivities). We conclude in Section 4 with the
most salient findings of this work and its potential extensions.

2. Materials and methods

2.1. Discrete element method

To simulate the behavior of the granular electrode, we use the
Discrete Element Method (DEM) [9]. Each particle is considered as
a rigid element with its own shape, size, mechanical properties, and
degrees of freedom. The equations of dynamics for the translational
and rotational degrees of freedom are integrated in time for all particles
according to a time-stepping scheme. The forces and moments resulting
from the interactions between particles are computed by means of
contact force laws. The total contact force 𝒇 between two particles is
the sum of a normal force 𝑓𝑛𝒏, where 𝒏 is the contact normal, and a
tangential force 𝒇 𝑡:

𝒇 = 𝑓𝑛𝒏 + 𝒇 𝑡. (1)

The normal force law is assumed to be a function of the overlap 𝛿𝑛
while the tangential force is defined as a function of the cumulative
elastic tangential displacement 𝛿𝑡 at the contact point. The position and
velocity of each element are then incrementally updated through the
equations of motion. We used an in-house code called Rockable [25,
26]. Classical contact detection procedures and a velocity-Verlet time-
stepping scheme are used in this code [27].

2.2. Contact force laws

Numerical models for electrodes either explicitly represent both
active material (AM) and Carbon-Binder Domain (CBD) particles or
only the particles of the active material and the action of the bind-
ing material is modeled through a contact force law with its plastic

and cohesive components [28]. We consider the latter approach with
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Fig. 1. Normal force 𝑓𝑛 as a function of overlap 𝛿𝑛 and schematic representation of
he binder-covered particle model of the electrode. The colored zones represent the
ontact zones between binder layers and between particles, respectively.

arbon-binder phase described implicitly as a layer surrounding the
articles of active material. The AM particles define a polydisperse
ssembly of spheres [29] and the CBD is a layer of thickness 𝑅𝑝 coating
M particles, as schematized in Fig. 1. The thickness of the binder layer

s fixed from the ratio of the mass 𝑚𝐶𝐵𝐷 of the binding material to the
ass 𝑚𝐴𝑀 of active material. The thickness of the surrounding CBD

ayer is kept constant during the calendering process. This yields two
quations. The first equation is based on the porosity of the electrode 𝜀
omputed as 1−(𝑉𝐴𝑀 +𝑉𝐶𝐵𝐷)∕𝑉𝑡𝑜𝑡, leading to the following expression:

= 4𝜋
3𝑉𝑡𝑜𝑡

𝑁𝑝
∑

𝑘=1

(

𝑅𝑘 + 𝑅𝑝
)3 . (2)

The second equation is based on the mass distribution between active
material and CBD:

𝑚𝐴𝑀
𝑚𝐶𝐵𝐷

=
𝜌𝐴𝑀
𝜌𝐶𝐵𝐷

∑𝑁𝑝
𝑘=1 𝑅

3
𝑘

∑𝑁𝑝
𝑘=1

(

𝑅𝑘 + 𝑅𝑝
)3 − 𝑅3

𝑘

. (3)

Based on this representation of binder-covered particles, there are
three types of contacts between two particles depending on the overlap
𝛿𝑛: binder-binder, binder-particle, and particle–particle. We assume an
elasto-plastic behavior with adhesion for binder-binder and binder-
particle contacts and an elasto-plastic behavior for particle–particle
contacts. Fig. 1 shows the evolution of normal force 𝑓𝑛 as a function
of the overlap 𝛿𝑛. Upon the initial contact at point A between two
particles, the interaction between the two binder layers is governed by
a linear elastic law:

𝑓𝐴𝐵
𝑛

(

𝛿𝑛
)

= 𝑘1𝛿𝑛, (4)

where 𝑘1 is the reduced stiffness of binder-binder and binder-particle
stiffnesses. Note that overlaps are counted as positive. At point B the
3

AM cores of the particles touch each other (𝛿𝑛 = 𝑅𝑝). The AM particles
being more rigid, the elastic interaction is governed by a larger stiffness
𝑘2 when 𝛿𝑛 > 𝑅𝑝 and we have

𝑓𝐵𝐶
𝑛

(

𝛿𝑛
)

= 𝑘1𝑅𝑝 + 𝑘2
(

𝛿𝑛 − 𝑅𝑝
)

. (5)

The active material particles used in Li-ion battery electrodes have
relatively low yield strain and undergo damage and cracking under
low compression [10]. We account for the resulting plastic behavior by
introducing a yield strain 𝛿𝑒 (point C). Beyond this point, the normal
force evolves following a strain-hardening power-law behavior:

𝑓𝐶𝐷
𝑛

(

𝛿𝑛
)

= 𝑘1𝑅𝑝 + 𝑘2
(

𝛿𝑒 − 𝑅𝑝
)

+ 𝑘2
(

𝛿𝜁𝑛𝛿
1−𝜁
𝑒 − 𝛿𝑒

)

, (6)

where the exponent 𝜁 controls the intensity of plastic hardening.
Upon unloading from any point, the normal force follows a linear

elastic path, starting from the largest overlap 𝛿𝑚𝑎𝑥𝑛 reached during
loading. Since the deformation of the CBD is irreversible, the elastic
stiffness of the unloading path is that of the active material (𝑘2). The
evolution of the normal force is then given by:

𝑓 𝑢𝑛𝑙𝑜𝑎𝑑
𝑛

(

𝛿𝑛
)

= 𝑓𝑚𝑎𝑥
𝑛 + 𝑘2

(

𝛿𝑛 − 𝛿𝑚𝑎𝑥𝑛
)

, (7)

where 𝑓𝑚𝑎𝑥
𝑛 is the normal force reached at 𝛿𝑚𝑎𝑥𝑛 along the loading path.

The adhesion of the binder is modeled by allowing the normal force
to take negative values down to a pull-off force 𝑓𝑝 depending on both
binder properties and the maximum overlap reached. The cohesive
bond breaks if this tensile path is continued.

