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In this paper, we develop a noncooperative game to model a non-life insurance market. Our first
goal will be to analyze the effects of competition between insurers through different indicators:
the solvency level, the market share, the underwriting results. Secondly, we will seek to further
understand the genesis of insurance market cycles. Insurance market cycles have troubled
actuaries and academics for decades: this game-theory focus will allow us to shed a different
light on the subject.
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1 Introduction

Insurance market cycles and the study of their causes have been puzzling actuaries for many
years. S. Feldblum [12] discusses four main causes for the presence of underwriting through their
aggregate effect. These causes are (i) actuarial pricing procedure, (ii) underwriting philosophy,
(iii) interest rate fluctuations and (iv) competitive strategies. Feldblum compares contributions
through out the 20th century on the topic, see also [19] and [29] for an overview.

Actuarial pricing procedures are subject to claim cost uncertainty, information lag (due
to accouting, regulatory and legal standards). Such effects are likely to generate fluctuations
around an equilibrium price, when extrapolating premiums. (See e.g. [28] and [6].) In addi-
tion, over-strict attitudes on the part of underwriters combined with a lack of coordination is
an extra recipe for underwriting cycles. In particular, policies cannot be priced independently
of the market premium, but neither can the market premium be driven by one’s individual
actions. This is called underwriting philosophy by Feldblum [12], and is also acknowledged
by M. Jablonowski [16], who assumes that (i) insurers do not make decisions in isolation from
other firms in the market, and (ii) profit maximization is not the exclusive, or even the most
important, motivation of insurers. Interest rate deviations further increase the frequency and
amplitude of market cycles, as they have an impact on the investment result and (indirectly)
on the maximum rebate that underwriters can afford to attract presumably customers with a
low-risk profile. E.C. Venezian [13] was among the first to demonstrate this effect. Finally, the
competition level on most mature insurance markets is sufficiently high that any increase in
market share can only be carried out by price decrease (due to very little product differentia-
tion). The hunger for market share is driven by the expected reduction of claim uncertainty
when increasing the policy number, which is motivated by the law of large numbers. This,
coupled with capital constraints (e.g. [15]) and price inelasticity, forces insurers not to deviate
too much from market trends.

Pure economic models suggest that the equilibrium premium is the marginal cost, as any
upward deviation from this marginal cost will result in losing all the policies. This is not
relevant to apply economic models of other industries to the insurance market because of the
adverse selection and the inertia of the insurance demand. The celebrated Rothschild and
Stiglitz model shows that at the equilibrium individuals with low-risk aversion choose full
coverage, whereas individuals with high-risk aversion prefer partial coverage. However, this
economic model cannot addres the insurance market cycle dynamics. G.C. Taylor [27] deals
with underwriting strategies of insurers and provides first attempts to model optimal responses
of an insurer to the market on a given time horizon. (See also [17, 11, 21] for extensions.) All
these papers focus on one single insurer and in that way assume that insurers are playing a
game against an impersonal market player, so that the market price is independent of their
own actions.

In this paper, we wish to investigate the suitability of game theory for insurance market
cycle modelling. Among earlier works using Noncooperative game theory to model the non-life
insurance market, two kinds of models were pursued: the Bertrand oligopoly where insurers
set premiums and the Cournot oligopoly where insurers choose optimal values of insurance
coverage. M.K. Polbor [23] considers a Bertrand model in which rational consumers maximize
their utility function and for which the equilibrium premium is the expected loss. R.M. Powers
and M. Shubik [24] propose a Cournot model with two types of players: policyholders who state
the amount that they are willing to pay, and insurers who state the amount of risk they are
willing to underwrite. Based on a clearing-house system to determine the market price, each
player maximizes its expected utility. Assuming risk neutral insurers and risk averse consumers,
the resulting premium equilibrium is larger than the expected loss.

None of these models can model the insurance cycles. In this paper, we propose a repeated
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noncooperative game models that replicates the main insurance features and dynamics. Using
the game theory, we extend the insurer-vs-market reasoning of [27]. We also extend the Bertrand
model of [25] by considering a lapse model and an aggregate loss model for policyholders. The
lapse model describes the policyholder behavior through a lapse probability which is a function
of the premiums offered by the insurers. We also consider a solvency constraint function for
insurers. C. Dutang, H. Albrecher and S. Loisel [10] show that incorporating competition
when setting premiums leads to a significant deviation from both the actuarial premium and a
one-insurer optimized premium. We show that although the repeated game models a rational
behavior of insurers in setting premium, the resulting market premium is cyclical. The rest of
the paper is organized as follows. Section 2 introduces the one-period model based on [10]’s
model. Section 3 presents the dynamic framework of the repeated game and its application to
the French motor market, before Section 4 concludes.

