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Abstract—Mobile networks are rapidly expanding, and there
is an increasing demand for seamless connectivity. Detecting
whether a user is indoors or outdoors is pivotal in optimizing
network performance and enhancing user experience. This paper
proposes a semi-supervised learning method using a Long Short-
Term Memory Autoencoder (LSTM-AE) that detects the user’s
environment. It uses mobile network radio signal data of real
users. The LSTM Autoencoder learns to capture the underlying
structure of the data and identify patterns that distinguish indoor
from outdoor environments. Three key features are used to train
the model: Reference Signal Received Power (RSRP), Channel
Quality Indicator (CQI), and Timing Advance (TA). Results
show that the LSTM-AE model achieves a high accuracy of
84% and an F1 score of 89%. In our approach, we achieve a
substantial reduction of 34.14% in the requirement for labeled
data compared to traditional methods that primarily rely on
fully supervised learning. By diminishing the dependence on
labour-intensive and time-consuming data labelling processes,
this improvement significantly enhances the overall efficiency of
the machine-learning process.

Index Terms—LSTM, Autoencoder,
detection, radio data, user environment

LSTM-AE, anomaly

I. INTRODUCTION

In today’s fast-paced digital landscape, mobile networks
have become the backbone of modern communication,
enabling seamless connectivity and accessibility for millions
of users worldwide. As reported in [I], there is a
proliferation of smartphones and an increasing demand
for high-quality services. This has led to the exponential
growth of mobile network data, presenting a unique
opportunity to extract valuable insights and optimize
network performance. One critical aspect of mobile network
optimization is accurately detecting and classifying user
environments, such as distinguishing between indoor and
outdoor settings [2], [3]. Understanding the user’s environment
is paramount for operators to make informed choices
regarding resource allocation, coverage enhancement, user
positioning or localization and quality of service/experience
improvements. For example, in case of user positioning,
location-based emergency services can use the information of
user environment in addition to GPS location to quickly locate
the users in need of assistance [4].

Supervised learning has been the conventional approach
for environment detection, requiring manually labeled data.
This process is, however, laborious specially when annotated
manually by a group of annotators and impractical for large-
scale or real-time applications. To tackle this problem, a
semi-supervised learning approach using Autoencoder (AE)
is proposed in this paper. Autoencoder is a class of neural
networks which learns by encoding the input data into lower-
dimensions and reconstructing it back to its original form
[5]. Long Short-Term Memory Autoencoder (LSTM-AE) is
a variant of traditional AE which is compatible for sequential
data such as mobile network radio measurements collected
over time. By exploiting the temporal time dependencies in the
data, LSTM-AE can more accurately capture complex patterns
and correlations, crucial for user environment detection.
LSTM-AE has also shown good performance in detecting
anomalies in an unsupervised manner [6].

A previous work [7] established that LSTM networks
are effective for environmental detection. This work is
extended here by introducing an semi-supervised LSTM-
based model that does not require explicit labeled data yet
maintains high accuracy. Our approach leverages anomaly
detection techniques to identify outdoor environments as
anomalous patterns within predominantly indoor settings. To
evaluate our method’s efficiency, we conducted extensive
experiments on a real-world dataset of mobile network
radio measurements, measuring the model’s F1 score and
accuracy. The results demonstrate the LSTM Autoencoder’s
effectiveness in accurately detecting user environments,
showing promising performance compared to traditional
supervised learning methods. By leveraging deep learning
and LSTM Autoencoders, we provide a robust and efficient
solution for semi-supervised user environment detection,
empowering mobile network operators to enhance network
performance, improve user experience, and facilitate a more
connected future.

Given the limitations of supervised learning for environment
detection, this paper explores a pivotal research question:
“Can we reduce labeling in user environment detection and
streamline anomaly detection process without compromising
classification accuracy?”. This question underpins our



investigation into LSTM-based model, leveraging LSTM
Autoencoders for efficient and accurate user environment
detection.

This paper is organized as follows. Section II presents
some background and related work. Section III proposes our
approach. Section IV discusses the results. The final section
presents our conclusion.

II. BACKGROUND AND RELATED WORK

The quest to discern mobile wusers’ environment,
distinguishing between indoor and outdoor or more specific
environment like home, office, building, etc. has garnered
extensive research interest in recent years. This is largely
driven by the need to optimize network performance and
enhance user experiences.