Since adhesion depends on the amount of binding material between
two particles, we assume that the absolute value of 𝑓𝑝 increases linearly
with the area of the contact surface. Geometrically, the contact area
can be approximated by 2𝜋𝛿𝑚𝑎𝑥𝑛 𝑅∗ as far as 𝛿𝑚𝑎𝑥𝑛 < 𝑅𝑝, where 𝑅∗ =
(

1∕𝑅1 + 1∕𝑅2
)−1 is the reduced radius. Hence, in this range 𝑓𝑝 increases

linearly in absolute value with 𝛿𝑚𝑎𝑥𝑛 . The largest contact area between
the binding layers occurs for 𝛿𝑚𝑎𝑥𝑛 = 𝑅𝑝 and we therefore assume that
the 𝑓𝑝 is constant for 𝛿𝑚𝑎𝑥𝑛 > 𝑅𝑝. This is shown by a dashed line in the
tensile force domain of Fig. 1 and can be written as

𝑓𝑝
(

𝛿𝑚𝑎𝑥𝑛
)

= −2𝜋𝑅∗𝜎𝑎min
(

𝛿𝑚𝑎𝑥𝑛 , 𝑅𝑝
)

= −𝑘𝑝min
(

𝛿𝑚𝑎𝑥𝑛 , 𝑅𝑝
)

, (8)

where 𝜎𝑎 is the yield strength of the binder. The highest bonding
force 𝑓𝑝

(

𝑅𝑝
)

= −2𝜋𝑅∗𝑅𝑝𝜎𝑎 is the adhesion force given by the DMT
theory [30]:

𝑓𝑎 = −2𝜋𝛾𝑅∗, (9)

where 𝛾 = 𝜎𝑎𝑅𝑝 is the surface energy. This value is reached if the
binder layer is fully crushed, i.e. when the contact surface area between
the binder phases of the particles reaches its maximum value and the
loading is tensile.

For the tangential force, we use a linear elastic law combined with
a Coulomb dry friction criterion:

𝒇 𝑡 =

{

−𝑘𝑡𝜹𝑡 if ‖𝒇 𝑡‖ ≤ 𝜇𝑓 𝑒
𝑛

−𝜇𝑓 𝑒
𝑛

𝜹̇𝑡
‖𝜹̇𝑡‖

otherwise ,
(10)

where 𝜇 is the friction coefficient, 𝑘𝑡 is the tangential stiffness and
𝑓 𝑒
𝑛 = 𝑓𝑛 −𝑓𝑝

(

𝛿𝑚𝑎𝑥𝑛
)

. Note that when contact slip occurs, the value of 𝛿𝑡,
which represents only the cumulative elastic tangential displacement
keeps its last value reached before slip. If the contact becomes non-
slipping again, 𝛿𝑛 will be cumulated from its last value, i.e. the value
reached before the slip begins. In other words, the elastic energy of the
tangential spring is conserved.

Throughout this work we set 𝜇 = 0.4, which is a common value
of friction coefficient, and 𝑘𝑡 is computed following the Hertz-Mindlin
theory for frictional contacts [31]:
𝑘𝑡 =

2 (1 − 𝜈∗)
, (11)
𝑘2 2 − 𝜈∗
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where 𝜈∗ =
(

1∕𝜈1 + 1∕𝜈2
)−1 is the equivalent Poisson ratio. Compared

to the classical Coulomb criterion ‖𝒇 𝑡‖ ≤ 𝜇𝑓𝑛 for cohesionless contacts,
here the Coulomb cone is shifted to account for the adhesion force
present in the total normal force [31,32]. This means that only the
repulsive part 𝑓 𝑒

𝑛 of the normal force comes into play for the tangential
force computation.

In addition to the explicit plastic-adhesive behavior induced by the
binding material, we introduce a normal damping force 𝑓 𝑣

𝑛 to the elastic
and adhesion forces:

𝑓 𝑣
𝑛 = −2𝛼𝑛

√

𝑘1𝑚 𝛿̇𝑛, (12)

where 𝑚 =
(

1∕𝑚1 + 1∕𝑚2
)−1 is the reduced mass between two particles.

he parameter 𝛼𝑛 is related to normal restitution coefficient 𝜖𝑛 in the
bsence of adhesion and plastic behavior as follows:

𝑛 = −
ln
(

𝜖𝑛
)

√

ln2
(

𝜖𝑛
)

+ 𝜋2
. (13)

In all simulations, we set 𝜖𝑛 = 0.45, corresponding to 𝛼𝑛 ≃ 0.25. We
set the cohesionless tangential damping to zero, so that the energy
dissipation is controlled by adhesion, explicit plastic behavior of the
binding material, and implicit normal damping.

As compared with other models used for the simulation of the calen-
dering process, the model presented in this section has the advantage
of both accounting for the binding material and being computation-
ally efficient. The spatial distribution of CBD between active material
particles is in reality inhomogeneous. The assumption of a uniform
coating of the active material particles by the binding material provides
an alternative mean-field approach that accounts for its mechanical
behavior and binding effect without resorting to the computationally
expensive approach based on its explicit representation as a continuum
matrix or a discrete material composed of small particles as in Ref. [15].
Furthermore, the thickness of the binding layer directly accounts for
the volume of the binding material so that the binding volume effects
are incorporated into the model while contact laws based only on the
representation of the active material particles ignore such effects. In our
model, the plastic behavior and adhesion are combined into a single
law with the adhesion force depending on the history of the contact.
This contact law is similar to that previously developed for plastic
particles [33], but generalized here to a coated particle. Finally, it is
also worth mentioning that all the parameters introduced in this model
have physically clear experimental counter-parts and can therefore be
calibrated by direct comparison with experiments.

2.3. Simulation of calendering

Our DEM model and its parameter values were based on the elec-
trodes that were manufactured and characterized by means of an in-
house setup performed in CEA-LITEN Grenoble. The cathode structures
were made of NMC-811 (LiNi0.8Mn0.1Co0.1O2) – referenced thereafter
as active material (AM) with density 𝜌𝐴𝑀 = 4.80 g/cm3 –, carbon black
(CB) and polyvinylidene fluoride (PVDF), with mass proportions 96-2-2
of the three components. The last two components form the conductive
CBD matrix of density 𝜌𝐶𝐵𝐷 = 2.00 g/cm3. The polydispersity of the
NMC particles had a log-normal distribution, with 𝑑10 = 6.1 μm, 𝑑50 =
12.1 μm and 𝑑90 = 21.8 μm. The slurry was coated onto an aluminium
foil of thickness ℎ𝑎𝑙 = 20 μm, resulting in electrodes of initial thickness
ℎ𝑡 = 2ℎ𝑖 + ℎ𝑎𝑙 = 194 μm. The initial porosity of the electrodes was
𝜀0 = 44.5%. The electrodes were calendered with different speeds and
intercylinder gaps using a rolling press with cylinders of diameter 𝐷𝑐

20 cm. Disk samples of diameter 14 mm were extracted from the
alendered electrodes and the thickness ℎ𝑓 of each side was measured.
y measuring the mass of the cylindrical samples, their porosity 𝜀 was
omputed from the volumes, densities, and proportions of the compo-
ents. The measured values of porosity, thickness, and elongation are
4

iven in Table 1.
Table 1
Calendering parameters used to produce the experimental electrodes described in
Section 2.3 and resulting structural electrode properties.