2 The one-period model

Consider I insurers competing in a market of n policyholders with one-year contracts (n is fixed).
The policyholders are assumed to react to price changes (either stay with the present insurer
or switch to one of the competitors), but do not have any other influence on the premium level
(which is a realistic assumption, in particular for personal lines of business such as compulsory
third-party motor liability). In view of the one-year time horizon and the randomness of claim
sizes, this model focuses on non-life insurance products (i.e. products for which the claim event
is NOT linked to the life of the policyholder).

The “game” for insurers is to set the premium for which policies are offered to the policy-
holders. Let (x1, . . . , xI) ∈ RI be a price vector, with xj representing the premium of Insurer
j. Once the premium is set by all insurers, the policyholders choose to renew or to lapse from
their current insurer. Then, insurers pay occuring claims during the coverage year. At the
end of the period, underwriting results are determined, and the insurer capital is updated:
some insurers may be bankrupt. As we deal with a one-period model, for simplicity we do not
consider investment results.

In the next subsections, we present the four components of the game: (i) a lapse model,
(ii) a loss model, (iii) an objective function and (iv) a solvency constraint function. These
four components are frequently considered by practitioners to be the critical factors for such a
study. In the sequel, a subscript j ∈ {1, . . . , I} will always denote an insurer index, whereas
a subscript i ∈ {1, . . . , n} denotes policyholder index. In the sequel, “insurer” is used when
referring to players of the insurance game.

2.1 Lapse model

In this subsection, we present our lapse model which is designed as a compromise between
reflecting the policyholders’ behavior in a reasonable way, and still keeping mathematical
tractability. Let nj be the initial portfolio size of Insurer j (such that

∑I
j=1 nj = n). It

seems natural that the choice of policyholders for an insurer is highly influenced by the choice
of the previous period. We assume that the choice of the (initial) nj policyholders of Insurer
j follows an I-dimensional multinomial distribution MI(nj, pj→(x)) with probability vector
pj→(x) = (pj→1(x), . . . , pj→I(x)). The probability pj→k(x) to choose an insurer depends on the
price vector x, concretely, the differences of premiums. Empirically, the probability to lapse
pj→k(x) (with k ̸= j) is generally much lower than the probability to renew pj→j(x). To our
knowledge, only the UK market shows lapse rates above 50%, cf. [8].

In the economics literature, pj→k is considered in the framework of discrete choice models.
In the random utility maximization setting, D. McFadden [20] proposes multinomial logit and
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probit probability choice models. In this paper, we choose a multinomial logit model, because of
its simplicity. Working with unordered choices, we arbitrarily set the insurer reference category
for pj→k to j, the current insurer. We define the probability for a customer to go from insurer
j to k given the price vector x by the multinomial logit model

pj→k(x) =


1

1+
∑
l ̸=j

efj(xj,xl)
if j = k,

efj(xj,xk)

1+
∑
l ̸=j

efj(xj,xl)
if j ̸= k,

(1)

where the sum is taken over the set of insurers {1, . . . , I} and fj is a price-sensitivity function.
We consider two types of price functions

f j(xj, xl) = µ̄j + ᾱj
xj

xl

and f̃j(xj, xl) = µ̃j + α̃j(xj − xl). (2)

The first function f j assumes a price-sensitivity according to the ratio of proposed premium xj

and competitor premium xl, whereas f̃j works with the premium difference xj−xl. Parameters
µj, αj represent a base lapse level and price-sensitivity, respectively. We assume that insurance
products display positive price elasiticity of demand αj > 0. One can check that

∑
k pj→k(x) =

1.
The portfolio size Nj(x) of Insurer j for the next period is a random variable determined by

the sum of renewed policies and (new) policyholders coming from other insurers. Hence, Nj(x)
is a sum of I independent binomial variables (Bkj)k with parameters nk, pk→j(x)

Nj(x) = Bjj(x) +
I∑

k=1,k ̸=j

Bkj(x). (3)

Note that (Bkj)j are not independent variables as (Bk1, . . . , BkI) is a multinomial random
variable. This assumption is in contrast with the standard models in classical ruin theory,
where the portfolio size is assumed constant over time (see e.g. [1] for a recent survey and [18]
for an attempt to have a premium-dependent portfolio size).

