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ABSTRACT: In electrochemical analysis, mechanism assignment
is fundamental to understanding the chemistry of a system. The
detection and classification of electrochemical mechanisms in
cyclic voltammetry set the foundation for subsequent quantitative
evaluation and practical application, but are often based on
relatively subjective visual analyses. Deep-learning (DL) techni-
ques provide an alternative, automated means that can support
experimentalists in mechanism assignment. Herein, we present a
custom DL architecture dubbed as EchemNet, capable of assigning
both voltage windows and mechanism classes to electrochemical
events within cyclic voltammograms of multiple redox events. The
developed technique detects over 96% of all electrochemical events in simulated test data and shows a classification accuracy of up to
97.2% on redox events with 8 known mechanisms. This newly developed DL model, the first of its kind, proves the feasibility of
redox-event detection and electrochemical mechanism classification with minimal a priori knowledge. The DL model will augment
human researchers’ productivity and constitute a critical component in a general-purpose autonomous electrochemistry laboratory.
KEYWORDS: cyclic voltammetry, deep-learning, mechanistic assignment, autonomous laboratory

■ INTRODUCTION
Cyclic voltammetry is one of the most popular analytical
electrochemical techniques.1−4 In fact, there is no need to look
beyond the cover of many electrochemistry textbooks to see
the famous “duck-shaped” plots of cyclic voltammograms.2−5

The relationship between current density (i) and applied
potential (E) as a function of multiple, n-numbered scan rates
(v), represented as {v, i(E)}n, is necessary for an identification
of reaction mechanisms with z-numbered redox events, in
which each includes the combinations of electrochemical
(Estep) and possibly chemical (Cstep) reaction steps.2,3,6 The
mechanistic identification starts with visual inspections that not
only descriptively inquire the voltammogram’s shape but also
quantitatively extract valuable mechanistic information includ-
ing but not limited to the redox peak potential/current, half-
wave width and/or plateau potential/current. Those quantita-
tive visual inspection is a prerequisite to either formulating the
partial differential equations (PDEs) and boundary/initial
conditions for the downstream numerical simulations that
extract quantitative thermodynamic and kinetic information,7

or consulting literature results that were determined by the
solution of those PDEs. Such hypothesized mechanism
obtained from finite electrochemical data is also instructive
towards the design of other non-electrochemical experiments,
which collectively constitute a comprehensive mechanistic
study that integrates all channels of experimental results.

Despite voltammetry’s foundational place in the pantheon of
electroanalytical tools, there is no consistent heuristic of visual
inspection for voltammograms’ use in mechanism assignment−
perhaps the most common use of cyclic voltammetry.8 Manual
visual inspection of the scan rate’s influence on voltammetric
responses under different chemical concentrations remains the
primary means of mechanism assignment. Reliance on manual
inspection precludes any application in high-throughput
systems, limits its utility for both experts and non-experts,
and renders analysis intractable when cyclic voltammograms
increase in complexity and noise.8−10

Recent advances in machine learning and artificial
intelligence offer a new perspective on voltammogram
inspection and mechanism assignment.8−10 Machine-learning
techniques have been applied to mechanistic classification of
single-redox voltammograms,11−13 and numerical fitting of
voltammogram data under a pre-determined mechanistic
assignment.14−16 It is proposed that machine learning’s
expertise in pattern recognition and feature extraction17 is
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complementary if not substitutive to manual inspection of
electrochemical data.11,12,18 For example, our recent work
reported a deep-learning (DL) model based on the
architecture of ResNet (Residual Neural Network)19 that
automatically analyzes cyclic voltammograms (Fig. 1A),
assuming the presence of only one redox event, and designates
the probable mechanism among five of the most common ones
in homogeneous molecular electrochemistry.12 The ResNet
model yields a probability distribution for five mechanisms,
represented as a vector y = {yi} (i = 1 to 5) in which yi refers to
the mechanistic propensity of the i-th mechanism. Such a
probability-driven analysis provides a more satisfying accom-
modation given the finite amount of available electrochemical
data and the finite measurement resolutions of instrumenta-
tions. A DL-based analysis opens the opportunities of
simultaneous data analysis for multiple electrochemical
techniques, a feast untenable by humans owing to the data’s
nature of high dimensionality.8

The recent development of high-throughput electrochemis-
try calls for automated electrochemical analysis, potentially
DL-based ones, with high data throughput. One new direction
of electrochemical research is the development of high-
throughput electrochemistry platforms for applications in
battery, catalysis, and electrosynthesis.20−23 The large data
throughput of automated testing requires an equivalently high-
throughput method of data analysis. Moreover, with the
exciting development of hardware, the development of online
data analysis, the prerequisite for on-line decision making
hence a higher level of autonomy, is in greater demand.
Indeed, our recent work demonstrates that integrating
automated experimentation with ResNet-based voltammogram

analysis leads to autonomous research for homogenous
electrochemistry.20 In parallel to the development of
experimentation platform, it is equally important to develop
a general purpose DL-based analysis for electrochemical data.

