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Calculation appendix

Gas exchanges in hyperbaric environments: towards a physiological model

Alexis Blasselle, Michael theron

This appendix serves various purposes : it gives the required mathematical tools needed for the com-
putations made in the corpus of the article, it demonstrates the existence of solutions to the differential 
systems presented in the article and it presents the results of another implementation of a numerical 
solution of those systems.

1 Study of the function f

In this section, some basic properties of the function f defined in the article are given. The function 
H is defined over R by

H(x) =
1

1 + a
x3+bx

=
x3 + bx

x3 + bx + a

and satisfies H(x) →
x→+∞

1. By denoting λ = Oxc Hb and α = αO2 , f can be written :

f (x) = λH(x) + αx

H and f are differentiable over R

H′(x) =
(3x2 + b)(x3 + bx + a)− (3x2 + b)(x3 + bx)

(x3 + bx + a)2

=
a(3x2 + b)

(x3 + bx + a)2

so

f ′(x) =
a λ(3x2 + b)
(x3 + bx + a)2 + α (1)

and from this definition, the following property can be written :

Property 1 f ′ is continuous, differentiable and bounded over R and satisfies

f ′(x) →
x→+∞

α and f ′(x) →
x→−∞

α

Please note also that, as a > 0, α > 0 and λ > 0, we have that

∀ x ∈ R, f ′(x) > 0 (2)

2 Notations and hypothesis

2.1 Notations and derivatives

The following notations are adopted, to simplify the equations

♦ 1 : inspired air
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♦ 2 : airways

♦ 3 : alveolar gas

♦ 4 : alveolar blood

♦ 5 : arterial blood

♦ 6 : capillary blood

♦ 7 : veinous blood

♦ 8 : tissue

Besides, the following vector is defined :

∀t ∈ R X(t) = (P2(t), ..., P8(t))T

When the perfect gas law is satisfied, one can write PiVi = QiRT. Hence

dQi
dt

=
1

RT
Vi

dPi
dt

+
1

RT
Pi

dVi
dt

When Ci = f (Pi), as Qi = ViCi for i = 4, ..., 8, Qi time derivative can be expressed as follows :

dQi
dt

= Vi
dPi
dt

f ′(Pi) + f (Pi)
dVi
dt

2.2 Hypothesis

The following hypothesis are made on the input parameters. P1 is given by, with M the considered
gas

P1(t) = fr(M)(AP(t)− PH2O)

Hypothesis 1 The function AP is differentiable over R and its derivative is continuous over R. Hence, the
property is also true for P1, so P1 ∈ C1(R). AP is a known input parameter.

Hypothesis 2 The volumes and their derivatives are continuous over R, so ∀ i = 1, .., 7, Vi ∈ C1(R). They are
known input parameters.
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3 Oxygen differential system

3.1 General case

The assumption 2 holds. In the following equations, Ki, αi,
.

Q and
.

MO2 are known constants defined
in the article.

dP2

dt
=

.
V
V2

P1 −
P2

V2

(
dV2

dt
+

.
V + K1RT

)
+

K1RT
V2

P3

dP3

dt
= − P3

V3

[
dV3

dt
+ RT(K1 + K2)

]
+

RT
V3

[K1P2 + K2P4]

dP4

dt
=

1
V4 f ′(P4)

[
− f (P4)

dV4

dt
+ K2(P3 − P4) +

.
Q( f (P7)− f (P4))

]
dP5

dt
=

1
V5 f ′(P5)

[
− f (P5)

dV5

dt
+

.
Q( f (P4)− f (P5))

]
dP6

dt
=

1
V6 f ′(P6)

[
− f (P6)

dV6

dt
+

.
Q( f (P5)− f (P6))− K3(P6 − P8)

]
dP7

dt
=

1
V7 f ′(P7)

[
− f (P7)

dV7

dt
+

.
Q( f (P6)− f (P7))

]
dP8

dt
=

1
α8V8

[
−α8P8

dV8

dt
+ K3(P6 − P8)−

.
MO2

]
The previous system, well defined thanks to (2) can be written under the form

Ẋ = F(t, X) (3)

F belonging to C1(R×R7; R7), the Cauchy-Lipschitz theorem can be applied to this system, leading to
the following theorem :

Theorem 1 Under the assumptions 1 and 2, for every t0 ∈ R and for every X0 ∈ R7, the system (3) has a
unique solution satisfying X(t0) = X0.

Remark 1 Please note that the source term is actually coming from P1(t)

3.2 Steady volumes

The assumption of steady volumes is made, leading to

dVi
dt

= 0
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and one obtains the following simplified system :

dP2

dt
=

.
V
V2

P1 −
.

