N

N

Deriving Representative Structure Over Music Corpora
Ilana Shapiro, Ruangianqgian Huang, Zachary Novack, Cheng-I Wang,
Hao-Wen Dong, Taylor Berg-Kirkpatrick, Shlomo Dubnov, Sorin Lerner

» To cite this version:

Ilana Shapiro, Ruangiangian Huang, Zachary Novack, Cheng-1 Wang, Hao-Wen Dong, et al.. Deriving
Representative Structure Over Music Corpora. 2024. hal-04722377

HAL Id: hal-04722377
https://hal.science/hal-04722377v1

Preprint submitted on 5 Oct 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04722377v1
https://hal.archives-ouvertes.fr

Synthesizing Composite Hierarchical Structure from Polyphonic Music Corpora

Ilana Shapiro', Ruangiangian (Lisa) Huang', Zachary Novack !, Cheng-i Wang ', Hao-Wen Dong
!, Taylor Berg-Kirkpatrick !, Shlomo Dubnov !, Sorin Lerner '

1University of California, San Diego, CA, USA
{ilshapiro, r6huang, znovack, chw160, h3dong, sdubnov, tberg, lerner} @ucsd.edu

Abstract

Western music is an innately hierarchical system of interact-
ing levels of structure, from fine-grained melody to high-level
form. In order to analyze music compositions holistically and
at multiple granularities, we propose a unified, hierarchical
meta-representation of musical structure called the structural
temporal graph (STG). For a single piece, the STG is a data
structure that defines a hierarchy of progressively finer struc-
tural musical features and the temporal relationships between
them. We use the STG to enable a novel approach for deriving
a representative structural summary of a music corpus, which
we formalize as a dually NP-hard combinatorial optimization
problem. Our approach first applies simulated annealing to
develop a measure of structural distance between two mu-
sic pieces rooted in graph isomorphism. Our approach then
combines the formal guarantees of SMT solvers with nested
simulated annealing over structural distances to produce a
structurally sound, representative centroid STG for an entire
corpus of STGs obtained from individual pieces. To evaluate
our approach, we conduct experiments showing that struc-
tural distance accurately differentiates between music pieces,
and that our computed centroids encapsulate the overarching
structure of a music corpus.

1 Introduction

A prevailing theory among Western music theorists and
musicologists states that Western classical music exhibits
an implicitly hierarchical structure (Simonetta et al. 2018).
While several different theoretical systems have been pro-
posed to formalize this structural hierarchy (Marsden, Hi-
rata, and Tojo 2013), a widely accepted modern interpreta-
tion of the hierarchy states that melodies form the bottom,
followed by harmonic contour, rhythmic patterns, disjoint
and possibly overlapping motifs, and finally large-scale sec-
tions (Nieto 2015; Mount 2020; Dai, Zhang, and Dannen-
berg 2024). Together, this composite hierarchy encapsulates
the overall structure of a piece.

To analyze musical structure computationally, many auto-
matic approaches have been developed for extracting struc-
ture at single levels of the structural hierarchy(McFee et al.
2017; Hsiao et al. 2023; Levé et al. 2011; Chen and Su
2021; Salamon et al. 2014). However, music perception re-
searchers have shown that the levels are not perceptually in-
dependent as they relate to one another in both “vertical”
(structural) and “horizontal” (temporal) directions (Narmour

1983), interactions that have more recently been proven
computationally (Dai, Zhang, and Dannenberg 2024). A
comprehensive analysis of a piece thus must integrate these
inter- and intra-level interactions into a unified model.

Despite prior attempts at an integrated computational
model of musical form, two challenges remain. First,
prior approaches do not completely encapsulate the ver-
tical and horizontal relationships of the structural hierar-
chy, cannot handle polyphonic music, or are not fully auto-
matic (Hamanaka, Hirata, and Tojo 2016; Simonetta et al.
2018; Mokbel, Hasenfuss, and Hammer 2009; Carvalho
and Bernardes 2020). Second, to our knowledge, existing
methodologies focus only on individual pieces, and hence
there has been no attempt to summarize the hierarchy over a
music corpus to synthesize its overall structure and obtain a
holistic music representation of the entirety of the corpus.

To address these challenges, we introduce the structural
temporal graph (STG) as a unified model of polyphonic mu-
sical structure. The STG is a k-partite directed acyclic graph
whose levels form the structural hierarchy, and edges con-
vey temporal relationships between adjacent levels. We then
use simulated annealing to develop a measure of structural
distance between two STGs based on graph isomorphism.
Finally, to obtain the overarching structure of a corpus of
pieces, we develop an approach for deriving a representa-
tive centroid graph from a corpus of STGs, which jointly
minimizes structural distance and standard deviation over
the corpus. We formalize the centroid derivation as a bi-
level NP-hard combinatorial optimization problem, and pro-
pose a solution combining nested simulated annealing with
the formal guarantees of SMT solvers in order to produce
a structurally sound result. An evaluation of our approach
shows that the structural distance measure can differentiate
between pieces, and that centroids can effectively character-
ize the music corpora they are derived from.

In summary, the contributions of this paper are as follows:

1. We propose the structural temporal graph, an integrated
meta-representation of musical form that unifies the mu-
sic structural hierarchy.

2. We develop a structural distance measure between two
STGs rooted in graph isomorphism.

3. We formalize the music summarization problem as a du-
ally NP-hard combinatorial optimization problem, and

contribute a novel approach to solving this problem using
both stochastic and SMT-based techniques.

4. We conduct experiments verifying that the structural dis-
tance can differentiate pieces, and that music corpora are
accurately characterized by their derived centroids.

2 Related work
2.1 Single-Level Analyses

Many successful algorithms have been developed to extract
structure at single levels of the music structural hierarchy. To
extract segmentation, The Music Structure Analysis Frame-
work (MSAF) toolkit (Nieto 2015) features factorization-
based techniques, including ordinal linear discriminant anal-
ysis (McFee and Ellis 2014b), convex nonnegative matrix
factorization (Nieto and Jehan 2013), checkerboard (Foote
2000), spectral clustering (McFee and Ellis 2014a), the
Structural Features algorithm (Serra et al. 2014), 2D-Fourier
Magnitude Coefficients (Nieto and Bello 2014), and the
Variable Markov Oracle (Wang and Mysore 2016).