However, to date, the developed machine-learning models
all require one piece of important a priori information, namely
that the number of redox events z is presumably known (z = 1
in previous reports11−13), which renders the DL models not
entirely on par with manual inspection. In a typical manual
inspection of voltammograms without any a priori information,
human researchers first identify and locate any redox events in
the voltammogram, i.e. a task of object detection, then
determine the mechanism type for each redox event, i.e. a
task of classification, before potentially establishing any
correlation among redox events in search of causality. While
reported algorithms are capable of mechanistic classification
for single-redox events in voltammograms,11−13 a DL
algorithm, tasked with both object detection and classification,
remains to be developed for automated analysis of cyclic
voltammetry. As DL architecture such as Faster R-CNN
(Regional Convolutional Neural Network)24 has been widely
used for the recognition and classification of two-dimensional
images in a wide range of applications, we envision using Faster
R-CNN architecture to develop a voltammogram-reading DL
model with the functionalities of both redox-event detection
and mechanism classification.

Here we report a custom-designed DL architecture based on
Faster R-CNN, the first of its kind and dubbed as EchemNet,
capable of both redox-event detection and mechanism
classification for cyclic voltammograms of multiple redox
events (multi-redox CVs) with minimal a priori information

Figure 1. A, the comparison of different approaches to the analysis of cyclic voltammograms (CVs), including the deep-learning (DL) architecture
based on Faster R-CNN (Regional Convolutional Neural Network) dubbed as EchemNet. B, the classes of electrochemical mechanisms included
in EchemNet. C, exemplary illustration of simulated CVs of multiple redox events (multi-redox CVs) used as training set in this study. Each data
point in the training set contains a set of multi-redox CVs with n-numbered scan rates and z-numbered redox events ({v, i(E)}n, n = 1 to 6; z = 1 to
4). The color of the voltammogram traces illustrates the scan rate v: the darker the color, the larger the value of v. ResNet, Residual neural network.
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(Fig. 1A). As voltammetry data {v, i(E)}n are intrinsically sets
of one-dimensional (1D) vectors instead of two-dimensional
images, a custom-designed model of 1D Faster R-CNN
architecture is developed to locate the potential window for
up to 4 redox events (z ≤ 4) and designate the probable
mechanism in a probabilistic manner (Fig. 1A). The
EchemNet is trained by simulated multi-redox CVs of up to
6 scan rates and up to 4 independent redox events ({v, i(E)}n,
n = 1 to 6; z = 1 to 4), categorized in 8 different reaction
mechanisms spanning homogeneous, heterogeneous, and
surface electrochemistry (Fig. 1B). The DL model exhibits
an overall F1 score, a statistical combined measure of binary
classification in accuracy and sensitivity,25 of up to 0.937
towards redox-event detection and mechanism classification
among simulated voltammograms, while preliminary testing
with experimental data are satisfactory as well. Our work
showcases the feasibility of a DL algorithm for voltammogram
analysis without the need for any a priori knowledge, hence the
genesis of a general-purpose autonomous platform of electro-
chemical research that augments the productivity of human
researchers.

■ RESULTS AND DISCUSSION
A Training Set of Simulated Voltammograms of

Multiple Redox Events (Multi-redox CVs). The dataset
that yields EchemNet includes simulated multi-redox CVs,
conducted via finite-element methods using COMSOL
Multiphysics v5.5 (Supplementary Note 1). What we sought
is to establish a dataset of simulated voltammograms that
sample the majority of if not the whole numerical parameter
space for each mechanism as defined in textbooks2,3

(Supplementary Note 2). Each data point in the dataset
includes voltammograms of up to 6 scan rates and up to 4
redox events ({v, i(E)}n, n = 1 to 6; z = 1 to 4).