2.2 Loss model

Let Yi be the aggregate loss of policy i during the coverage period. We assume no adverse
selection among policyholders of any insurers, i.e. Yi are independent and identically distributed
(i.i.d.) random variables, for all i = 1, . . . , n. Let us assume a simple frequency – average
severity loss model

Yi =

Mi∑
l=1

Zi,l,

where the claim number Mi is independent of the i.i.d. claim severities (Zi,l)l of Policyholder
i. Therefore, the aggregate claim amount for Insurer j is

Sj(x) =

Nj(x)∑
i=1

Yi =

Nj(x)∑
i=1

Mi∑
l=1

Zi,l,

where Nj(x) is the portfolio size defined in Equation (3). The aggregate claim amount is still a
compound distribution of the same kind, since Yi are assumed i.i.d. random variables. Indeed
we have

Sj(x) =

Mj(x)∑
i=1

Zi, with Mj(x) =

Nj(x)∑
i=1

Mi,
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where (Zi)i are i.i.d. claim severities and Mj(x) denotes the total number of claims of Insurer
j.

For the severity distribution for Zi, we consider the lognormal distributions LN(µ, σ2). For
the frequency distribution for Mi, we consider the Poisson P (λ) and the negative binomial
NB(r, p) distributions, leading to a distribution of Mj(x) as Poisson P (Nj(x)λ) and negative
binomial NB(Nj(x)r, p). We denote these two loss models as PLN and NBLN, respectively.

2.3 Objective function

In the two previous subsections, we presented two components of the insurance markets: the
lapse model (how policyholders react to premium changes) and the loss model (how policyhold-
ers face claims). We now turn our attention to the underwriting strategy of insurers, i.e. on
how they set premiums.

In Subsection 2.1, we assumed that price elasticity of demand for the insurance product is
positive. Thus, if the whole market underwrites at a loss, any actions of a particular insurer
to get back to profitability will result in a reduction of his business volume. This has two
consequences for the choice of the objective function: (i) it should involve a decreasing demand
function of price xj given the competitors price vector x−j = (x1, . . . , xj−1, xj+1, . . . , xI) and (ii)
it should depend on an assessment of the insurer break-even premium πj per unit of exposure.

The parameter πj corresponds to the estimated mean but depends on the assessment of loss
expectation by Insurer j. We thus define πj as

πj = ωjaj,0 + (1− ωj)m0, (4)

where aj,0 is the actuarial premium based on the past loss experience of insurer j, m0 is the
market premium, available for instance, via rating bureaus or through insurer associations and
ωj ∈ [0, 1] is the credibility factor of insurer j.1 ωj reflects the confidence of insurer j in its own
loss experience: the closer to 1, the more confident insurer j is. Note that πj takes expenses
into account implicitly via the actuarial and the market premiums.

We choose the demand function as

Dj(x) =
nj

n

(
1− βj

(
xj

mj(x)
− 1

))
, (5)

where βj > 0 is the elasticity parameter and mj(x) is a market premium proxy. The demand
Dj(x) is not restricted to [0, nj/n], and thus Dj targets both renewal and new business. In
this form, Dj(x) approximates the expected market share E (Nj(x)) /n presented in Subsection
2.1. As the elasticity parameter βj is positive, a premium increase (of Insurer j) will result in
a decrease of the demand for insurance. The market proxy used in Equation (5) is the mean
price of the other competitors

mj(x) =
1

I − 1

∑
k ̸=j

xk.

The market proxy aims to assess other insurer premiums without specifically targeting one
competitor. The market proxy can be interpreted as the premium of an ideal medium com-
petitor. Consequently, Insurer j will not target the cheapest, the most expensive or the leading
insurers.