Motif discovery algorithms search for disjoint, repeating,
and possibly overlapping patterns in a piece. String-based
approaches (Wang, Hsu, and Dubnov 2015) represent music
as a chromagram and detect patterns with sub-string match-
ing, and geometry-based approaches (Hsiao et al. 2023) rep-
resent music as multidimensional point sets, and translatable
subsets identify patterns. Recent approaches in harmony
identification are centered around neural networks, such as
using transformers to incorporate chord segmentation into
the recognition process (Chen and Su 2019, 2021). Until
very recently, the Melodia algorithm was the state of the art
in melody extraction, but recent approaches have shifted to
neural networks (Kosta et al. 2022; Chou et al. 2021).

2.2 Integrated Models of Structure

Music theorists have attempted to unify the structural hierar-
chy with frameworks such as Schenkerian theory (Marsden
2010) and the Generative Theory of Tonal Music (GTTM)
(Lerdahl and Jackendoff 2020). Schenkerian analysis re-
sults from applying a series of reductions that progres-
sively simplify a musical piece by removing layers of struc-
ture. Attempts to automatically derive Scherkerian analyses
are intractable for all but very short pieces, and have low
accuracy (Marsden 2010). GTTM generates four different
structural hierarchies (grouping structure, metrical structure,
time-span tree, and prolongational tree) for a piece of mu-
sic, to model human cognition (Hamanaka, Hirata, and Tojo
2016). Computational implementations GTTM (e.g. the Au-
tomatic Timespan Tree Analyser (Hamanaka, Hirata, and
Tojo 2016)) cannot handle polyphonic music, and are not
fully automatic. Improved results using these theories are
unlikely, as neither provides a degree of precision required
for complete computational implementation (Marsden, Hi-
rata, and Tojo 2013).

The limitations of these theories have led researchers to
turn to a modern interpretation of the structural hierarchy:
segmentation, motifs, rhythm, harmony, and melody (Ni-
eto 2015; Mount 2020; Dai, Zhang, and Dannenberg 2024),

where motifs refer to disjoint, repeating patterns. Several at-
tempts have been made to capture this hierarchy in graph
data structures, such as by using automatic topographic map-
ping to represent melodic progressions (Mokbel, Hasenfuss,
and Hammer 2009), encoding interactions between sec-
tions, melody, harmony and rhythm in a graph (Dai, Zhang,
and Dannenberg 2020), and by using an undirected graph
to represent melodic segments and their reductions (Orio
and Roda 2009). In addition, the prototype graph (Young,
Du, and Bastani 2022) encodes music structure as a bipar-
tite network of relationships between prototype elements
and the music they represent. Finally, attempts have been
made to model the structure hierarchy with formal gram-
mars (Sidorov, Jones, and Marshall 2014; Finkensiep et al.
2023), but they are limited to segmentation and motifs.

None of these approaches encapsulate the entire hierar-
chy, and to our knowledge, there have also been no attempts
to synthesize a representative, summarizing structure from a
music corpus.

3 Structural Temporal Graph
3.1 Overview

To address the lack of a fully automatic complete encapsula-
tion of polyphonic musical structure, we introduce the struc-
tural temporal graph (STG), a unified meta-representation
of musical structure that captures the levels of the music
structural hierarchy and the temporal relationships between
them. The STG is a k-partite directed acyclic graph (DAG),
where each of the k layers encodes a level in the music struc-
tural hierarchy.! Following the modern music theoretic in-
terpretation of the hierarchy (Nieto 2015; Mount 2020; Dai,
Zhang, and Dannenberg 2024), from top to bottom we de-
note the levels to be contiguous segmentation, motifs (both
disjoint and overlapping), rhythmic contour, relative keys,
functional harmonic chords, and melodic contour.

The STGs we build include every level in the hierarchy
except rhythmic contour, as we were unable to access an al-
gorithm to generate this analysis. We run individual analysis
algorithms to generate each level of the hierarchy, which is
elucidated in Section 6.1. Before giving a formal definition
of the STG, we build intuition by walking through an exam-
ple of deriving an STG from an annotated piece.

3.2 Building the Graph

We walk through the derivation of an STG from Beethoven’s
Biamonti Sketch No. 461 that unifies contiguous segmenta-
tion; disjoint, overlapping motifs; relative keys; functional
harmonic chords; and melodic contour. First, we manually
analyze the piece by marking up its score with ground-truth
hierarchical annotations in Figure 1. Each colored annota-
tion corresponds to one level of the structural hierarchy. In
purple, we see that this piece has one large contiguous seg-
ment (numbered as segment 0). Next, we mark disjoint mo-
tifs in red. Motif O appears twice, at the beginning of bars

'Individual levels themselves can form sub-hierarchies of in-
creasing granularity, commonly seen in segmentation, which the
STG supports.

0 0 filler
EbMa (0M)

B] | SE=E=E==

(35 fe== et 1
16 2

e 5 | alens 15| &l 2he
i":‘-p“;é:::i e

0 — 7y v v lv

Figure 1: Ground-truth human analysis of Beethoven’s Bi-
amonti Sketch No. 461. The purple markings show the first
level of the hierarchy (segmentation), the red markings show
the second level (motifs) with the gray “filler” label indicat-
ing no motifs in that interval, the orange markings show rela-
tive key number and quality (M for major) in the third level,
the green markings show the fourth level (functional har-
mony) using Roman numeral chord symbols, and the blue
markings show the bottom level (melodic contour) by delin-
eating the intervals between individual melody notes.