Eight common mechanisms in electrochemistry (Fig. 1B)
have been included following the textbook definitions
(Supplementary Note 3):2,3 (1) the single-electron quasi-
reversible homogeneous electron transfer (E); (2) a single-
electron quasi-reversible homogeneous oxidative electron
transfer followed by a chemical reaction of the oxidant in the
solution (anodic EC); (3) a single-electron quasi-reversible
oxidative electron transfer preceded by a chemical reaction of
the reductant in the solution (anodic CE); (4) the single-
electron heterogeneous electron transfer following the Tafel
kinetics (T), when the heterogenous concentration-dependent
Butler-Volmer kinetic is irreversible (no back reaction) at
relatively large overpotentials; (5) the two-electron homoge-
neous electron transfer, in which a single-electron transfer is
followed by an irreversible, rate-determining chemical step and
a disproportionation step (DISP-1); (6) a similar two-electron
homogeneous electron transfer, in which a single-electron
transfer is followed by an irreversible chemical step and a
thermodynamically less demanding single-electron transfer
(ECE); (7) the homogeneous electrocatalysis, in which a
single-electron transfer is followed by a chemical step that
regenerates the redox-active catalyst (ECcat or EC’); (8) the
interfacial single-electron transfer when the redox species
follows the Butler-Volmer kinetics and is bound on the
electrode surface (SR). Here we emphasize that the
categorization of EC and CE mechanisms are defined as the
anodic scan of voltammogram is considered the “forward”
direction, because an anodic/cathodic EC mechanism is

mathematically equivalent to a cathodic/anodic CE one,
respectively, following the textbook definitions.2,3

One fundamental assumption that we impose when
establishing the dataset of simulated voltammograms is that
the redox reactions are independent to each other. This
assumption pertains to the scenarios when multiple redox
species of relatively dilute concentrations coexist in the
electrolyte solution, and the reactants/products of redox
reactions do not interfere with each other. Despite the
foreseeable practical relevance in electrochemical analysis,
typically conducted in diluted solutions, this assumption does
not include the scenarios when a single chemical species
undergo multiple redox events or multiple redox species are
interconnected via chemical reactions (C steps). However, we
contend that our assumption should suffice to demonstrate the
feasibility and proof-of-concept of analyzing voltammograms
with DL models. Technically, it is much more challenging to
implement finite-element simulations for arbitrary combina-
tions of multiple redox systems with sufficiently high
simulation throughput. More discussion regarding this
limitation can be found in Supplementary Note 2.

A multi-step process is developed to establish the dataset of
simulated multi-redox CVs. First, the parameter space of each
mechanism, for example the value ranges for scan rate (v),
exchange current density (i0), equilibrium constant (K),
forward kinetic rate constant (kf) in the EC mechanism, as
well as redox species’ diffusion coefficient (D) and initial
concentration (CR,i), are carefully defined following textbooks
and prior literature2,3 (Table S1, Supplementary Note 3).
Second, we randomly sampled about 3,000 parameter
combinations following the constraints defined in Table S1,
for each mechanism type with up to 6 different scan rates (n =
1 to 6). Third, from the available 8 mechanisms and about
24,000 (= 8 × 3000) parameter combinations, we randomly
selected no more than 4 parameter combinations (z = 1 to 4)
and deployed finite-element simulations to yield simulated
multi-redox CVs, with randomized redox sequences, voltage
spacings among every redox event, and relative concentrations
of redox species that dictate the current densities i among
different redox features (Fig. 1C).

About 80,000 data points of simulated multi-redox 6-scan
CVs ({v, i(E)}n, n = 6; z = 1 to 4), about 480,000 (= 6 ×
80,000) voltammograms in total, were generated. The number
of generated voltammograms is much smaller than the
theoretical value of about 1017 different combinations of
parameters for simulated multi-redox CVs based on the above
protocol (mathematically calculated based on the permutation
expression P4

24,000 = 24,000!/(24,000−4)!). As shown below,
such a relatively small amount of data is sufficient for the DL
model’s establishment, among which 90% of these data points
are the training data and the rest 10% are the test data
(Supplementary Note 1).

Some additional assumptions are made when establishing
the data set of simulated multi-redox CVs. As we aim to
demonstrate the DL’s feasibility in analyzing multi-redox CVs
first, the voltammograms in the proof-of-concept training set
assume that each redox event is independent to each other
(Supplementary Note 2). We also ensure that the training set
includes well-separated redox peaks, and the current densities
of redox peaks are on the same order of magnitudes among all
redox events (Supplementary Note 4).