Anomalies are data points that do not conform to the
expected behavior or do not fit well within the distribution of
a dataset, and anomaly detection aims to identify infrequent
patterns in data. Indoor environments are often the prefered
or default place or more frequent user settings, especially in
urban places [9]. Thus in the context of mobile networks, since
most connected users are frequently indoors, user environment
detection can be treated as an anomaly detection problem.

Detecting network anomalies is a broad research area, with
significant research already put into it. Machine learning-
centric approach to network anomaly detection explored
various techniques such as such as Decision Trees, Support
Vector Machines, Neural Networks, Random Forest, AdaBoost
classifiers, etc., emphasizing their potential in identifying
and addressing anomalies within network systems [10]-[14].
While these works provide a solid foundation, it does not
focus on a practical implementation in dynamic, real-time
scenarios. Furthermore, there remains a pressing need to
explore and refine these methods within the specific context
of mobile user environment detection, a domain with unique
challenges and opportunities. Indoor environments can have
complex signal patterns due to factors like walls, floors,
and electronic devices, which can make indoor data more
variable and harder to predict. These researches do not fully
explore the intricate temporal dynamics of network data, a
gap that LSTM models can fill [7]. According to [7], context-
aware multi-task deep learning using LSTM are effective in
capturing these complicated environment patterns and can
handle the sequential nature of mobile network radio data.
The methodology proves effective in discerning between
different types of user settings and provides a good foundation.
However, this approach relies heavily on labeled data for
supervised training, which can be time-consuming and labor-
intensive to produce.

This brings us back to the research question, “Can
we reduce labeling in user environment detection and
streamline anomaly detection process without compromising
classification accuracy?”’. Building on this methodological
advancements, our work aims to further advance this field
by introducing a new learning approach using Autoencoders
(AE). Autoencoder is a compelling unsupervised learning

technique to diminish the reliance on extensive labeling,
offering an innovative approach to understand and compress
data without predefined labels [15]. Input data is encoded
into a lower-dimensional representation, which is subsequently
reconstructed to original form. Autoencoders are used
for dimensionality reduction, anomaly detection or feature
learning. It is well-suited for anomaly detection because
they learn to reconstruct normal data well, but struggle to
reconstruct anomalies.

LSTM Autoencoder combines the strengths of LSTM and
AE, capturing temporal dependencies in data while performing
unsupervised learning. One of the key advantages of using
LSTM Autoencoder is the ability to effectively learn the
feature representations from data without requiring explicit
labels. Previous research in [6] explores Long Short-Term
Memory Autoencoder (LSTM-AE) in softwarized network
infrastructures, particularly radiography. However, the scope
of [6] is limited to specific types of anomalies, not covering
mobile user environment detection context.

To the best of our knowledge, our paper is the first to explore
the application of LSTM-AE to mobile network data for
semi-supervised user environment recognition. It significantly
reduces the dependency on labeled data, addressing the
challenges of manual data labeling and offering adaptability
to different network scenarios.

III. LSTM AUTOENCODERS FOR USER ENVIRONMENT
SENSING

This section outlines our approach on leveraging LSTM
Autoencoders (LSTM-AE) for Indoor-Outdoor Detection
(IOD) using unlabelled radio signal data which is easily
acquirable in distributed mobile networks.

A. Data Description

In this study, we leverage a refined dataset, previously
utilized in the work [7], [8]. There are 104202 Indoor and
35576 Outdoor datapoints. Data collection occurred across
varied settings, including homes, outdoors, transportation etc.,
at different times of the day. This passive approach ensures
the dataset closely mirrors genuine user behavior and real-
world environments. In our dataset there were already several
indoor environments like different types of buildings, home,
mall and office. Fig. 1 depicts RSRP data variation across
different environments. We observe also that RSRP values
vary less when user is indoor, while they vary much more
when user is outdoor. When user is outdoor and moving then
the multiple paths of radio propagation can change, causing
the phenomenon known as multi-path induced fading creating
constructive or destructive interference as user is moving. In
comparison, in indoor places, the users are relatively less
mobile.

The focus was on the following three key mobile network
features:

o« RSRP (Reference Signal Received Power): Measures
the average received power of a single reference signal
resource element.
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Fig. 1. RSRP variations on a sample of the database

o CQI (Channel Quality Indicator): reported by UE to BS, it
gives the most appropriate modulation scheme and coding
scheme to be used for transmission.

e TA (Timing Advance): Controls signal transmission
timing.