0

PR T

om

[‘v ‘I ‘v7 MW‘I ‘v
2 |7 e las e f7 o bs 2 fn L 2

Figure 2: Spatial visualization of the analysis in Figure 1

1 and 2. The gray filler bar indicates no more motifs appear
in the latter half. In orange, we see this piece is in a sin-
gle key, Eb Major. We label this key symbolically as OM to
indicate this is relative key number O (i.e. the first key) in
M for major. Subsequent keys would be numbered by their
positive interval difference from the previous key within the
12-tone scale. We next see functional harmonic chords in
green annotated with Roman numeral chord symbols, and
finally melodic contour intervals in blue. Then, we equiva-
lently represent the ground-truth annotations in Figure 1 as
the stacked rectangles in Figure 2 to more clearly see how
each level of the structural hierarchy relates to the next.

Keeping Figure 2 in mind, we make the transition from
the human annotations in Figures 1 and 2 to the computer-
generated STG for this piece in Figure 3. The edges and
nodes of the STG, respectively, correspond to the vertical
and horizontal alignments of the rectangles in Figure 2. We
see that all motif nodes, including the gray filler node indi-
cating no motifs for that interval, fall into the time interval
of purple segmentation node 0. The orange key node OM be-
gins in the first red motif node 0, and ends in the last gray
motif filler node (i.e. the key spans the entire piece). All the
green chord nodes fall in the orange key node’s interval. Fi-
nally, we see how blue melodic contour nodes relate to green
chord nodes. For instance, the first melody interval -2 begins
in the first chord node I, whereas the penultimate melody in-
terval -1 begins in the fourth V7 chord node, and ends in the
fifth I chord node.

Note that there are minor discrepancies between the green

Figure 3: Computer-generated STG for Beethoven’s Bia-
monti Sketch No. 461

functional harmony and blue melody nodes in Figure 3 and
the rectangles in the same color in Figure 2. This is because
Figure 2 shows a human-generated ground-truth analysis,
while each level of the STG in Figure 3 is generated by a
different music analysis algorithm. The STG is a fully auto-
matic meta-representation of musical structure, and so any
STG is only as accurate as the analysis algorithms it uses.
Formally, the nodes of an STG encode labeled musical
sections along with their associated time intervals generated
by the relevant analysis algorithm. Nodes are sorted within
each level based on start time, and edges encode temporal
relationships between nodes of adjacent levels. Specifically,
for node n at level 7, n must have either one or two parents
in level ¢+ — 1 directly above it: one if its associated time
interval is a total subset of its parent’s, and two if its time
interval begins in one parent’s, and ends in the other’s.

4 Structural Distance
4.1 Graph Augmentation

At a high level, the distance between two STGs is is the
minimum number of edit operations (deletion, insertion, and
substitution of nodes and edges) required to transform one
graph to the other, also known as the graph edit distance
(GED) (Serratosa 2021). However, GED measures isomor-
phic similarity between two graphs, meaning it evaluates
how closely the graph structures match independent of la-
beling. We cannot currently leverage STG isomorphism be-
cause STGs are “compressed,” with structure encoded into
node ids. Specifically, this compressed structure is found in
the defining features of each node id, and in the intra-level
linear temporal orderings for each analysis (i.e. the horizon-
tal order of each level in the graph, currently determined by
node index). Thus, in order to reason about STGs isomor-
phically, we must augment them to encode all structural at-
tributes directly within the graph’s topology.

To encode element labels, recall that each node id en-
codes a defining feature set. All nodes can thus be alter-
natively encoded as instances of their feature prototypes.
We create a prototype node for each feature and assign it
as a parent of the corresponding instance node(s) with that
feature. For instance, segmentation nodes encode a single
feature: the section number they correspond to. Finally, to

Figure 4: Augmenting the first two levels of the Beethoven
Biamonti No. 461 STG. The yellow prototype nodes have
the format feature _name: feature_ value.

encode intra-level linear temporal relationships, we form a
linear chain with edges between pairs of horizontally adja-
cent nodes. This results in a structurally complete STG we
can reason about isomorphically. The first two levels of the
STG from Figure 3 are shown in Figure 4, with yellow pro-
totype nodes on the left for each instance feature (section
number for segmentation, and pattern number and filler for
motifs), red edges connecting prototype features to their in-
stance nodes, and green edges for the intra-level linear chain
in the motif layer.

4.2 Graph Alignment Annealing

GED is a NP-hard combinatorial optimization problem (Ser-
ratosa 2021), intractable for typical STGs. Most GED ap-
proximation algorithms are slow and of dubious accuracy,
and more generalized than we require. We thus introduce
our own difference measure called structural distance com-
puted with simmulated annealing (SA). SA is a stochastic
optimization technique used to estimate the global optimum
of a discrete cost function. It comprises an objective “en-
ergy” function to minimize and a “move” function for gen-
erating a new solution from the current state. An annealer
begins at a high temperature indicating the likelihood of ac-
cepting worse solutions to explore the solution space, and
ends at a low temperature to refine near-optimal solutions.
(Guilmeau, Chouzenoux, and Elvira 2021)

To use SA, we first convert the augmented STGs to
adjacency matrices, and pad each matrix with zero-arity
“dummy nodes” such that they have identical dimensions.
Given such matrices A, and Ag,, their distance is given in
Equation 1, where ||.|| » denotes the Frobenius norm.

DIST(AGUAGz) = HAG1 - AGZHF (D

Finding permutation matrix P optimally aligning A¢g, to
Aq, to minimize Equation 1 is NP-hard, so we use SA. The
alignment annealer’s energy function is given in Equation
2. Given optimal P, Equation 2 computes the structural dis-
tance between A, and Ag,.

ENERGY(Aq,, Aq,, P) = DIsT(Ag,, PTAq,P) (2)

The move function for modifying P at each step of SA is
given in Algorithm 1. A partition is either the set of instance
nodes at a single level in the STG (e.g. the set of functional

Algorithm 1: Alignment Annealer Move Function

1: function MOVE

2: Choose random index ¢ in P

3: Choose random index j from the same partition to
which ¢ belongs

4: Swap rows ¢ and j in P

5: end function

harmonic key nodes), or the set of prototype nodes for a
given feature (e.g. chord quality).? Permuting only within
valid partitions leverages the STG’s inherent structure to
avoid invalid moves globally detrimental to Equation 2.

We set the alignment annealer’s initial state to P = 1,
the identity matrix. By running the annealer for sufficiently
many steps, we obtain optimal P.