Target Calendering Measured Porosity (%) Elongation (%)
thickness (μm) speed (m/min) thickness (μm)

Initial – 87 44.5 0

65
1 66.5 27.5 1.11

1.5 68 28.8 0.99

2 68 29.2 0.87

62.5
1 65 26.2 1.48

1.5 65 25.4 1.36

2 64 25.0 1.23

60
1 62 23.4 1.72

1.5 64 24.2 1.60

2 63.5 24.2 1.48

Table 2
Values of the simulation parameters for particle–particle, particle-collector, and
particle-cylinder contacts.

Sph – Sph Sph – Col Sph – Cyl

𝑘1 (kN/m) 2.5 4.5 4.7
𝑘2(kN/m) 130 93 165
𝑘𝑝 (kN/m) 4 27.5 0
𝛾 (mJ/m2) 34 240 0
𝜁 0.15 0.275 1
𝑘𝑡 (kN/m) 117 77 138

For DEM simulations, we consider spherical particles with the same
particle size distribution as in experiments. The value of 𝑅𝑝 was com-
puted introducing the experimental data into Eqs. (2) and (3) and set
to 𝑅𝑝 = 0.34 μm. The yield strain value 𝛿𝑒 was taken from Gimenez
et al. [10] and set to 𝑅𝑝 + 𝑑50∕100 = 0.40 μm. The current collector
was considered rigid and undeformable. This assumption holds only
for relatively low/medium calendering degrees since high levels of
compression tend to warp the current collector [18]. The calendering
rolls are represented explicitly in the simulations. Since our experi-
mental data were obtained using a stainless steel cylinder of radius
𝑅𝑐 = 10 cm, the length of our samples was set to 𝑙 = 1 cm. The
width was set to 200 μm with periodic boundary conditions. With an
initial thickness ℎ𝑖 = 87 μm, we built a numerical electrode composed
of 24 425 spherical particles. The values of the contact law parameters
are given in Table 2. The values of the hardening parameter 𝜁 were
calibrated through a sensitivity analysis over the porosity and thickness
of the sample. Since performing this preliminary study on the complete
calendaring model would require a relatively high computational cost,
we used a uniaxial compression/decompression test, similar to those
found in the literature [11–14]. The value of 𝜁 was varied between
0.05 and 0.25 for the contacts between spheres and between 0.15
and 0.35 for the contacts between spheres and the current collector.
The value of 𝜁 for the contacts with the calendaring roll was fixed
to 1 since no plastic deformation of the cylinder is assumed. Three
levels of compaction (thickness reduction) were studied and compared
with the experimental data. Fig. 3 shows the results of porosity and
final thickness for different values of 𝜁 used for the contacts between
spheres. We see that both porosity and final height increase with 𝜁 ,
since this parameter controls the hardening of the material and hence
its maximal normal force under compression. The dotted lines in each
plot correspond to the targeted experimental values. The values of 𝜁
which lead to results close to these targeted values are located between
0.12 and 0.17. We therefore chose 𝜁 = 0.15 for the contacts between
spheres, and 0.275 for the contacts with the current collector.

The simulations were performed in 3 steps. First, the particles were
deposited on the current collector under gravity. The relaxed sample is

shown in Fig. 2. Then, the cylinder is lowered slowly until it reaches the
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Fig. 2. Macro view of the calendering simulation sample before lowering the cylinder (left) and snapshots of a portion of the electrode during the passage of the calendering
roll (right). The current collector and calendering roll are colored in gray and black respectively, while the particles are color-coded relatively to average particle stress in the
snapshots. The snapshots correspond to the initial and final states and crossover points between the four stages of evolution of porosity and pressure identified in Fig. 4(a).
Fig. 3. Evolution of (a) porosity and (b) final height as a function of hardening
parameter 𝜁 for contacts between particles in a uniaxial compression test. Each color
corresponds to a compaction level and the dotted lines to the reference experimental
values.

specified position. Finally, the cylinder starts to rotate at an increasing
rate until the target rotation speed is reached. The motion of the sample
is thus driven by friction with the calendering roll. The translation of
the current collector on Z and X axes are disabled so that the gap ℎ
5

𝑔

between the cylinder and current collector is constant. Fig. 2 shows
close-up snapshots of the electrode at several time steps of simulation.

2.4. Computation of ionic and electronic conductivities

To compute the ionic and electronic conductivites of the samples,
we employ the Fast Fourier Transform technique [34]. The FFT is
a homogenization technique which is used to compute the effective
or equivalent property of a multi-phase medium. It is extensively
employed in mechanics, thermal transfer or diffusion. The multi-phase
geometry of the sample is described explicitly on a cartesian meshing
grid. Each voxel of the grid has a value corresponding to its local
property. The diffusion gradient is considered as homogeneous inside
the volume. The method assumes periodic boundary conditions and
the effective properties of the matrix (mesh) is computed considering a
steady state regime. Compared with finite-element method, the FFT is
able to handle more degrees of freedom and may be easily accelerated
thanks to parallelization (openMP here). Moreover, the cartesian mesh
allows a very simple definition and easy to process geometry.

FFT computation needs a discretization of the bed defined on a
cartesian mesh (voxelisation). It basically defines the property/value
of a voxel thanks to its phase location. Most voxels contains only one
phase where the property to assign is clearly defined. For the voxels
containing two phases (interfaces) the property is not clearly defined.
We employ the procedure developed in [35]. The ill-defined voxels
need a special treatment. For a two-phase microstructure, the most
simple strategy consist in assigning a defined property on each voxel
(either phase 1 or phase 2). It gives a lower and an upper bound
depending on the phase chosen for the ill-defined voxels. However,
depending on the ratio between phase properties these bounds might
be far from each other and thus far from the real value.