These radio features contain valuable information about the
user’s proximity to the network base stations and the signal
strength experienced by the user’s device. These three mobile
network features were chosen because of their demonstrated
effectiveness in environment detection tasks, as shown in the
foundational paper [8]. Minimal preprocessing was needed due
to the data-set’s well-structured nature, allowing for a direct
and efficient analysis. The LSTM Autoencoder is trained on
this dataset, featuring diverse user mobility patterns and signal
measurements, to effectively distinguish between indoor and
outdoor environments.

Collecting network traffic for users on the network is a
requirement for this project to provide accurate results. It is
worth noting that the data used in this research contains no
personally identifiable information, and is only used to train
our model.

B. LSTM-AE Model for IOD

e For normal data, they are identical------------- >
INPUT REC%NUS%I'PITJU;)TED
s SEQUENCE
Decoder|
Encoder LSTM || Bottle- | Ll LsTm
neck
A compressed
low-dimensional
representation

Fig. 2. Illustration of LSTM-AE model architecture

As seen in Fig 2, the core of our LSTM-AE model
comprises of two main components: the Encoder and the
Decoder. The Encoder’s role is to efficiently compress input
features, processing them through two layers of LSTM
networks, thereby reducing the data to a manageable latent
space. Initially, it transforms the tensor with three input
features into a 256-dimensional state, which is then further
condenses this state into a 128-dimensional space. Conversely,
the Decoder tries to reconstruct the original input from the
compressed data, utilizing another two LSTM layers followed
by a dense layer. This dense layer is pivotal in translating the
128-dimensional latent representation back into the original
three-feature variable space, ensuring a proper reconstruction
of the input. This architecture not only underscores the model’s
capability to handle and analyze sequential data effectively
but also illustrates our approach on avoiding explicit labelling
in the context of mobile network analysis. This model is
implemented using the PyTorch framework, chosen for its
flexibility and dynamic computation graph, which is more apt
for this specific application. The experiment is run on NVIDIA
T4 GPU with 15 GB GPU RAM, a standard CPU, and 12 GB
system RAM. The setup enables efficient training and testing
of the LSTM Autoencoder model on a large dataset.

C. Efficient data utilisation

Our LSTM Autoencoders (LSTM-AE) model is used
to differentiate between indoor and outdoor environments
by considering the prevalent indoor data as the baseline
‘normal’ state. Given the background understanding that
indoor environments are more common [9], our model treats
the less frequent outdoor data as anomalies. Therefore,
our model treats indoor data as normal, and the minority
outdoor data as anomaly. This strategic decision allows us to
capitalize on the autoencoder’s strength in detecting anomalies,
enhancing the model’s ability to accurately discern user’s
environment within mobile networks.

The LSTM Autoencoder is thus trained exclusively on
indoor data to establish a baseline for ‘normal’ conditions
and construct a detailed internal representation of indoor
environment. The outdoor data, which is not seen during
training, is presented to the model during the testing phases.
Thus, the outdoor data is used to test and evaluate the model’s
ability to effectively differentiate the outdoor environments
based on the model’s learned indoor norm. There are no
explicit labels in the training dataset and during the validation
and testing phase. In contrast, conventional methods entail
sending all data, including outdoor and indoor data, to a central
location. Subsequently, the training process is carried out on
the entire dataset.

To estimate our savings, we consider the data that remains
unsent and unused for training in our approach:

Dataoutdoor

)

savings ~
Datatotal

This gives us a savings of 34.14%. From the total indoor
data available, 85% of the indoor data is used for training



the model, 10% of indoor data is used for validation to fine-
tune model parameters, and remaining 5% was reserved for
testing the model’s capability to generalize. Thus, outdoor data
and labels, which represents 34.14% of the whole data, is not
involved in this training process.

D. Analysis of Reconstruction Errors while using LSTM-AE

In LSTM-AE models trained on indoor data, the Mean
Squared Error (MSE) loss function is used to quantify the
difference between original and reconstructed data. MSE loss
performed better than [, loss function for this model, as MSE
loss function is ideal for capturing small nuances between
the reconstructed and original data, thereby aiding in more
accurate user environment detection. Since the model is trained
predominantly on indoor data, the model learnt the patterns
and nuances of indoor environments very well. Consequently,
when evaluating indoor data (considered ‘normal’ in this
context) the reconstruction error (MSE) is typically low
because the model can accurately predict indoor environment
patterns. Conversely, outdoor data points which the model
sees as ‘anomalous’ because it wasn’t trained on it, results in
higher MSE values due to the model’s inability to accurately
reconstruct these unseen patterns. This discrepancy in MSE
error rate values allows the model to distinguish between
indoor and outdoor environments effectively similar to a binary
classifier.