V + K1RT
V2

P2 +
K1RT

V2
P3

dP3

dt
= −RT

V3
(K1 + K2)P3 +

RT
V3

[K1P2 + K2P4]

dP4

dt
=

1
V4 f ′(P4)

[
K2(P3 − P4) +

.
Q( f (P7)− f (P4))

]
dP5

dt
=

.
Q

V5 f ′(P5)
[ f (P4)− f (P5)]

dP6

dt
=

1
V6 f ′(P6)

[ .
Q( f (P5)− f (P6))− K3(P6 − P8)

]
dP7

dt
=

.
Q

V7 f ′(P7)
[ f (P6)− f (P7)]

dP8

dt
=

1
α8V8

[
K3(P6 − P8)−

.
MO2

]
The theorem 1 holds for this particular case, and implies existence and uniqueness of a solution to this
system for a given initial value.

3.3 Numerical implementation

The system defined in 3.2 has been implemented in Scilab, separately and independently from the
implementation that produced the figures presented in the article, in order to check the values and to
verify that no mistake has been made. The implementation was made by a different co-author. The 2
codes lead to the same numerical results, and the Scilab representations are given below :

FIGURE 1 – Pressures P1 to P5 included
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FIGURE 2 – Pressure P6

FIGURE 3 – Pressures P7 and P8
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4 Nitrogen differential case

4.1 General case

The assumption is made that the time derivatives of the volumes are known, and that the equations
for nitrogen can be derived from the oxygen ones

dP2

dt
=

.
V
V2

P1 −
P2

V2

(
dV2

dt
+

.
V + K1RT

)
+

K1RT
V2

P3

dP3

dt
= − P3

V3

[
dV3

dt
+ RT(K1 + K2)

]
+

RT
V3

[K1P2 + K2P4]

dP4

dt
=

1
V4αN2

[
−αN2 P4

dV4

dt
+ K2(P3 − P4) +

.
QαN2(P7 − P4)

]
dP5

dt
=

.
Q
V5

[
−αN2 P5

dV5

dt
+ P4 − P5

]
dP6

dt
=

1
V6αN2

[
−αN2 P6

dV6

dt
+

.
QαN2(P5 − P6)− K3(P6 − P8)

]
dP7

dt
=

.
Q
V7

[
−αN2 P7

dV7

dt
+ P6 − P7

]
dP8

dt
=

1
α8V8

[
−α8P8

dV8

dt
+ K3(P6 − P8)

]
This system is exactly similar to the system (3) and by the same type of proof, one gets existence and
uniqueness of a solution.

4.2 Steady volumes

If the volumes are constant over time, the system for the nitrogen writes

dP2

dt
=

.
V
V2

P1 −
.

V + K1RT
V2

P2 +
K1RT

V2
P3

dP3

dt
= −RT

V3
(K1 + K2)P3 +

RT
V3

[K1P2 + K2P4]

dP4

dt
=

1
αNV4

[
K2P3 − P4(K2 + αN

.
Q) + αN

.
QP7

]
dP5

dt
=

.
Q
V5

[P4 − P5]

dP6

dt
=

1
αNV6

[
αN

.
QP5 − P6(αN

.
Q + K3) + K3P8

]
dP7

dt
=

.
Q
V7

[P6 − P7]

dP8

dt
=

K3

α8V8
[P6 − P8]

This system is linear and can be simply written

Ẋ(t) = AX(t) + U(t) A ∈ M7(R) (4)

with

U(t) =

( .
V
V2

P1(t), 0, 0, 0, 0, 0, 0

)T

(5)
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Theorem 2 For every vector X0 ∈ R7 and for every t0 ∈ R the system (4), with (5) has a unique solution
satisfying X(t0) = X0, which is

X(t) = exp(tA)

[
X0 +

∫ t

0
exp(−sA)U(s) ds

]
Proof : One has to consider the equation with no right hand side, Ż = AZ, whose solution is Z(t) =
exp(tA)Z(0), and then use a varying constant method, writing X(t) = exp(tA)Λ(t), and derive this
expression to find the explicit expression of Λ. �

Remark 2 Even if this elegant exact solution was found, it would require the diagonalization of the matrix A in
order to be properly implemented. Hence, a Runge-Kutta 4 method was preferred, and implemented by 2 different
persons, with no exchanges apart from the sharing of the input data, and the final comparison.

4.3 Numerical implementation of the N2 model

The N2 model with steady volumes described in the previous paragraph has been implemented by 2
different persons with a Runge-Kutta 4 method, and the 2 codes converge towards values that are very
similar. The table 4 shows the initial values and the table values obtained after a 100-minute simulation.
In order to see the stability of the 2 codes even with drastic changes, the assumption was made that all
the compartments were free of N2 at the initial time. The table 5 shows the comparison between the 2
codes : Computed corresponds to an Excel computation, while Implemented refers to a VBA code. One can
see that the 2 different codes are very close one from another.