An alternative and ‘‘mean’’ procedure consists in assigning the
property of the center of the voxel to the entire voxel. If the center
of the voxel is in phase 1, we affect the property of phase 1, and
if it is in phase 2, we affect the property of phase 2. This leads to
a ‘‘mean estimate’’ which is an approximation. In fact, it does not
rely on the volume proportion of phases in the voxels. However, we
assume the error is averaged by the broad variety of ill-defined voxels
in all configurations. The results from [35] confirms that this procedure
provides a reasonable estimate. In our case, we deal with 3 phases. The
rules are the same as that for 2 phases. For ill-defined voxels, we affect
the properties of the center of the voxel. The effective property of the
voxellized microstructure is then computed using the FFT.
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Fig. 4. Time evolution of porosity (a), pressure (b), coordination numbers (c) and deviatoric fabric tensor components (d) for imposed thickness reduction 𝐶𝑟 = 0.28 and calendering
speed 𝑣𝑐𝑎𝑙 = 2 m/min. The labels of four successive stages of the evolution of porosity are marked. The coordination numbers 𝑍+ and 𝑍− for compressive and tensile contacts,
respectively, are also shown in (c). The deviatoric fabric tensor components in (d) are calculated with (dotted lines) and without (plain lines) accounting for contacts with the
cylinder.
3. Results and discussion

3.1. Calendering steps

We performed 28 simulations with different values of the gap ℎ𝑔
between the cylinder and the current collector and the calendering
speed 𝑣𝑐𝑎𝑙 = 𝑅𝑐 𝜔𝑐𝑎𝑙, where 𝜔𝑐𝑎𝑙 is the rotation speed of the roll. The
alues are summarized in Table 3. We investigate here the deformation
f the electrode and the evolution of its microstructure in the ‘calen-
ered zone’ defined as the portion of the electrode corresponding to
he contact area between the cylinder and the material and which is
ully compressed once it has moved a distance equal to its own length
𝑐 due to the rotation of the cylinder. Calendering is controlled by the
hickness reduction ratio 𝐶𝑟 defined by

𝑟 =
ℎ𝑖 − ℎ𝑔

ℎ𝑖
, (14)

where ℎ𝑖 is the initial thickness of the electrode.
Fig. 4 shows the time evolution of porosity, average pressure,

oordination number and deviatoric fabric tensor components in the
alendered zone for 𝐶𝑟 = 0.28 and speed 𝑣𝑐𝑎𝑙 = 2 m/min. The initial
orosity is 0.44. We distinguish four different steps:

1. Initial state: The cylinder is away from the calendered zone and
the pressure is zero. The calendered zone is stable and fully
relaxed under the action of its own weight and internal cohesive
forces.

2. Compression: The average pressure increases in the calendered
zone and porosity declines.
6

Table 3
Calendering gap ℎ𝑔 and calendering speed 𝑣𝑐𝑎𝑙 used in the DEM simulations.

ℎ𝑔 (μm) 7 values ∈ [75, 50]

𝑣𝑐𝑎𝑙 (m/min) {0.5, 1, 2, 5}

3. Relaxation: The cylinder leaves the calendered zone, which
freely relaxes with a small elastic rebound.

4. Final state: A new stable state is reached with zero internal
pressure and a porosity of 0.27.

In the following, we focus on the influence of calendering parame-
ters on this process and final relaxed state reached by the calendered
zone after calendering. Note that each data point represents the average
value over 5 calendered zones selected from the electrode during a
single simulation run, and error bars are their standard deviation.

3.2. Thickness, porosity, and elongation

Because of elastic rebound, the final thickness reduction ratio 𝐶𝑓
is not exactly equal to the imposed value of 𝐶𝑟. Fig. 5(a) displays the
evolution of 𝐶𝑓 as a function of 𝐶𝑟 for different values of calendering
speed 𝑣𝑐𝑎𝑙. The simulations are in good agreement with experimental
data, and we observe that 𝐶𝑓 is independent of 𝑣𝑐𝑎𝑙. The relation-
ship between 𝐶𝑟 and 𝐶𝑓 is linear with a shift of ≃ 2.5% between
the target and measured values due to elastic rebound. This linear
evolution and a constant shift from the perfectly plastic deformation
𝐶 = 𝐶 , independently of the value of 𝐶 , is obviously a consequence
𝑓 𝑟 𝑟
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Fig. 5. System parameters as a function of thickness reduction ratio 𝐶𝑟 for different values of the calendering speed in simulations (circles) and experiments (triangle). Error bars
represent standard deviation over several calendered zones from a single simulation run. (a) Effective thickness reduction 𝐶𝑓 of the electrode. The dashed line represents the ideal
thickness reduction without elastic rebound (𝐶𝑓 = 𝐶𝑟). (b) Elongation of the electrode. (c) Porosity 𝜀. The red dashed line represents the fitting function given in Eq. (15). (d)
Maximum stress induced by calendering. The stress is directly calculated on the calendering roll.
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of linear plastic behavior of the contacts defined in Eq. (7) and the
vanishing of the pressure exerted on the electrode during calendering.
The compression induces a high level of self-equilibrated forces since
thickness reduction ratio is high. This comes from the fact that adhesion
force increases with plastic surface area between particles. The elastic
rebound is therefore mainly due to contacts between the cylinder and
the particles. The maximum elastic displacement after the vanishing
of pressure is ≃ 𝑓𝑎∕𝑘1 at the particle-cylinder contacts, leading to a
eformation of 𝑓𝑎∕(𝑘1𝑑50). With the values of parameters used in the
imulations (𝑓𝑎 = 1360 μN, 𝑘1 = 4.7 kN/m, and 𝑑50 ≃ 12.1 μm), we find
n elastic deformation of the order of 2.4%, which is consistent with
hat we measure both in simulations and experiments.