To effectively classify environments using LSTM
Autoencoder models, setting an MSE error loss threshold
is crucial to distinguish between indoor (low MSE rate)
and outdoor (high MSE rate) environments. By establishing
a threshold value, the model simplifies environmental
classification into a binary decision-making process. When
the reconstruction loss is below this threshold, the environment
is considered ‘normal’ (indoor), indicating a close match
between the reconstructed and original data. Conversely,
losses exceeding the threshold signify ‘anomalous’ (outdoor)
environments, where the model’s predictions diverge
significantly from the actual data. This strategy facilitates
accurate, and real-time differentiation between indoor and
outdoor settings, enhancing the model’s practical utility for
user environment detection.

Distribution of Losses train set- for threshold
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Fig. 3. Distribution of training set losses used for determining threshold for
model

Fig 3 shows the distribution of reconstruction losses (MSE)
for training dataset versus the threshold. The X-axis represents
the reconstruction loss value ranges and Y-axis shows how the
number of data points are distributed vs. MSE values. Only
indoor dataset is shown to the model for train. This distribution
is used to set an appropriate threshold for I0D.

The objective in selecting a MSE threshold here is to
minimize the classification problem as much as possible.
This MSE threshold will later be used for classification:
patterns showing lower MSE than threshold will be classified
as indoor and vice-versa for outdoor. This choice is crucial
because during training, the model learns to reconstruct seen
patterns with low MSE, while patterns different from the seen
patterns have higher MSE. However, setting the threshold
too low risks incorrect classification of indoor points. For
instance, in Figure 3, we observe that over 50,000 indoor
points have an MSE exceeding 10. To strike a balance between
sensitivity and specificity, we opt for a threshold of 25.
This threshold value effectively filters out only a minimal
number of normal indoor points while still being able to
classify outdoor points. Values below 25 suggest an indoor
environment (‘normal’). Conversely, MSE values above 25
indicate an outdoor environment (‘anomalous’), where the
model encounters higher errors due to unfamiliar anomalous
data patterns. This threshold-based approach enables quick,
precise and efficient environment classification.

IV. RESULTS AND DISCUSSION

This section delves into the evaluation of the LSTM
Autoencoder model’s 10D performance on the test data.
Utilizing a dataset previously explored, the model’s
effectiveness is quantitatively assessed through F1 score
and accuracy metrics. The F1 score (equation 2) provides a
balanced measure of the model’s Precision and Recall, and
Accuracy (equation 3) offers a straightforward assessment of
its overall classification success.

— 9 _Precision.Recall
Fl-score = 2 Precision+ Recall 2)
Accuracy __ True Positives+True Negatives 3)

Total number of data points

These measures highlight the model’s potential for real-
world application.

TABLE I
PERFORMANCE METRICS OF THE MODEL ON TEST DATA
Epoch(s) | F1 score | Accuracy | Precision | Recall Training
(%) (%) (%) (%) Time (min)
Our approach: LSTM Autoencoder
1 80 70 98 68 6
3 90 82 92 88 18
10 89 84 91 87 63
SOA approach: Fully Supervised LSTM [16]
10 [ 94 [ 94 [ 94 [ 94 ] 1.3

Table I shows the performance metrics improvement during
our model’s training phase. Our experiments’ choice of epoch
numbers was based on balancing computational resources with
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Fig. 4. Overlay the real and reconstructed Time Series values for RSRP feature, for normal (indoor) and anomaly (outdoor) environments

performance gains. Preliminary tests indicated that increasing
the number of epochs beyond the selected numbers did not
bring out significant performance improvements. Thus, we
focused on optimizing model performance within a reasonable
training time, which proved effective for our application. Our
LSTM Autoencoder model achieved a promising F1 score of
89% and Accuracy of 84%, thus validating our approach.
Given the complexity of the dataset, the model performed
exceptionally well in our evaluations. The metrics suggest
that our LSTM Autoencoder model is highly effective in
distinguishing between indoor and outdoor user environments.
The performance of the model indicate its robustness and
reliability in classifying user environments in mobile networks.
By employing this approach, we have significantly reduced
the cost associated with data labeling, making this a scalable
solution for larger datasets. The user environment is dynamic
(buildings, home, mall, office etc.) and evolves with respect
to the user mobility. Consequently, there might be a need to
regularly retrain the model again using new data. Our model
in such cases provides a low cost solution for an efficient
detection of the dynamic environment.