1Rating bureaus or rating agencies are organizations collecting statistical data from insurers in order to
publish market information for both insurers and policyholders. The credibility factor is the weight given to
individual loss experience in contrast to collective loss data.
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Now we can state our objective function. We suppose that Insurer j maximizes the expected
profit of the next year’s policies which we here define in the multiplicative form

Oj(x) =
nj

n

(
1− βj

(
xj

mj(x)
− 1

))
(xj − πj) , (6)

i.e. the product of the demand Dj and the expected profit per policy, representing a company-
wide expected profit. Thus, maximising the objective function Oj leads to a trade-off between
increasing premium to favour higher projected profit margins and decreasing premium to de-
fend the current market share. Note that Oj has the desirable property of being infinitely
differentiable with respect to x.

2.4 Solvency constraint function

Another key feature of the model is a solvency constraint the goal of which is to require insurers
to hold a certain amount of capital in order to protect policyholders against adverse collective
claim experience. Therefore, in addition to maximizing a certain objective function, insurers
must satisfy a solvency constraint imposed by the regulator. A reasonable criterion for finding
the minimum capital requirement is linked to deviations of the aggregate losses from its expected
value, concretely the difference of a high-level quantile and the mean of the loss distribution.
For simplicity, this quantity is taken to be a linear function of the standard deviation of the
loss distribution. In practice, the solvency capital is also required on a prospective basis : we
take the simplifying assumption to use only the in-force policy number. Thus, we define the
solvency constraint function as

g1j (xj) =
Kj + nj(xj − πj)(1− ej)

kσ(Y )
√
nj

− 1, (7)

where k is the solvency coefficient chosen to approximate a 99.5% quantile and ej denotes the
expense rate. In the following, we choose k = 3, see [10] for more details. The numerator
corresponds to the sum of the current capital Kj and the expected profit on the in-force port-
folio, whereas the denominator approximates the required capital. The constraint g1j (x) ≥ 0
is equivalent to Kj + nj(xj − πj)(1 − ej) ≥ kσ(Y )

√
nj, but g1j is normalized with respect to

capital, providing a better numerical stability.
In addition to the solvency constraint, we need to impose bounds on the possible premium.

A first choice could be simple linear constraints as xj − x ≥ 0 and x − xj ≥ 0, where x and
x represent the minimum and the maximum premium, respectively. However, the following
equivalent reformulation is numerically more stable:

g2j (xj) = 1− e−(xj−x) ≥ 0 and g3j (xj) = 1− e−(x−xj) ≥ 0.

The minimum premium x could be justified by a prudent approach by regulators while the
maximum premium x could be set, e.g., by a consumer rights defense association. In the
sequel, we set x = E (Y ) /(1 − emin) < x = 3E (Y ), where emin is the minimum expense rate.
Summarizing, the constraint function gj(xj) = (glj(xj))1≤l≤3 for Insurer j is

{xj, gj(xj) ≥ 0} =
{
xj ∈ [x, x], Kj + nj(xj − πj)(1− ej) ≥ k995σ(Y )

√
nj

}
. (8)

2.5 Premium equilibrium

We consider two solution concepts for our game: the Nash equilibrium for which it is assumed
that insurer actions are taken simultaneously, and the Stackelberg equilibrium for which actions
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take place sequentially. (See e.g. [14] and [22].) For the Stackelberg concept, it is assumed
there is (at least) one leader acting before the so-called followers to define the game sequence.
As described in [10], the Nash is the most appropriate concept for modelling competition in
the absence of a clear leadership. We give now the definition of a Nash equibrilium.

Definition (Nash equilibrium). For a game with I insurers, with payoff functions Oj and action
set Xj, a Nash equilibrium is a premium vector x⋆ = (x⋆

1, . . . , x
⋆
I) such that for all j = 1, . . . , I,

x⋆
j solves the subproblem

sup
xj∈Xj

Oj(xj, x
⋆
−j).

where xj and x−j denote the action of insurer j and the other insurers’ actions, respectively.
The action set Xj of Insurer j may be parametrized as Xj = {xj, gj(xj) ≥ 0}.

A Nash equilibrium can hence be interpreted as a point at which no insurer has an incentive
to deviate, given the actions of the other insurers. In our insurance game context, we refer to a
Nash equilibrium as a premium equilibrium. According to Proposition 2.1 of [10], the premium
equilibrium x⋆ exists and is unique.

3 The dynamic framework: application to the French

motor market

In practice, insurers do not play once but play an insurance game over several years as they
gather new information on incurred losses, available capital and competition level. In this
section, we present the dynamic framework based on the one-shot game of the previous section.
Firstly, we give arguments in favor of the chosen dynamic model, compared to other possible
dynamic game models. Secondly, we present the dynamic game, some properties and numerical
illustrations.