S Centroid Derivation
5.1 Bi-Level Centroid Annealing

We now derive a representative “centroid” STG from a cor-
pus of STGs that minimizes both structural distance and
variance over the corpus, such that the centroid is both max-
imally close and similar to the corpus. Specifically, given the
padded adjacency matrix A, for a centroid STG and its as-
sociated corpus of matrices C = {Ag} that are optimally
aligned to A,, we want to minimize LOSS in Equation 3c,
where DIST is as in Equation 1.

1
faisi(Ag, C) = el > Dist(4,,46) (3a)
AgeC

Udist(Agy C) ZO'({DIST(AQ, Ag) | AG S C}) (3b)

Loss(Ay, C) =(uais(Ag, C) - (0uis(Ag, C) +€))* (30)
Mean and standard deviation both factor into the loss as we
seek for the centroid to be both maximally close and similar
to the corpus. We square their result so the annealer is more
sensitive to large changes the loss than smaller ones. Finally,
we offset o4is¢ by € so the loss is still sensitive to changes in
Wdist When ogig 1S zero.

Finding the centroid A, minimizing Equation 3c is again
a NP-hard constraint satisfaction problem requiring SA. The
centroid annealer’s energy function is given in Equation 4

ENERGY(Ag,, Ag,, P) = LOSS(Ay, Caigned) 4)

where Cliigned is the corpus aligned to the current centroid
Ay, a process itself requiring SA as in Section 4.2 to ob-
tain the optimal alignments. Centroid annealing is thus a du-
ally NP-hard problem (GED and constraint satisfaction over
these distances) requiring nested SA.

Finally, note that as the centroid annealer’s temperature
cools, the loss converges as the centroid becomes increas-
ingly closely aligned to the corpus. Thus, as the centroid

Mt is possible for an optimal alignment to match prototype
nodes across different features in an instance level’s feature set,
i.e. matching a prototype in Ag, with a prototype in Ag,, but this
is highly unlikely for larger graphs, and smaller individual feature
partitions significantly benefit performance.

No self-loops

No instance-prototype or prototype-prototype edges

No edges from a prototype to an instance whose fea-

ture set does not include the proto feature (e.g. melody

interval sign proto-segmentation instance)

4. No edges from lower to higher level instance levels
(must respect the hierarchy)

5. No edges between non-adjacent instance levels (must

respect k-partite structure)

L

Table 1: Global Constraints

annealer’s temperature cools, we can scale down the num-
ber steps and maximum temperature of the nested alignment
annealer at each iteration of the centroid annealing.

The centroid annealer’s move function for modifying the
centroid A, at each step of SA is given in Algorithm 2. To

Algorithm 2: Centroid Annealer Move Function

1: function MOVE

2: Calculate the list of absolute difference matrices
DL = HAQ — AGL for AGi S Caligned]
3: Calculate the element-wise mean difference matrix

M and standard deviation matrix S over Dy,

4: Calculate the score matrix X = M - (S — ¢€). Higher
score at coord (i, 7) means that coord has a higher im-
pact on the loss

5: Flatten X and sort in descending score order

6: Partition Xg, by unique score, and shuffle each par-
tition randomly (increases variability of moves)

7: Iterate through the indices (i,j) of the sorted,
partition-shuffled Xg,. Stop at the first (highest score)
(4, 7) such that flipping the (¢, j) edge in A is not:
¢ a globally structurally invalid move
* a move undoing the most recently accepted move

(avoid oscillating states)
* amove the annealer has already locally rejected since
the last accept (avoid getting stuck)

8: Execute move: Ay[i,j] =1 — Agli, j]

9: end function

move strategically, we build the score matrix S revealing
which edge(s) in A, contribute most to the loss. We add
or remove the edge at a highest score coordinate meeting
the criterion in Algorithm 2. In particular, a globally struc-
turally invalid move induces a terminally invalid structure in
the centroid by violating one of the rules in Table 1. Some
locally invalid moves, however, such as removing an edge in
an intra-level linear chain, must be allowed as intermediate
steps to a more optimal structurally valid state. Importantly,
the STGs being compared must have the same number of
levels; otherwise, edges spanning multiple levels must be al-
lowed as they can be intermediate states towards the deletion
of an entire level. Based on our experiments, this would be
unacceptably detrimental to the performance of the annealer.

We set the centroid annealer’s initial state A, to the STG
in the corpus with the minimum loss over the rest of the

1. Every instance node must have 1 or 2 instance parents
in the level above

2. The instances nodes at level [must form a linear
chain/total ordering via intra-level edges

3. The start and end nodes of the linear chain must have
the previous level linear chain’s start and end nodes,
respectively, as parents.

4. In instance levels with non-overlapping nodes,® the
first parent of a node at linear chain index ¢ > 0, must
not come before node ¢ —1’s last parent in the previous
instance level’s linear chain

5. The first parent of an instance node at linear chain in-
dex ¢ > 0, must not come before node i — 1’s first
parent in the previous level’s linear chain

Table 2: Instance Constraints

1. Every instance node must have exactly one prototype
parent per feature

2. For levels that require it,* no two linearly adjacent in-
stance nodes can have identical prototype parent sets

Table 3: Prototype Constraints

corpus. By running the annealer for sufficiently many steps,
we derive an approximate centroid for the corpus that may
contain locally invalid states.

5.2 Graph Repair with SMT Solving

In order to obtain a structurally sound centroid, we must
“repair” the approximate centroid A, by projecting it to
the nearest valid STG. We achieve this by encoding the
STG’s structure as constraints in quantifier-free first-order
logic formulae in the SMT (satisfiable modulo theory) solver
Z3 (de Moura and Bjgrner 2008), which gives us formal
guarantees on the soundness of the centroid. We use Z3’s op-
timizer to minimize an objective over the constraints. Given
approximate centroid A, and valid centroid A, our objec-
tive is given in Equation 5.

OBJ(AQ, A;) = Z Z |Agz‘j - A;iy‘
i

®)

Our constraints include the global rules in Table 1, as well
as additional constraints for instance nodes in Table 2, and
finally prototype nodes in Table 3. We track relationships
between nodes with uninterpreted functions.