FIGURE 4 – Initial values for the computation

And 6 is a caption of the evolution of the different N2 pressures in all the different compartments.
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FIGURE 5 – Comparison between the 2 codes

FIGURE 6 – Evolution of the different N2 pressures in all the compartments

5 Various functions for the CO2 model

In this part, we describe several functions needed for the CO2 model. As some of them appear in the
denominators of the equations, we have to show that they do not vanish. As we could not succeed to
show it theoretically, we checked their numerical values.

5.1 g function

Notations In the article, the carbon dioxyde pressure relates to the pH through the following function

P(CO2) = g(pH) =
1

αCO2

(a pH + b) 10pK−pH

Please note that the coefficient a and b used there are not the ones used previously. We use the following
notation for the study of g :

λ =
10pK

αCO2
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which then writes
g(x) = λ(a x + b) 10−x

Please note the following assumption

Hypothesis 3 The coefficient a satisfies a < 0.

Study of g As we need to find the pH as a function of the carbon dioxyde pressure, we have see if g is
a bijection, and for this to study it.

g′(x) = λ [a− (ax + b) ln(10)] 10−x

which vanishes on
x0 =

1
ln(10)

− b
a

(6)

and we have that
g(x) →

x→−∞
+∞ and g(x) →

x→+∞
0−

g′(x) →
x→−∞

−∞ and g′(x) →
x→+∞

0+

and from this we get that g is strictly decreasing on ]−∞; x0] and strictly increasing on [x0; +∞[. Hence,
it is a bijection on each of those intervals, but we will have to make sure that we look for its reverse func-
tion on one or the other intervals. We note h = g−1 in what follows. Here is a graphical representation
of g on a reduced intervall

FIGURE 7 – Function g on a reduced interval

Numerical application An explicit and general expression of the reverse function of g cannot be found
as it uses the Lambert function, but some softwares can provide approximate values. With the following
values

a = −21.6 b = 183.84 αCO2 = 2.2502 10−4 pK = 6.1 (7)

one gets x0
x0 ≈ 8.94

This is a very high value for the blood pH, hence one can reverse g on ]−∞; x0], and with a software
for approaching h, we get an approximate function ĥ defined by

ĥ(x) = c0 + c1 ln x + c2(ln x)2 + c3(ln x)3 + c4(ln x)4 (8)
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As the pH can only be positive, we can decide to study and define g only on a smaller interval. But
similarly, as the CO2 pressure is supposed to be positive, we can restrict again the interval and study g
only where she is positive. Finding the value for which g vanishes gives :

g(x̃) = 0 ⇐⇒ x̃ =
−b
a
≈ 8.51

and note that x̃ < x0 by construction.

Definition of h We decide to study and reverse g on the interval I = [0; x̃]. The reverse function h of g
is defined on J = g(I) = [0; g(0)] with g(0) = λ b > 0. From this we get the following definitions for
the intervals

I =
[

0;
−b
a

]
and J = [0; λ b] (9)

Numerical application gives that g(0) ≈ 1.029 1012.

Derivative of the reverse h Even if we found an approximative function close enough from h, nothing
guarantees that its derivative will be close from h′. Hence, it appears safer to use a simple trick, by
deriving the relation g(h(x)) = x

h′(x) g′(h(x)) = 1

one gets

h′(x) =
10h(x)

λ [a− (ah(x) + b) ln (10)]
(10)

As we do not have the explicit expression of h, we will use ĥ in (10) but it will be less risky than deriving
(8), as we do not know the closeness between ĥ′ and h′. From the definition of h, please note that one
can use

∀ x ∈ J, 0 < h(x) <
−b
a

to establish the following inequality for its derivative

10h(x)

λa
< h′(x) <

10h(x)

λ(a− b ln 10)
< 0 (11)

5.2 R function

This function is defined on J by

R(x) = αCO2 x (1 + 10h(x)−pK) (12)

as a composition of C1 function on the intervals on which they are defined, R is of class C1.

R′(x)
αCO2

= 1 + [1 + x h′(x) ln(10)] 10h(x)−pK (13)

So far, even if we established the inequality (11), we did not succeed in proving that R′ will not
vanish on the considered interval, so we decided to study its values on a pressure interval relevant for
our study, namely considering a minimum pressure of 4,000 and a maximum pressure of 15,000.