The reduction of the electrode thickness has two origins: (1) reduc-
ion of porosity and (2) elongation. Fig. 5(c) shows the final porosity

as a function of 𝐶𝑟 for different values of calendering speed. As
xpected, 𝜀 declines as 𝐶𝑟 increases but does not depend on 𝑣𝑐𝑎𝑙. The
orosity has to tend to a constant low value for high compression level.
he numerical data is well fitted by a power-law function:

= 𝐴
(

𝐵 + 𝐶𝑟
)−𝜃 +𝐷, (15)

ith 𝐴 ≃ 0.17, 𝐵 ≃ 0.57, 𝐷 ≃ 0.06, and 𝜃 ≃ 1.5. We have 𝜀
(

𝐶𝑟 = 0
)

≃
.45, which is close to the initial porosity 𝜀0 = 0.44 of our numerical
lectrode. The predicted lowest value of porosity by this function is
0.15 for 𝐶𝑟 = 1. The lowest value of ℎ𝑔 cannot be below one particle

iameter, implying that the largest value of 𝐶𝑟 is (ℎ𝑖 − 𝑑50)∕ℎ𝑖 ≃ 0.89.
or this value the porosity is around 0.16 which is well aligned with
he fitting function.

Fig. 5(c) shows also that the numerical values of porosity are close
7

o the experimental data. However, the experimental value of porosity
tends to decline faster with increasing 𝐶𝑟 than the porosity simulated.
his discrepancy reflects the rather crude assumption in simulations
hat the binding material does not deform and remains attached to the
articles as a plastic layer. In reality, the binder is unevenly distributed
n the pore space and deforms with compression [29]. Furthermore, at
igh pressure levels, the active particles may also deform and break,
llowing the material to reach even lower levels of porosity.

Since the electrode is compressed vertically and sheared horizon-
ally, it is expected to expand, specially along its longitudinal 𝑦 direc-
ion. Indeed, since in our simulations we applied periodic boundary
onditions along the 𝑥 direction, the electrode cannot expand along
his direction. The longitudinal elongation 𝛥𝐿∕𝐿 of the electrode is

shown in Fig. 5(b) as a function of 𝐶𝑟 for different values of calendering
speed. The elongation is nearly proportional to 𝐶𝑟 and decreases with
increasing calendering speed. This effect is unexpected since both final
thickness and porosity does not depend on the calendering speed. As
shown on Fig. 5(b), the experimental data show a similar correlation
between elongation and calendering speed. It is noteworthy that none
of the reported numerical calendering simulations available in the
literature has been able to predict this dependence on calendering
speed.

In our model, we have an explicit representation of the calendering
cylinder, which sets the electrode in motion via the action of friction
force on top of the electrode, The observed decrease of elongation at
higher speeds might come from the shearing of the electrode as a result
of the mobilization of friction force. If a relative slip of the cylinder
with respect to the electrode occurs at higher speeds, the electrode is
sheared less and the resulting elongation is smaller. Also, high calen-

dering speeds result in shear stresses strong enough to either rip the
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Fig. 6. Numerical microstructural parameters as a function of thickness reduction ratio 𝐶𝑟 for different values of the calendering speed (a) Final values of coordination number 𝑍
nd (b) compressive and tensile coordination numbers 𝑍+ and 𝑍−. (c) Diagonal elements of deviatoric fabric tensor after calendering for calendering speed 𝑣𝑐𝑎𝑙 = 2 m/min. (d)
ertical fabric component 𝐹 ′
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ranular mixture from the collector or directly warp it. Cathode current
ollectors are usually thin aluminium foils which cannot endure large
eformations and tend to break during the assembly step [24]. This
bservation clearly shows the importance of shear stresses developed
n the electrode during calendering and the need for the real geometry
f the manufacturing process in numerical simulations.

The pressure acting on the calendered zone is a consequence of
onstriction imposed by the gap between the cylinder and collector.
ig. 5(d) shows the maximum stress 𝜎𝑚𝑎𝑥 calculated on the calendering
oll as a function of 𝐶𝑟. We see that 𝜎𝑚𝑎𝑥 increases almost linearly with
𝑟, in exception to the largest values of 𝐶𝑟, and it is independent of
alendering speed.

Fig. 7 shows the final porosity 𝜀 as a function of 𝜎𝑚𝑎𝑥. Considering
he initial porosity at zero stress, the relationship between porosity and
aximum vertical stress is not perfectly linear. It might be fitted to a
ower-law function when forced to pass by the initial porosity at zero
tress:

= 𝐺
(

𝜎𝑚𝑎𝑥 +𝐻
)−𝛽 + 𝐼, (16)

with 𝐺 ≃ 9.5, 𝐻 ≃ 140 MPa, 𝐼 ≃ −0.26, and 𝛽 ≃ 0.53. We have
(

𝜎𝑚𝑎𝑥 = 0
)

≃ 0.43, which is the initial porosity of the electrode. This
volution following an inverse power law has already been observed
ith previous simpler calendering models [10,36,37]. This fitting func-

ion implies, however, that 𝜀 vanishes at a finite stress while we have
een that the fitting function (15) predicts a finite porosity. If we take
.16 as the lowest porosity, as suggested by Eq. (15), the maximum
ressure needed to reach this porosity is 212 MPa, above which the
itting form of Eq. (16) is unphysical. Further simulations are necessary
o check the validity of the fitting forms proposed here for higher values
f 𝐶 .
8

𝑟

.3. Evolution of microstructure

DEM simulations provide access to microstructural variables such
s the contact and force networks. We are interested in the param-
ters that control the electric conductivity across the granular mi-
rostructure. The lowest-order parameter is the coordination number
, defined as the average number of contact neighbors per particle:

= 2
𝑁𝑐

𝑁𝑝 −𝑁0
, (17)

where 𝑁𝑐 is the total number of contacts, 𝑁𝑝 is the total number of
articles, and 𝑁0 is the total number of floating particles that have one
r no contact neighbors. In a cohesive granular medium, contacts can
ither be compressive or tensile. Compressive contacts are those which
ave a positive normal force whereas tensile contacts have a negative
ormal force. By restricting the contact neighbors only to compressive
r tensile contacts, we also define the coordination numbers 𝑍+ for

compressive contacts and 𝑍− for tensile contacts with 𝑍 = 𝑍+ + 𝑍−.
The proportion of tensile contacts is a descriptor of the stress state.
When the external confining pressure is high compared to adhesion
forces acting between particles, 𝑍+ is larger than 𝑍−.