In comparison, a fully supervised method based on LSTM
[16] achieved a Fl-score of 94%. For a supervised LSTM
method, both the indoor and outdoor data is used to train
model. Besides, it requires labelling both indoor and outdoor
data, making data collection more challenging as compared to
our approach. In our approach, using only indoor data in an
unsupervised way avoids use of outdoor data and also avoids
explicit indoor and outdoor labels.

To accelerate the training process of our LSTM Autoencoder
model, we utilized Graphical Processing Unit (GPU)
resources. The parallel processing capabilities of GPUs
allowed to handle the computationally intensive tasks
associated with deep learning more efficiently. This not
only significantly reduced the training time but also enabled

experimentation with larger datasets and more complex
models, improving the overall performance and accuracy
of our environment detection system. Our model took
approximately 1 hour to complete 10 epochs, demonstrating
reasonable computational efficiency given the complexity of
the architecture and the size of the dataset.

In our model, we observed a trade-off between accuracy
and the F1 score when setting the anomaly threshold. After
numerous trials, a Mean Squared Error (MSE) value of 25 was
selected as the suitable threshold for distinguishing anomalies,
which in this context refers to user environments. The nuanced
calibration of this threshold value should be based on the
type of errors the network providers can tolerate. There is a
delicate balance between false positives (outdoor environment
considered as anomalies) and false negatives (anomalies
considered as outdoor), which needs to be established by
lowering or increasing the threshold value respectively. This
is essential for optimizing the model’s practical utility in real-
world scenarios.

In addition to the loss and accuracy metrics previously
discussed, Figure 4 offers a visual comparison of the model’s
performance by comparing the real versus the predicted time
series values for the RSRP feature for test data. The real values
are depicted by a green line, while the model’s predictions are
overlaid in red. For instances classified as ‘normal (indoor)’,
the overlapping of the two lines is so complete that the green
line is virtually obscured by the red, indicating an almost
perfect reconstruction. This close correspondence suggests
that when the LSTM Autoencoder is presented with data
resembling the training set (indoor scenarios), it can accurately
reconstruct the sequence, confirming the model’s precision in
familiar indoor contexts. Conversely, for ‘anomaly’ (outdoor)
instances, there is a noticeable difference between the real
and predicted values. The deviation aligns with expectations
for user environment detection. As the model was trained



on indoor data, outdoor environments are expected to be
more challenging to reconstruct. This visual evidence between
normal and anomaly behaviour complements our quantitative
evaluations, reinforcing the model’s utility in both feature
learning and anomaly detection for Indoor-Outdoor Detection.

V. CONCLUSION

In conclusion, our study proposes a novel application of
LSTM Autoencoders for user environment detection in mobile
networks, showcasing a promising semi-supervised learning
approach. While the previous work presented in [7] concluded
that LSTMs are best suited for this task, our model takes it
a step further by introducing LSTM-AEs, reducing the need
for expensive labeling and making the process more efficient.
We achieved a 34.14% reduction in data labeling requirements
through our approach. By leveraging unlabelled data, we
demonstrate the model’s capability to accurately differentiate
between indoor and outdoor environments, as evidenced by
robust F1 scores and accuracy metrics.

The strategic implementation of MSE loss thresholds further
refines the model’s anomaly detection efficiency. This research
not only contributes to the field of mobile network analysis but
also paves the way for future advancements in unsupervised
learning models for environmental detection. The LSTM
Autoencoder model demonstrates encouraging results and
warrants further research and model refinement. Our findings
suggest significant potential for reducing the reliance on
labeled data, offering scalable solutions for complex datasets
in real-world applications.

In future, we would like to do more in-depth quantitative
evaluation using metrics like Mean Squared Error (MSE) or
Mean Absolute Error (MAE) to better understand the model’s
limitations. Future work could focus on optimizing the model
architecture and testing this model on several data-sets having
different types of network data.Further, indoor data may evolve
as network infrastructure improves and signal measurements
become more accurate or granular, which could necessitate
retraining the model to adapt to the new data patterns and
ensure continued accuracy in detecting user environments.
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