3.1 Dynamic game models

Dynamic games is a complex topic compared to one-shot games. From T. Basar and G.J.
Olsder [2], extending a static game to a dynamic game consists not only of adding a time
dimension t for the control variable x but also requires the definition of a state equation (γt+1 =
f(γt, . . . )) and a state variable γt. The purpose of the state equation and variable is to “link”
the information between players, see Definition 5.1 of [2]. Depending on which information the
players have about the state variable, different classes of games are defined: open-loop (knowing
only the first state γ1), closed-loop (all states γt up to time t), feedback (only the current state
γt). Computational methods for dynamic equilibrium generally use backward equations, e.g.
Theorem 6.6 of [2] for feedback strategies and Theorem 6.10 in a stochastic setting. This
method does not correspond to the insurance market reality for two main reasons: (i) premium
is not set backwardly, the claim uncertainty is a key element in insurance pricing, (ii) the time
horizon is infinite rather than finite.

A class of discrete-time games, first introduced by L. Shapley [26], use a finite-state space
where a transition probability models the evolution of the current state depending on player
actions. As the set of possible strategies (a series of pure or mixed actions) is huge, [26] focuses
only on strategies depending on the current state. These games are referred to as Markov
games. Although a Markovian property for our insurance game may be appropriate, we do
neither limit our strategy space to a finite set nor use a finite-state space.

Finally, repeated games study long-term interactions between players during the repetition
of one-shot finite games. The horizon either infinite or finite plays a major role in the analysis
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of such games, in particular where punishment strategies and threats are appropriate. Most
of the theory (i.e. Folk theorems) focuses on the set of achievable payoffs rather than the
characterization of the equilibrium. Folk theorems demonstrate that wellfare outcomes can be
attained when players have a long-term horizon, even if it is not possible in the one-shot game,
see e.g. [22]. Our game does not belong to this framework for several reasons since our strategic
action sets evolve over a time, the action set is not finite and stochastic perturbations complete
the picture.

We choose a repeated game but with infinite action space, such that at each period insurers
set new premiums depending on past observed losses. In other words, the Nash equilibrium is
computed at each period. Our repeated game does not enter the framework of dynamic games
as presented in [2], but shares some of the properties of Markov games and classical repeated
games. Our approach is similar to [5] where they study the interbank system.

3.2 Game sequence

In this subsection, we describe the repeated game framework. Now insurers aggregate informa-
tion as the time goes on. For period [t, t+1[, we denote the premium by x⋆

j,t, the gross written
premium by GWPj,t, the portfolio size by nj,t and the capital by Kj,t.

Let d be a positive integer such that the time window [t− d, t− 1] will be used to compute
market and actuarial premiums used in the break-even premium (4). At the beginning of each
time period, the average market premium is determined as

m̄t−1 =
1

d

d∑
u=1

∑N
j=1 GWPj,t−u × x⋆

j,t−u

GWP.,t−u︸ ︷︷ ︸
market premium for year t−u

,

which is the mean of last d market premiums. With current portfolio size nj,t−1 and initial
capital Kj,t−1, each insurer computes its actuarially based premium as

āj,t−1 =
1

1− ej,t

1

d

d∑
u=1

sj,t−u

nj,t−u︸ ︷︷ ︸
avg ind loss

,

where sj,t denotes the observed aggregate loss of insurer j during year t. Thus, break-even
premiums are πj,t−1 = ωj āj,t−1 + (1− ωj)m̄t−1.

In this setting, objective Oj,t and constraint functions gj,t are also time-dependent. The
objective function in the dynamic model is given by

Oj,t(x) =
nj,t−1

n

(
1− βj,t−1

(
xj

mj(x)
− 1

))
(xj − πj,t−1) ,

and the solvency constraint function by

g1j,t(xj) =
Kj,t + nj,t−1(xj − πj,t−1)(1− ej,t−1)

k995σ(Y )
√
nj,t−1

− 1.

Note that the characteristics of insurers evolve over time notably through the break-even pre-
mium πj,t−1, the expense rate ej,t−1, the portfolio size nj,t−1 and the sentivity parameter βj,t−1.