7Z3’s optimizer supports integration with large neigh-
borhood search (LNS) and can return intermediate semi-
optimized solutions after a timeout. We run the optimizer
with LNS, with initial soft constraints set to the approximate
centroid A, to guide the optimizer. Even so, naively running
the optimizer on a full STG is generally intractable due to
combinatorial explosion, so we partition A, into subsets we
can apply the constraints to incrementally.

3Segmentation, keys, chords, and melody, but not motifs
*Segmentation, keys, and chords only

We first partition A, into pairs of consecutive instance
levels without their prototypes (e.g. a segmentation/motif
pair of instance levels), and optimize the instance constraints
in Table 2 alongside the relevant global constraints in Ta-
ble 1 over each partition incrementally. We combine the re-
sult of one partition with the previous until we build a valid
centroid subgraph of instance nodes. Then, we partition A,
into single levels, each containing the instance nodes of that
level and all prototype nodes for each instance feature at that
level (e.g. segmentation instance nodes + all section number
prototype nodes). The instance constraints are already opti-
mized, so we now only need to optimize the prototype con-
straints in Table 2 and the relevant global constraints in Table
1 over the possible prototypes. This gives us the complete,
structurally sound centroid A; we seek.

A more detailed visualization of the centroid derivation
process is found in Appendix A.

6 Evaluation
6.1 Experimental Setup

We build a corpus of polyphonic, symbolic MIDI piano mu-
sic from the Kunstderfuge dataset and the Classical Piano
MIDI Database, > which we select for their high-quality
data. Since some single-level analyses we use to generate
STGs require the data to be in audio and CSV format, we
convert MIDI to CSV (with a manual script) and to MP3
(with Fluidsynth (Moebert 2007)). This gives us a triple of
paired MIDI, MP3, and CSV for each piece.

Recall from Section 3.2 that our STGs encapsulate
segmentation, motifs, relative keys, functional harmonic
chords, and melodic contour. To build the segmentation
layer, we use the flat Structural Features algorithm (Serra
et al. 2014) to determine segment boundaries and 2D-
Fourier Magnitude Coefficients (Nieto and Bello 2014) to
determine segment labels, both of which are provided by
the Music Structure Analysis Framework (Nieto 2015). To
extract motifs, we use the BPS-motif discovery algorithm
(Hsiao et al. 2023), and for relative keys and functional har-
monic chords we use the pretrained Harmony Transformer
V2 (Chen and Su 2021). Finally, to generate melodic con-
tour we use the Melodia algorithm (Salamon et al. 2014).

Our experiments validate two objectives: (1) that the
structural distance accurately differentiates between individ-
ual pieces, and (2) that the centroid graph encapsulates the
overarching structure of the corpus it is derived from.

6.2 Evaluation of Structural Distance

From our STG dataset, we construct 210 sets built from
32 pieces by the composers J.S. Bach, Mozart, Beethoven,
Schubert, and Chopin (21 Bach, 2 Mozart, 3 Beethoven, 2
Schubert, and 4 Chopin). Each set contains a unique combi-
nation of 5 pieces, one from each composer, such that the du-
ration of any piece is within 7 seconds of any other piece in
the same set, in order to normalize for piece length. We then
use our graph alignment annealer from Section 4 to com-
pute the pairwise structural distances between the individual

SKunstderfuge: https://www.kunstderfuge.com/, Classical Pi-
ano MIDI Database: http://www.piano-midi.de/

Metric | ps p-value
Structural Distance (ours) | 0.8207 0.0140
SWAS 0.5775 0.1760
MIDI Features 0.4681 0.3150

Table 4: Mantel Test with Spearman’s rank correlation coef-
ficient for normalized mean distance matrices

STGs derived from the pieces within each set, resulting in
210 structural distance matrices, and take their mean®. For
each pairwise structural distance, we run the graph align-
ment annealer for 2000 iterations with a max and min tem-
perature parameters of 2 and 0.01, respectively. Our infras-
tructure is a Linux system of 8 NVIDIA GeForce RTX 2080
Ti GPUs, each with 11GB RAM.

We evaluate our approach against two baselines over the
same 210 piece combinations. Baseline 1 is the mean dis-
tance matrix obtained by taking the cosine similarity be-
tween feature vectors extracted from each MIDI file using
Music21 (Cuthbert 2006). The feature vectors encode up
to 100 pitches, note durations, and note onset times; 1000
chords; and 10 sections per piece. Baseline 2 is the mean
distance matrix over the pairwise Stent weighted audio sim-
ilarities (SWAS) over the paired MP3 file for each piece’.
SWAS is a composite audio similarity metric comprising
zero-crossing rate, rhythm, chroma, spectral contrast, and
perceptual similarity metrics, which we weight equally. Our
ground-truth reference is the stylistic similarity indices be-
tween composers derived from the binomial index of dis-
persion calculated using human annotations and metadata
from “The Classical Music Navigator” database (Smith and
Georges 2014).

We normalize all matrices to a range between 0 and 1, and
invert the similarity matrices to distances. Finally, we apply
the Mantel test with Spearman’s rank correlation coefficient
ps to evaluate our results against the human-annotated no-
tions of music similarity from the Classical Music Naviga-
tor. We choose Spearman’s metric over the more common
Pearson’s since the relationships between our data are best
described by a monotonic ranking rather than a linear rela-
tionship. Our results are shown in Table 4. We attain both the
highest ps and lowest p-value for structural distance, ver-
ifying that the structural distance accurately differentiates
between pieces and captures human conception of musical
similarity.