As one can see, even if R′ does not vanish, its values are quite small, indicating that the system may
present some numerical instabilities.
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FIGURE 8 – R’ on a relevant pressure interval

5.3 M function

This function is defined by

M(x) = R(x)
[

1 +
0.0289[Hb]

(3.352− 0.456 Sat)(h(x)− 8.142)

]
The terms on the lower part of the fraction cannot vanish, as the pH blood can never reach a value as
high as 8.142 and as the saturation Sat is comprised between 0 and 1. We note

ζ = 8.142 and µ =
0.0289[Hb]

(3.352− 0.456 Sat)
(14)

which enables to write

M(x) = R(x)
[

1 +
µ

h(x)− ζ

]
(15)

As for R, M can be derived on the proper interval, and one gets

M′(x) = R′(x)
[

1 +
µ

h(x)− ζ

]
− µR(x)

h′(x)
(h(x)− ζ)2 (16)

Now, for what follows, we need to see if M′ can vanish or not. The values for Hb and Sat are the
following

Hb = 2.19117647058824 mmol/L and Sat = 0.99

We proceed as for R′ and study the numerical values of M′, whose values are very close from the
R′’s ones.
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FIGURE 9 – M’ on a relevant pressure interval

6 Carbon dioxyde model

6.1 Equations

The assumption 2 still holds, leading to the following system for the carbon dioxyde CO2

dP2

dt
=

.
V
V2

P1 −
.

V + K1RT
V2

P2 +
K1RT

V2
P3

dP3

dt
= −RT

V3
(K1 + K2)P3 +

RT
V3

[K1P2 + K2P4]

dP4

dt
=

1
V4 M′(P4)

[
K2(P3 − P4) +

.
Q(M(P7)−M(P4))

]
dP5

dt
=

.
Q

V5 M′(P5)
[M(P4)−M(P5)]

dP6

dt
=

1
V6 M′(P6)

[ .
Q(M(P5)−M(P6))− K3(P6 − P8)

]
dP7

dt
=

.
Q

V7 M′(P7)
[M(P6)−M(P7)]

dP8

dt
=

1
V8 R′(P8)

[
K3(P6 − P8) + RQ

.
MO2

]
Remark 3 Be careful, RQ is a variable itself, and has no link whatsoever with the constant R.

6.2 Steady state

If one considers an input pressure P1 constant over time, the system is supposed to stabilize for an
infinite time towards a limit steady state. This state would be characterized by null time derivatives,
leading to the following set of equations, in which we keep for the moment the same notations than
before
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.
VP1 − (

.
V + K1RT)P2 + K1RTP3 = 0 (17)

−RT(K1 + K2)P3 + RT[K1P2 + K2P4] = 0 (18)

K2(P3 − P4) +
.

Q(M(P7)−M(P4)) = 0 (19)
M(P4)−M(P5) = 0 (20)

.
Q(M(P5)−M(P6))− K3(P6 − P8) = 0 (21)

M(P6)−M(P7) = 0 (22)

K3(P6 − P8) + RQ
.

MO2 = 0 (23)

Considering the previous sign study that we made of M′, we know that M is a bijection on the
interval of interest, hence (22) and (20) lead to

P4 = P5 and P6 = P7

combining now (21) and (23) one gets
.

Q(M(P4)−M(P7)) = −RQ
.

MO2

and combining this with (19), one gets

K2(P3 − P4) = −RQ
.

MO2

and introducing this in (18)
K1(P2 − P3) = −RQ

.
MO2

and then back to (17)

P2 = P1 +
RT

.
V

RQ
.

MO2

which can be used in all the other equations to find the other limit steady state values for the other
pressures. One can then finally write

P2 = P1 +
RT

.
V

RQ
.

MO2

P3 = P2 +
RQ

.
MO2

K1

P4 = P3 +
RQ

.
MO2

K2

P5 = P4

P6 = P7

M(P7) = M(P4) +
RQ

.
MO2
.

Q

P8 = P6 +
RQ

.
MO2

K3

6.3 Numerical implementation

The system has been implemented with 2 different numerical methods, and, with no exterior varia-
tions, the 2 models converge towards values that are approximately the ones obtained from the steady
state. The following table 10 shows how the 2 codes reach the same value what can be computed from
the steady state. The column titled computed value corresponds to an implementation with Excel, while
the column titled Implemented value gives the value obtained with a VBA code.
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FIGURE 10 – Convergence towards the steady state

14


	Study of the function f
	Notations and hypothesis
	Notations and derivatives
	Hypothesis

	Oxygen differential system
	General case
	Steady volumes
	Numerical implementation

	Nitrogen differential case
	General case
	Steady volumes
	Numerical implementation of the N2 model

	Various functions for the CO2 model
	g function
	R function
	M function

	Carbon dioxyde model
	Equations
	Steady state
	Numerical implementation