The game sequence for period [t, t+ 1[ is as follows

1. The insurers maximize their objective function subject to the solvency constraint

sup
xj,t

Oj,t(xj,t, x−j,t) such that gj,t(xj,t) ≥ 0.
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2. Once the premium equilibrium vector x⋆
t is determined, customers randomly lapse or

renew. We get a realization n⋆
j,t of the random variable Nj,t(x

⋆).

3. Aggregate claim amounts Sj,t are randomly drawn according to the chosen loss model
and the portfolio size by n⋆

j,t. We get a new aggregate claim amount sj,t for period t.

4. The underwriting result for insurer j is then computed as UWj,t = n⋆
j,t×x⋆

j,t×(1−ej,t)−sj,t.

5. Finally, we update the capital by the following equation Kj,t+1 = Kj,t + UWj,t.

This game sequence is repeated over T years. To reflect bankruptcy, insurers are pulled out
of the market when they have either a tiny market share (< 0.1%) or negative capital. Fur-
thermore, we remove players from the game when the capital is below the minimum capital
requirement (MCR), whereas we keep them if capital is between MCR and solvency capital
requirement (SCR).

Let It ⊂ {1, . . . , I} be the set of insurers at the beginning of year t and Rt ⊂ {1, . . . , I}
the set of removed insurers at the end of year t. If some insurers are removed, i.e. Card(Rt) >
0, then corresponding policyholders randomly move to other insurers according to a It+1-
dimensional multinomial distribution. Say from l ∈ Rt to j ∈ It+1, insured randomly move
with multinomial distribution MIt+1(nl,t, p

−
l→(x⋆

t )), where the probability vector p−l→(x⋆
t ) has jth

component given by

p−l→j(x
⋆
t ) =

pl→j(x
⋆
t )

1−
∑

k∈Rt
pl→k(x⋆

t )
.

When there are no more insurers, i.e. Card(It+1) = 0, the game ends, while if there is a
single insurer, i.e. Card(It+1) = 1, the game continues and the survivor insurer set the highest
premium.

In the current framework, we make the following implicit simplifying assumptions: (i) the
pricing procedure is done (only) once a year (on January 1), (ii) all policies start at the beginning
of the year, (iii) all premium are collected on January 1, (iv) every claim is (fully) paid on
December 31 and (v) there is no inflation and no stock/bond market to invest premium.

In practice, these assumptions do not hold: (i) pricing by actuarial and marketing depart-
ments can be carried out more frequently, e.g. every 6 months, (ii) policies start and are
renewed throughout the year, (iii) premium is collected throughout the year, (iv) claims are
settled every day and there are reserves for incurred-but-not-reported claims and (v) there are
inflation on both claims and premiums, and the time between the premium payment and a
possible claim payment is used to invest in stock/bond markets. However, we need the above
simplifications to have a sufficiently simple model.

3.3 Facts and figures of the French market

Now, we focus on the French motor market. This market has had a long history dating to the
Greeks, see e.g. [7]. More recently, during the 90s, the insurance market experiences various
privatizations and a decline of state involvements. Nowadays, insurers and mutuals are facing
a fierce competition with banks, and especially on the P&C market. The motor market (both
personal and corporate lines) represents roughly half of the P&C market.

Time serie models have been applied on French macroeconomic data to explain the French
motor market. For instance, C. Blondeau [3] points out the existence of a 6-year insurance cycle
using cointegrated time series. Blondeau shows the long term dependency between interest
rate fluctuation, the gross domestic product and the combined ratio. which emphasizes the
role of capital, incurred losses, inflation on the premium level. C. Bruneau and N. Sghaier
[4] also study this market at an aggregate level as well as line-of-business levels. The authors
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want to test the validity on the French market: extrapolation pricing, rational expectation,
capacity constraint. They use vector error correction models (VECM). They validate (only)
the extrapolation pricing and the capacity constraint thesis and estimate a period length of 5.18
years for the French motor market. On a personal time serie of the French market premium
between 1971 and 2007, we estimate a cycle period of 8.71 years using a basic auto-regressive
AR(2) model, see Figure 1.