6.3 Evaluation of Centroid

We generate centroid STGs for corpora containing pieces
by Bach (6), Beethoven (9), Haydn (4), and Mozart (5), re-
spectively. In order to introduce slightly more variance over
each corpus, we relax the duration constraint from the previ-
ous experiment such that now the pieces in each corpus are

SWe wuse the simanneal Python package for SA:
https://github.com/perrygeo/simanneal

"SWAS is computed with the AudioSimilarity package:
https://github.com/markstent/audio-similarity

100 A
—e— Centroid STG

Bach STG 1
—~=- Bach STG 2
—--- BachSTG 3
~~-- Bach STG 4
-==- Bach STG 5
Bach STG 6

80

i
1
1
1
1
1
T
1
1
1
I
1
[N

jl
s!
1

|

60

Eigenvalue

40

500 600 700 800 900
Eigenvalue Index

80
—e— Centroid STG

Beethoven STG 1

70 1 --- Beethoven STG 2
—-- Beethoven STG 3

—-- Beethoven STG 4

o p— Beethoven STG 5
Beethoven STG 6

50 4 ——- Beethoven STG 7

Beethoven STG 8
Beethoven STG 9

40

Eigenvalue

500 520 540 560 580 600 620 640 660
Eigenvalue Index

—e— Centroid STG

Haydn STG 1
—=~ Haydn STG 2
=== Haydn STG 3
—==- Haydn STG 4

80

60

Eigenvalue
3
o

540 560 580
Eigenvalue Index

500 520

80
—— Centroid STG

-= Mozart STG 1
701 --- Mozart STG 2
=== Mozart STG 3
—=- Mozart STG 4
=== Mozart STG 5

60

Eigenvalue
B w
o o

w
=3

N
=3

=
o

500 520 540 560 580 600 620 640
Eigenvalue Index

Figure 5: Spectra of the input STGs and computed centroid for each composer corpus

Composer| r

Bach 0.9732
Beethoven | 0.9234
Haydn |0.9787
Mozart |0.9836

Table 5: Mean Pearson correlation r between the spectra of
the centroid and corpus graphs for each composer

within 36 seconds of each other. We use the same GPU in-
frastructure as in the previous experiment to run the centroid
annealer over each corpus and generate approximate cen-
troids. Our GPUs struggled to handle generating centroids
for more than 9 STGs due to memory limits, which impacted
how we selected each corpus. Then, we run our Z3 optimizer
to generate the final, structurally sound centroids on a Linux
system with 24 Intel Xeon cores and 32GB RAM.

To evaluate whether our computed centroids effectively
characterize their corpora, for each corpus we do a spectral
decomposition of the adjacency matrix of each STG and the
centroid. The spectrum of an adjacency matrix, or the set
of its eigenvalues, encodes essential aspects of the graph’s

structure, making it a suitable tool for our evaluation. For
each corpus, in Figure 5 we plot the spectra of each input
STG and derived centroid together. For visibility, we trun-
cate the graphs at lower eigenvalues, since they remain con-
stant. We then calculate the mean Pearson’s correlation co-
efficient r between the spectra of the centroid and each STG
in the corpus, for all four composer corpora, in Table 5. We
confirm a strong correlation for all composers, validating
that the centroid effectively captures the essential structural
characteristics of its corpus.

7 Conclusion and Future Work

We presented the structural temporal graph (STG), a unified
meta-representation of the complete music structural hierar-
chy. The STG serves as a vital contribution to the holistic
cognition and analysis of musical form. We used the STG
to develop a measure of structural distance between two
pieces rooted in graph isomorphism to reason about STGs
quantitatively using simulated annealing. Finally, we framed
the music stuctural summarization problem as a dually NP-
hard combinatorial optimization problem, and contributed a
novel approach combining nested simulated annealing with
SMT solving to derive a structurally sound centroid STG

representative of a music corpus.

We envision applications of the STG and derived cen-
troids in human-machine co-creation, in which a user re-
fines a generated piece by modifying its STG to impose up-
dated structural constraints on a generative model. In addi-
tion, one could use the centroid STGs to constrain a gen-
erative model to produce music with both local and global
relational structure adhering to that of the chosen corpus.
Finally, the STG and centroid derivation are not limited to
music. The STG could easily model a structural hierarchy
for any kind of hierarchical sequence data, so long as there
exist algorithms to generate the analyses at each level. For
instance, an STG could encapsulate the poetry structure hi-
erarchy, with levels such as verses, stanzas, and lines, and the
derived centroid would structurally summarize a poetry cor-
pus. Together, these applications can inform opportunities in
human modification of machine-generated data conforming
to the desired structural specification.

8 Acknowledgments

This project is partially supported by the European Re-
search Council under Europe’s Horizon 2020 program, grant
883313 (ERC REACH) .

References

Carvalho, N.; and Bernardes, G. 2020. Towards balanced
tunes: A review of symbolic music representations and
their hierarchical modeling. In Cardoso, F. A.; Machado,
P.; Veale, T.; and Cunha, J. M., eds., Proceedings of the
Eleventh International Conference on Computational Cre-
ativity, ICCC 2020, Coimbra, Portugal, September 7-11,
2020, 236-242. Association for Computational Creativity
(ACQC).

Chen, T.; and Su, L. 2019. Harmony Transformer: Incor-
porating Chord Segmentation into Harmony Recognition.
In Flexer, A.; Peeters, G.; Urbano, J.; and Volk, A., eds.,
Proceedings of the 20th International Society for Music
Information Retrieval Conference, ISMIR 2019, Delft, The
Netherlands, November 4-8, 2019, 259-267.

Chen, T.-P,; and Su, L. 2021. Attend to chords: Improv-
ing harmonic analysis of symbolic music using transformer-
based models.

Chou, Y.-H.; Chen, I.-C.; Chang, C.-J.; Ching, J.; and Yang,
Y.-H. 2021. MidiBERT-Piano: Large-scale Pre-training for
Symbolic Music Understanding. arXiv:2107.05223.
Cuthbert, M. 2006. music21.

Dai, S.; Zhang, H.; and Dannenberg, R. B. 2020. Auto-
matic Analysis and Influence of Hierarchical Structure on
Melody, Rhythm and Harmony in Popular Music. CoRR,
abs/2010.07518.

Dai, S.; Zhang, H.; and Dannenberg, R. B. 2024. The Inter-
connections of Music Structure, Harmony, Melody, Rhythm,
and Predictivity. Music & Science, 7: 20592043241234758.
de Moura, L. M.; and Bjgrner, N. S. 2008. Z3: An Effi-
cient SMT Solver. In Ramakrishnan, C. R.; and Rehof, J.,

eds., Tools and Algorithms for the Construction and Analy-
sis of Systems, 14th International Conference, TACAS 2008,

Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lec-
ture Notes in Computer Science, 337-340. Springer.