Fig. 4(c) shows the time evolution of 𝑍, 𝑍+, and 𝑍−. The coor-
dination number increases as the cylinder approaches the calendered
zone, reaches a maximum value slightly above 6, and then declines as
the cylinder leaves the calendered zone. The final value of 𝑍 is much
higher than its initial value. The compressive coordination number 𝑍+

follows a similar evolution. The tensile coordination number declines
and remains nearly constant during the rolling of the cylinder before
relaxing to a higher value in the final state. It is noteworthy that before

+ −
calendering, 𝑍 and 𝑍 are nearly equal with a slightly lower value of
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Fig. 7. Final porosity 𝜀 after calendering as a function of maximum stress 𝜎𝑚𝑎𝑥 for
different calendering speeds. The dashed line is a power-law fitting function given by
Eq. (16) forced to pass by the initial porosity at zero stress.

𝑍−, such that 𝑍−∕𝑍 ≃ 0.45. In the final state, the proportion of tensile
contacts is 𝑍−∕𝑍 ≃ 0.43, which is only slightly above its initial value.

Fig. 6(a) and (b) respectively shows the values of 𝑍, and 𝑍+ and
𝑍− after calendering as a function of thickness reduction ratio 𝐶𝑟 for
different values of calendering speed. The latter has a small effect on
average but it is not significant within the statistical precision of the
data. The three coordination numbers increase linearly with 𝐶𝑟. 𝑍
increases from 4.1 before calendering to 6.4 for 𝐶𝑟 = 0.43. Interestingly,
the ratio 𝑍−∕𝑍, i.e. the proportion of tensile contacts in the system
is nearly constant (≃ 0.43) and independent of 𝐶𝑟. This shows that
the stress state after relaxation and under gravity is the same and
independent of 𝐶𝑟. In other words, the compression of the electrode
due to calendering is large enough to drive the microstructure to a state
which is independent of the initial state. As we shall see below, this
final state reflects the anisotropic structure of the calendered material.

As compared to 𝑍, which represents the average connectivity of
the particles, the anisotropy of the contact network is a higher-order
descriptor of granular microstructure. It is conveniently described by
the fabric tensor 𝐅 defined as

𝐹𝑖𝑗 =
1
𝑁𝑐

𝑁𝑐
∑

𝑘=1
𝑛𝑖𝑛𝑗 . (18)

y definition, we have 𝑡𝑟(𝐅) = 1 so that its deviatoric part is given by

′
𝑖𝑗 = 𝐹𝑖𝑗 −

1
3
𝛿𝑖𝑗 , (19)

where 𝜹 is the Kronecker delta. The deviatoric fabric tensor 𝐅′ quan-
ifies the relative deviations of the proportions of the contacts in each
irection from the perfect isotropic state, in which the contact orien-
ations are random and uniformly distributed in all space directions.
y definition, we have 𝑡𝑟(𝐅′) = 0. Hence, with respect to an isotropic
istribution of contact orientations, a positive value of a component in
given direction reflects an excess of contacts whereas a negative value
eans a lack of contacts in that direction.

In the calendered zone, we consider two different tensors by either
ncluding or excluding the contacts with the cylinder. Fig. 4(d) displays
he time evolution of diagonal components of 𝐅′ calculated in the
alendered zone for both of these tensors. The components 𝐹 ′

𝑥𝑥 and
′
𝑦𝑦 are almost equal. The electrode is initially in an anisotropic state
ith higher value of 𝐹 ′

𝑧𝑧 compared to 𝐹 ′
𝑥𝑥 and 𝐹 ′

𝑦𝑦 as a consequence
f gravitational deposition used to build the electrode. As the roll
dvances in the calendered zone, 𝐹 ′

𝑧𝑧 increases due to the new contacts
reated between the electrode and the roll but it declines if these
9

ontacts are not included. At the same time, since deviatoric fabric i
ensor is traceless, the two planar components 𝐹 ′
𝑥𝑥 and 𝐹 ′

𝑦𝑦 decrease
hen the contacts with the roll are included and increase otherwise.
s the roll leaves the calendered zone, 𝐹 ′

𝑧𝑧 decreases and 𝐹 ′
𝑥𝑥 and 𝐹 ′

𝑦𝑦
ncrease. As a result, all components are lower in absolute value in the
inal state. In other words, calendering reduces the initial anisotropic
tructure of the electrode.

The decrease of 𝐹 ′
𝑧𝑧 during calendering is counterintuitive as vertical

ompression is expected to induce new contacts along the vertical
irection thereby increasing 𝐹 ′

𝑧𝑧. This is what occurs when a granular
aterial is subjected to triaxial compression. In contrast, in the calen-
ering process the variation of fabric components suggests that new
ontacts are gained in the horizontal direction and lost in the vertical
irection. In fact, the horizontal motion of the cylinder with an imposed
hickness reduction, the horizontal force exerted by the cylinder on the
op calendered layer, and mobilization of friction forces at the interface
etween cylinder and electrode induce a complex shear deformation
hat controls the gain and loss of contacts. The evolution of fabric
ensor reflects this deformation and its evolution during loading and
nloading, showing that the calendering process cannot be reduced to
imple compression.

Fig. 6(c) shows the fabric components after calendering as a func-
ion of 𝐶𝑟 for 𝑣𝑐𝑎𝑙 = 2 m/min. We see that, independently of 𝐶𝑟, the
wo horizontal components are always nearly equal. All components
ecrease almost linearly in absolute value with 𝐶𝑟 and tend to zero
t 𝐶𝑟 = 0.43. A similar evolution was observed in other studies [10,
0]. Fig. 6(d) displays 𝐹 ′

𝑧𝑧 after calendering as a function of 𝐶𝑟 for
ifferent values of the calendering speed. In all cases, the anisotropy
eclines with increasing 𝐶𝑟 but we observe a slight dependence on the
alendering speed. Increasing the speed leads to less reduction of 𝐹 ′

𝑧𝑧.
onsistently with the effect of calendering speed on the elongation of
he electrode, we may attribute this effect to the overall shear deforma-
ion of the material. Less elongation implies lower shear deformation
lthough the vertical compression is the same for a given value of 𝐶𝑟,
nd lower shear deformation leads to less evolution of the fabric.