1970 1975 1980 1985 1990 1995 2000 2005

0.
80

0.
90

1.
00

The French private motor market

Year

In
de
xe
s

Deflated Premium
Market Loss Ratio

Figure 1: The French motor cycle

3.4 Game-theoretic modelling

We now consider the application of our insurance game on the French motor market. Unlike [9]
where only three insurers are modelled, we model the top 10 insurers of the French market. As
explained at the beginning of this section, objective and solvency constraint functions depend on
parameters evolving over time: the portfolio size nj,t, the capital Kj,t, the break-even premium
πj,t. Doing this, we want to mimic the real economic actions of insurers on a true market, where
each year insurers update their tariff depending on last year’s experience of the company.

Furthermore, we want to take into account the portfolio size evolution over time. As nj,t will
increase or decrease, the insurer j may become a leader or lose leadership. Hence, depending
on market share (in terms of written premium), we update the lapse parameters (αj,t, µj,t), the
expense rate (ej,t) and the sensitivity parameter (βj,t) on three sets of values. There is only one
parameter not evolving over time: the credibility factor ωj which is set to a common value of
ωj = 9/10 in our numerical experiments.

We run our game for the four combinations of the two loss models (PLN and NBLN) and

the two types of price-sensitivity functions (f j and f̃j). On each of the 1000 simulations over
T = 25 periods, we determine a market premium pathmt by averaging the premium equilibrium
x⋆
t . We plot on Figure 2 some market premium paths (dashed lines) and three quantiles (solid

lines) for the f̃j-NBLN model (the premium value is scaled so that 100 corresponds to the pure
premium E(Y ) and expense rates ranges from 11% to 24%). The two plotted random paths
show a cyclic behavior, whereas the three quantiles remain stable over time. On each random
path, we can fit an AR(2) model Mt = m + a1(Mt−1 − m) + a2(Mt−2 − m) + ϵt. If a2 < 0
and a21 + 4a2 ≤ 0, the fitted AR(2) is p-periodic with p = 2π arccos(a1/(2

√
−a2)). Otherwise,

the AR(2) is not periodic. On the Figure 3, we plot the histogram of fitted periods for the

f̃j-NBLN model.
In Table 1, we present some statistics of fitted cycle periods for the four different models:

the minimum, the first quartile, the median, the mean, the third quartile, the maximum,
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Figure 3: Cycle periods

the percentage of non-cyclic paths and the standard deviation. We observe that a quarter of
market premium paths are cyclical, when f̃j is used, whereas for f j only 4% or 7% are not
cyclical. Furthermore, the loss model seems to increase cycle periods since for NBLN loss
models, quantiles are above the corresponding quantiles for PLN loss models.

4 Conclusion

Based on [10], this paper assesses the suitability of noncooperative game theory for insurance
market modelling. We extend the one-player model of [27] and subsequent extensions which
are based on optimal control theory. To our knowledge, the use of a repeated of noncooperative
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Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s Std. Dev.

f̃j-PLN 4.618 6.193 6.738 7.354 7.735 22.74 27% 2.433

f̃j-NBLN 5.178 6.558 7.543 9.28 9.341 53.54 29% 7.277

f j-PLN 5.42 6.639 7.234 7.742 8.114 18.1 4% 1.912

f j-NBLN 5.852 7.367 8.405 9.621 10.26 33.02 7% 3.987

Table 1: Cycle periods.

game to model non-life insurance markets is new in the current literature. First, this game-
theoretic approach is the first to account for the effect of competition on insurer solvency. The
proposed rational game shows that the most significant part of solvency relies on the ability
of insurers to sell contracts (i.e. premium risk). This is opposite to classic risk theory where
the collection of premiums is fixed per unit of time and the main risk is the randomness of
losses. Secondly, this game also sheds new light on the presence of cycles in non-life insurance
markets. Since for a range of parameters the market premium appears to be cyclical, we add a
new argument in favor of a rational explanation (i.e. competition and loss uncertainty) for the
presence of insurance cycles.

The game can be extended in various directions. A natural second step is to consider adverse
selection among policyholders. In practice, insurers do not propose the same premium to all
customers. Considering two risk classes of individuals would be an interesting extension of the
game. A second extension is to model investment results as well as loss reserves, which both
play a major role in long-tail business. We could also consider reinsurance treaties for players
in combination with a catastrophe generator. This will be the topic of future studies.

Acknowledgement This paper is based on ongoing work with Hansjoerg Albrecher from
Université de Lausanne and Stéphane Loisel from Université Lyon 1.
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