Finkensiep, C.; Haeberle, M.; Eisenbrand, F.; Neuwirth, M.;
and Rohrmeier, M. 2023. Repetition-Structure Inference
With Formal Prototypes. In Sarti, A.; Antonacci, F.; San-
dler, M.; Bestagini, P.; Dixon, S.; Liang, B.; Richard, G.;
and Pauwels, J., eds., Proceedings of the 24th International
Society for Music Information Retrieval Conference, ISMIR
2023, Milan, Italy, November 5-9, 2023, 383-390.

Foote, J. 2000. Automatic audio segmentation using a mea-
sure of audio novelty. In 2000 IEEE International Con-
ference on Multimedia and Expo. ICME2000. Proceedings.
Latest Advances in the Fast Changing World of Multimedia
(Cat. No.OOTH8532), volume 1, 452455 vol.1.

Guilmeau, T.; Chouzenoux, E.; and Elvira, V. 2021. Sim-
ulated Annealing: a Review and a New Scheme. In /EEE
Statistical Signal Processing Workshop, SSP 2021, Rio de
Janeiro, Brazil, July 11-14, 2021, 101-105. IEEE.

Hamanaka, M.; Hirata, K.; and Tojo, S. 2016. Implement-
ing Methods for Analysing Music Based on Lerdahl and
Jackendoff’s Generative Theory of Tonal Music, 221-249.
Cham: Springer International Publishing. ISBN 978-3-319-
25931-4.

Hsiao, Y.; Hung, T.; Chen, T.; and Su, L. 2023. BPS-
Motif: A Dataset for Repeated Pattern Discovery of Poly-
phonic Symbolic Music. In Sarti, A.; Antonacci, F.; San-
dler, M.; Bestagini, P.; Dixon, S.; Liang, B.; Richard, G.;
and Pauwels, J., eds., Proceedings of the 24th International
Society for Music Information Retrieval Conference, ISMIR
2023, Milan, Italy, November 5-9, 2023, 281-288.

Kosta, K.; Lu, W. T.; Medeot, G.; and Chanquion, P. 2022.
A deep learning method for melody extraction from a poly-
phonic symbolic music representation. In Rao, P.; Murthy,
H. A.; Srinivasamurthy, A.; Bittner, R. M.; Repetto, R. C.;
Goto, M.; Serra, X.; and Miron, M., eds., Proceedings of the
23rd International Society for Music Information Retrieval
Conference, ISMIR 2022, Bengaluru, India, December 4-8,
2022, 757-763.

Lerdahl, F.; and Jackendoff, R. 2020. A Generative Theory
of Tonal Music. MIT Press.

Levé, F.; Groult, R.; Arnaud, G.; Séguin, C.; Gaymay, R.;
and Giraud, M. 2011. Rhythm Extraction from Polyphony
Symbolic Music. In Klapuri, A.; and Leider, C., eds., Pro-
ceedings of the 12th International Society for Music Infor-
mation Retrieval Conference, ISMIR 2011, Miami, Florida,
USA, October 24-28, 2011, 375-380. University of Miami.
Marsden, A. 2010. Schenkerian analysis by computer: A
proof of concept. Journal of New Music Research, 39(3):
269-289.

Marsden, A.; Hirata, K.; and Tojo, S. 2013. Towards com-
putable procedures for deriving tree structures in music :
context dependency in GTTM and Schenkerian theory.
McFee, B.; and Ellis, D. 2014a. Analyzing Song Structure
with Spectral Clustering. In Wang, H.; Yang, Y.; and Lee,
J. H., eds., Proceedings of the 15th International Society

for Music Information Retrieval Conference, ISMIR 2014,
Taipei, Taiwan, October 27-31, 2014, 405—-410.

McFee, B.; and Ellis, D. P. W. 2014b. Learning to segment
songs with ordinal linear discriminant analysis. In IEEE
International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2014, Florence, Italy, May 4-9, 2014,
5197-5201. IEEE.

McFee, B.; Nieto, O.; Farbood, M. M.; and Bello, J. P.
2017. Evaluating Hierarchical Structure in Music Annota-
tions. Frontiers in Psychology, 8.

Moebert, T. 2007. FluidSynth: A SoundFont Synthesizer.

Mokbel, B.; Hasenfuss, A.; and Hammer, B. 2009. Graph-
Based Representation of Symbolic Musical Data. volume
5534, 42-51. ISBN 978-3-642-02123-7.

Mount, A. 2020. Fundamentals, Function, and Form. Milne
Open Textbooks.

Narmour, E. 1983. Some major theoretical problems con-
cerning the concept of hierarchy in the analysis of tonal mu-
sic. Music Perception: An Interdisciplinary Journal, 1(2):
129-199.

Nieto, O. 2015. Discovering Structure in Music: Automatic
Approaches and Perceptual Evaluations. Ph.D. thesis, New
York University.

Nieto, O.; and Bello, J. P. 2014. Music segment similar-
ity using 2D-Fourier Magnitude Coefficients. In 2014 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 664—668.

Nieto, O.; and Jehan, T. 2013. Convex non-negative matrix
factorization for automatic music structure identification. In
IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2013, Vancouver, BC, Canada,
May 26-31, 2013, 236-240. IEEE.

Orio, N.; and Roda, A. 2009. A Measure of Melodic Similar-
ity based on a Graph Representation of the Music Structure.
In Hirata, K.; Tzanetakis, G.; and Yoshii, K., eds., Proceed-
ings of the 10th International Society for Music Information
Retrieval Conference, ISMIR 2009, Kobe International Con-
ference Center, Kobe, Japan, October 26-30, 2009, 543-548.
International Society for Music Information Retrieval.

Salamon, J.; Gomez, E.; Ellis, D. P. W.; and Richard, G.
2014. Melody Extraction from Polyphonic Music Signals:
Approaches, applications, and challenges. IEEE Signal Pro-
cessing Magazine, 31(2): 118—134.