The stress and fabric states of the electrode before and after cal-
ndering can be visualized through the force network as displayed in
ig. 8. In the initial state, the contact forces are induced by gravity
nd the contacts are oriented around ±45◦ with respect to the vertical
xis due to the initial gravitational deposition. After calendering we
bserve a large number of contacts oriented along the horizontal and
ertical directions. Many vertical contacts are tensile whereas compres-
ive contacts occur predominantly along the horizontal direction. This
rganization of the force network is consistent with the orientation of
he fabric tensor. It is also important to note that both compressive
nd tensile forces are much larger than in the initial state. The larger
alues of forces is a consequence of higher mobilization of tensile forces
y the action of calendering and self-balanced by compressive forces of
he same order of magnitude.

.4. Electric properties

The effective electronic and ionic conductivities of our numerically
alendered electrodes are computed by means of the FFT method. We
xtracted 5 samples of size 200 × 200 × 50 μm3 from our simulations
nd used a homemade code to voxelize them. The voxel size was set to
0.5𝑅𝑝

)3 μm3 in order to represent efficiently the binder layer. For the
pherical particles of size considered here and high contrast between
onductivities (> 100), the error attributed to the voxel size (discretiza-
ion) is expected to be below 5% regarding the sensitivity analysis
ade in Ref. [3]. The error increases rapidly with voxel size. Since FFT

omputations require the sample to be periodic in all directions, we
id not include the current collector. The type of material attributed to
ach voxel is chosen from the DEM sample. If a voxel is on the edge
f a particle, it is identified as CBD phase and if the voxel is inside a
article, it is considered as active material. In all other cases, the voxel

s in the electrolyte phase.
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Fig. 8. Force chains inside the electrode before (a) and after (b) calendering. Line
thickness is proportional to force magnitude (×100 in the initial state).

Table 4
Conductivity values used in the FFT computations.

NMC CBD Electrolyte

Electronic
10−2 [38] 100 [39] 10−5aconductivity

(mS/cm)
Ionic

10−4a 10−2 [40] 10 [41]conductivity
(mS/cm)

a Values are tuned to ease FFT computations while keeping consistent results as
explained in text.

Each voxel has its own bulk conductivity corresponding to its phase.
The values that we employed are summarized in Table 4. Some con-
ductivity values – namely the electronic conductivity of the electrolyte
and the ionic conductivity of the active material – are vanishingly
small. However, too high contrasts between the highest and lowest
conductivities in FFT computations lead to very high computational
costs and slow convergence rates. We did a parametric study on one
reference case with values in the range

[

10−7, 10−3
]

mS/cm in order
to select conductivity values which reduce most the computational
cost while keeping the effective conductivities of the electrode close
to reference values.

Electronic conductivity 𝜆𝑒𝑙 represents the flow of electronic current
across the active material particles to the current collector. Fig. 9(a)
shows 𝜆𝐹𝐹𝑇

𝑒𝑙 the electronic conductivity computed through FFT as a
function of thickness reduction ratio 𝐶𝑟 for 𝑣𝑐𝑎𝑙 = 1 m/min. We ob-
serve a clear correlation between electronic conductivity and 𝐶𝑟. 𝜆𝑒𝑙
increases as a function of 𝐶𝑟 along the three directions and seems
to tend to a plateau value, although a clear plateau is not reached.
The gain in electronic conductivity is nearly the same (≃ 30%) in the
three directions. Nevertheless, the electronic conductivity along vertical
direction is slightly above those in the other directions. Fig. 9(b) shows
𝜆𝐹𝐹𝑇
𝑒𝑙 as a function of 𝐶𝑟 along the vertical axis (Z) for different values

of calendering speed. The calendering speed does not seem to affect
vertical electronic conductivity while, as shown in Fig. 6(d), 𝐹 ′

𝑧𝑧 slightly
depends on the calendering speed. In fact, the variation of 𝐹 ′

𝑧𝑧 as
a function of speed is too small to affect significantly the electric
conductivity.

The electronic conductivity depends on both contact network and
electronic conductivity at each contact. The latter is a function of the
contact area and varies therefore with normal force and the plastic de-
formation of the contact [11]. Dimensional analysis implies that 𝜆𝐹𝐹𝑇 is
10

𝑒𝑙
proportional to the conductivity 𝜆𝑁𝑀𝐶
𝑒𝑙 of NMC particles. Furthermore,

the number density of contacts 𝑛𝑐 = 𝑍𝜙∕2𝑉𝑝, where 𝑉𝑝 is the average
volume of one particle and 𝜙 = 1 − 𝜀 is the packing fraction, and their
orientations through the fabric tensor control the amount of electric
current and thus the conductivity of the network. Since 𝐹𝑖𝑖 = 1∕3+𝐹 ′

𝑖𝑖 ≃
1∕3, we may neglect the effect of fabric anisotropy. Hence,

𝜆𝑒𝑙 ∝ 𝜙𝑍𝜆𝑁𝑀𝐶
𝑒𝑙 , (20)

In Fig. 9(b) we have plotted 𝜆𝑒𝑙 as a function of 𝐶𝑟 from this equation.
We see that the prediction is quite good for all values of 𝐶𝑟 with a
proportionality factor ≃ 0.27 independently of 𝐶𝑟. This relation shows
that the influence of 𝐶𝑟 is due to the variations of 𝜀 and 𝑍.

Ionic conductivity 𝜆𝑖𝑜𝑛 reflects the diffusion of ions in the pore space
between particles under the influence of chemical potential gradient.
Fig. 9(c) shows 𝜆𝐹𝐹𝑇

𝑖𝑜𝑛 calculated by FFT in three directions for 𝑣𝑐𝑎𝑙 =
1 m/min as a function of 𝐶𝑟. 𝜆𝑖𝑜𝑛 declines with increasing 𝐶𝑟 in all
directions. Fig. 9(d) displays 𝜆𝐹𝐹𝑇

𝑖𝑜𝑛 in the vertical direction for different
values of the calendering speed. We see that 𝜆𝐹𝐹𝑇

𝑖𝑜𝑛 is independent of
calendering speed. This result is expected since the ionic conductivity
mainly depends on the conductivity of the electrolyte and the porosity
𝜀 [21], which was observed to be independent of the calendering speed.
We have

𝜆𝐹𝐹𝑇
𝑖𝑜𝑛 ∝ 𝜀𝜆𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒𝑖𝑜𝑛 . (21)

The fitting curve in Fig. 9(d) was based on this equation with propor-
tionality factor ≃ 0.51. We see that the fit correctly adjusts the data
points.

4. Conclusion

We developed a DEM-based model for the simulation of the cal-
endering process of Li-ion battery electrodes. The CBD material was
taken into account as a thin layer coating NMC particles and governed
by a plastic-adhesive behavior. Most parameters were calibrated from
real experimental results. The process was modeled by introducing a
cylinder that drives the electrode by its rotation via friction force mobi-
lization at its interface with electrode. As a result, the calendered zone
undergoes a complex deformation combining shear and compression.
A parametric investigation was performed by simulations for a range
of values of thickness reduction ratio and calendering speed. The effect
of calendering and its parameters was analyzed in terms of porosity,
elongation, microstructural parameters, and electronic properties of the
electrode.

We found that most results on porosity and elongation of the
electrode were in well aligned with experimental data. The elongation
of the electrode and some other properties such as the vertical fabric
component were shown to be slightly dependent on the calendering
speed. This dependence was not previously observed in simulations of
the literature. It shows the important role of explicit representation
of the calendering roll and accounting for the calendering speed to
correctly estimate the elongation of the electrode.

We showed that, as a result of contact plastic behavior and particle
rearrangements, the elastic rebound is small, as in experiments. The
porosity decreases as a power law with increasing thickness reduction
ratio and seems to tend to a limit value representing the lowest reach-
able porosity. The highest stress reached in the calendered zone was
found to increase almost linearly with thickness reduction ratio. As a
result, the total coordination number and its tensile and compressive
component increase linearly with thickness reduction ratio, resulting in
much higher self-balanced tensile and compressive force chains. Inter-
estingly, the proportion of tensile contacts is constant and independent
of thickness reduction ratio, suggesting that the self-balanced structure
induced by calendering is similar for all levels of thickness reduction.
An important result shows that this structure involves mostly vertical
tensile contacts and horizontal compressive contacts which is in radical
contrast with the expectation that vertical compression tends to induce
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Fig. 9. Electronic conductivity 𝜆𝐹𝐹𝑇
𝑒𝑙 (and ionic conductivity 𝜆𝐹𝐹𝑇

𝑖𝑜𝑛 respectively) computed through FFT as a function of thickness reduction ratio 𝐶𝑟 (a,c) in all directions for 𝑣𝑐𝑎𝑙 =
m/min, and (b,d) along the vertical direction for different values of the calendering speed. The red dashed curves in (b) and (d) correspond to the functions defined in Eq. (20)

nd (21) respectively.
N
ompressive contacts along the vertical direction. This counterintuitive
bservation was attributed to shear deformation induced by rolling and
hickness reduction.

The electronic properties of our numerically calendered electrodes
ere computed by means of the FFT technique. The effective elec-

ronic conductivity increases with thickness reduction ratio and is
ndependent of calendering speed. The ionic conductivity decreases
ith thickness reduction and is also independant of calendaring speed.
he electronic conductivity was shown to mainly depend on packing
raction and coordination number while ionic conductivity depends
nly on porosity.

With industrial applications going towards larger calendering rolls
>50 cm) and faster production lines (up to 100 m/min) in order to
roduce electrodes faster, this work can be extended to investigate
he effects of larger calendering speeds and larger thickness reduction
atios. A more detailed analysis is necessary to quantify the deformation
ield in the calendered zone and the degrees of local slip and shear
t the electrode-cylinder interface as a function of calendering speed.
n this work, the rolling resistance at the contact point due to surface
oughness was neglected since initial porosities close to their experi-
ental values were obtained without introducing rolling resistance. It is

nown that the frictional strength of granular materials is an increasing
unction of rolling resistance [42,43]. We therefore expect that a major
ffect of rolling resistance would be the increase of stresses induced
y calendering. It should be interesting to investigate numerically the
ffect of this parameter, which controls the stress but also the mobility
f particles during calendering. The flexibility of the current collector
hould also be investigated and taken into account and the spatial
epartition of the binder layer.
11
omenclature

𝒇 Total contact force (N)
𝒏 Contact normal
𝑓𝑛 Normal force (N)
𝒇 𝑡 Tangential force (N)
𝛿𝑛 Normal overlap between two particles (μm)
𝛿𝑡 Cumulative elastic tangential displacement

between two particles (μm)
𝑅𝑝 Coating layer thickness (μm)
𝑘1 Reduced stiffness of binder-binder phase (kN/m)
𝑘2 Reduced stiffness of AM-AM phase (kN/m)
𝛿𝑒 Yield strain of the active material (μm)
𝛿𝑚𝑎𝑥𝑛 Largest overlap reached before unloading (μm)
𝜁 Hardening exponent
𝑓𝑎 Pull-off force (N)
𝜎𝑎 Yield strength of the binder (MPa)
𝛾 Surface energy of the binder (mJ/m2)
𝑅 Radius of a particle (μm)
𝑘𝑡 Tangential stiffness (kN/m)
𝜇 Friction coefficient
𝜈 Poisson ratio
𝛼𝑛 Normal damping coefficient
𝜖𝑛 Restitution coefficient
ℎ𝑖 Thickness of the mixture deposit

before calendering (μm)
ℎ𝑓 Thickness of the mixture deposit

after calendering (μm)
ℎ𝑔 Gap between cylinder and current collector (μm)
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𝑣𝑐𝑎𝑙 Calendering speed (m/min)
𝑑50 Mean size of AM particles (μm)
𝜌 Density (g/cm3)
𝐶𝑟 Applied thickness reduction ratio
𝐶𝑓 Final thickness reduction ratio
𝜀 Porosity
𝜙 Solid fraction
𝜎 Stress measured on the calendering roll (MPa)
𝜎𝑚𝑎𝑥 Maximal stress measured on the

calendering roll (MPa)
𝑍 Total coordination number
𝑍+ Compressive coordination number
𝑍− Tensile coordination number
𝑁𝑐 Total number of contacts
𝑁𝑝 Total number of particles
𝑁0 Total number of floating particles
𝑭 Fabric tensor
𝑭 ′ Deviatoric fabric tensor
𝜆𝑒𝑙 Electronic conductivity (mS/cm)
𝜆𝑖𝑜𝑛 Ionic conductivity (mS/cm)
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