Serratosa, F. 2021. Redefining the Graph Edit Distance. SN
Comput. Sci., 2(6): 438.

Serra, J.; Miiller, M.; Grosche, P.; and Arcos, J. L. 2014.
Unsupervised Music Structure Annotation by Time Series
Structure Features and Segment Similarity. IEEE Transac-
tions on Multimedia, 16(5): 1229-1240.

Sidorov, K. A.; Jones, A.; and Marshall, A. D. 2014. Mu-
sic Analysis as a Smallest Grammar Problem. In Wang,
H.; Yang, Y.; and Lee, J. H., eds., Proceedings of the 15th
International Society for Music Information Retrieval Con-
ference, ISMIR 2014, Taipei, Taiwan, October 27-31, 2014,
301-306.

Simonetta, F.; Carnovalini, F.; Orio, N.; and Roda, A. 2018.
Symbolic Music Similarity through a Graph-Based Repre-
sentation. In Cunningham, S.; and Picking, R., eds., Pro-
ceedings of the Audio Mostly 2018 on Sound in Immersion
and Emotion, Wrexham, United Kingdom, September 12-14,
2018, 26:1-26:7. ACM.

Smith, C. H.; and Georges, P. 2014. Composer similarities
through “The classical music navigator”: Similarity infer-
ence from composer influences. Empirical Studies of the
Arts, 32(2): 205-229.

Wang, C.; Hsu, J.; and Dubnov, S. 2015. Music Pattern Dis-
covery with Variable Markov Oracle: A Unified Approach
to Symbolic and Audio Representations. In Miiller, M.;
and Wiering, F., eds., Proceedings of the 16th International
Society for Music Information Retrieval Conference, ISMIR
2015, Mdlaga, Spain, October 26-30, 2015, 176-182.

Wang, C.-i.; and Mysore, G. J. 2016. Structural segmenta-
tion with the Variable Markov Oracle and boundary adjust-
ment. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 291-295.

Young, H.; Du, M.; and Bastani, O. 2022. Neurosymbolic
Deep Generative Models for Sequence Data with Relational
Constraints. In Koyejo, S.; Mohamed, S.; Agarwal, A.; Bel-
grave, D.; Cho, K.; and Oh, A., eds., Advances in Neural
Information Processing Systems, volume 35, 37254-37266.
Curran Associates, Inc.

A Guided Example of Centroid Generation

In order to better comprehend the centroid derivation pro-
cess in Sections 4 and 5, we walk through the five steps of
an example centroid derivation from a corpus of two STGs
in Figure 6, found at the bottom of this appendix. Each of
the following steps corresponds to the analogously labeled
step in Figure 6.

(i) We start with the corpus we will derive the centroid
from. Our corpus contains two STGs. The first STG is
the same as in Figure 3: Beethoven’s Biamonti Sketch
No. 461. The second STG is from Beethoven’s Bia-
monti Sketch No. 811. Both STGs were built using
the process in Section 3.

(i) We augment both STGs from (i) as in Section 4.1.
The implicit structure encoded in the node labels in
(i) is now explicitly encoded in the graph’s topology
in (i) in Figure 6 via the yellow prototype nodes,
red prototype-instance edges, and green intra-level
linear chains. The instance node labels thus are up-
dated to only show the layer kind now (S for seg-
mentation, P for patterns/motifs, K for keys, C for
chords, or M for melody) Recall that each yellow
prototype parent node encodes a feature of its in-
stance child, and each prototype label is of the form
feature_name: feature_value. The names of
the features and their possible values for each level of
the STGs in Figure 6 are explicated in Table 6.

(iii) Since all structure is now explicit and we can reason
about the graphs isomorphically, we can now apply
the nested simulated annealing procedure from Sec-
tions 4.2 and 5.1 to obtain the approximate centroid
STG for the corpus. Some locally invalid states re-
main, such as the lack of the intra-level linear chain
in the purple segmentation level.

(iv) We arrive at the final, well-formed centroid STG by
projecting the approximate centroid STG from (iii)
onto the nearest valid STG as in Section 5.2, using
the SMT solver Z3 to impose guarantees of structural
soundness on the result. Notice, for instance, how the
requisite linear chain has been added to the purple seg-
mentation level.

(v) Finally, we convert the repaired centroid from (iv)
back to its compressed form (i.e. we move the infor-
mation encoded in the prototype nodes and edges and
the intra-level linear chains, back into the nodes la-
bels), which allows us to visually compare it to the
original STGs in the corpus from (i).

Level Feature Name Feature Values

Segmentation | sect ion_num Z>g

Motifs pattern_num Z>q

Motifs filler filler

Keys relative_key_num|Zx>g

Keys quality {M, m}

Chords quality {M, m, d, d7, h7,
D7, a, a6, a7}

Chords degreel {1,2,...,12}

Chords degree? {1,2,...,12}

Melody abs_interval Z

Melody interval_sign {+,-}

Table 6: Prototype feature names (middle) and possible val-
ues (right) for each instance level (left). The chord quality
values are shorthand for major, minor, augmented, dimin-
ished, half-diminished, dominant, etc. degreel and degree2
refer to the primary and secondary degrees, respectively, in
the diatonic scale that the chord is built on. Putting it all to-
gether, an example prototype label could be degreel:1, qual-
ity:M, filler:filler, or abs_interval:5.

Bi-level
aimulated
annealing

Repair with SMT
solver (Z3)

Final Structurally Sound Centroid STG Approximate Centroid STG
(iv) (iii)

Compress

Final Compressed Centroid STG
(\J)

Figure 6: Example centroid derivation. In each STG, the segmentation nodes are purple, the motif nodes are red, the filler nodes
are gray, the key nodes are orange, the chord nodes are green, and the melody nodes are blue. On the augmented STGs in (ii)-
(iv), prototype nodes are to the left in yellow, prototype-instance edges are red, and intra-level linear chain edges are in green.
Table 6 explicates the prototype node labels in more detail. Refer to Figure 4 for a zoomed-in view of the prototype nodes.