Definition of the Model’s Input, Outputs, and
Ground Truth. The establishment of DL model requires
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explicit definitions about the model’s input, outputs, and the
corresponding “ground truths” for the outputs. Below we
discuss these items based on the dataset of 480,000-large
simulated multi-redox CVs established in the previous section.

The DL model’s input is the multi-redox 6-scan CVs ({v,
i(E)}n, n = 1 to 6; z = 1 to 4). More specifically, a data
structure of three-dimensional tensor with a size of (6 × 3 ×
1000) was deployed following our previous work.12 Each input
tensor records the normalized voltages Enormalized, normalized
current densities inormalized of both forward and backward scan,
as well as the absolute values of scan rate vn, for one set of
multi-redox 6-scan CVs (Supplementary Note 5).

To increase the robustness of the developed DL model (see
below), a certain extent of Gaussian noise was applied to the
normalized current density inormalized (Supplementary Note 5)
following the same protocol as our previous work.12 When
adding the Gaussian noise, each data point of normalized
current inormalized is added with a random value of noise, whose
probability follows a normal distribution with a dimensionless
standard deviation σ. We denote σtrain when this noise is added

to the simulated voltammograms during the training process of
DL model, while σtest is denoted when the noise is added
during to the simulated voltammograms during the testing for
the trained DL model. σtrain = σtest = 0.01 unless otherwise
noted

Mathematically, a Gaussian noise can be Fourier trans-
formed in the frequency domain with equal weights for all
possible sequences. Hence the added noises our simulated
voltammograms contain frequency components across all
frequency values up to the frequency of data sampling. Thanks
to its stochastic nature, Gaussian noise is a good representation
for thermal fluctuations during experimental electric measure-
ment.26 However, we acknowledge that it may not represent
noises from other origins, for example from the intrinsic
properties of the operational amplifiers (op-amps) and high/
low-pass filters.

One type of outputs from the DL model is the voltage
window, presented as the cathodic and anodic voltage bounds,
for each redox event in voltammograms. As there are at most
four redox events in the simulated voltammogram training set,

Figure 2. A, The input, outputs, and general architecture of the deep-learning (DL) model, “EchemNet”, tailored to the analysis of multi-redox
CVs. B, Highlights in the custom-designed model that includes one-dimensional (1D) regions of interest (RoIs) and the calculation of Intersection
over Union (IoU), in comparison to the default two-dimensional (2D) one used in image recognition. The use of 1D RoI, a certain voltage range in
the voltammogram generated by the DL model for a proposed detection of redox events, ensures that object detection will not be inadvertently
affected by the magnitude of current density i and will not lose sensitivity towards small redox features. In our 1D redox-detection model, the IoU is
calculated as the ratio of the voltage-range overlap between the RoI and ground truth of Elow and Ehigh (“Intersection”) to the combined voltage
range between the RoI and ground truth (“Union”).
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one to four pairs of the cathodic and anodic voltage bounds,
denoted as Elow and Ehigh, respectively, are expected to be
determined by the DL model from the input tensor of 6-scan
voltammograms. The Elow and Ehigh outputs are normalized
voltage values, as the DL model receives normalized voltages
Enormalized as inputs. The use of Elow and Ehigh to represent the
voltage window without the information on current density i is
consistent with our design of one-dimensional (1D) object-
detection model (see below).

The other type of outputs from the DL model is the
propensity distribution of probable mechanisms for each
detected redox event. Here we define the one-dimensional
vector yz = {yz,i} (i = 1 to 9) as the mechanistic propensity
distribution for the z-th detected redox event. In this 9-
component vector yz, yz,i (i = 1 to 8) denotes the predicted
probability for the aforementioned 8 mechanisms in their
discussed order. A 9th component yz,9 is added to denote the
residual predicted probability of the background double-layer
charging, noted as φ class, whose voltammetric feature is also
displayed in Fig. 1B. Not only will the inclusion of φ class
offers a semi-quantitative evaluation of the redox feature’s
prominence amid the background of double-layer charging, the
inclusion of φ class is indeed consistent with the architecture
of DL algorithm in which there is always a “null” category
whose probability indicates the extent of inability in
classification.19,24

The ”ground truth” of the DL-based analysis is also
established. In statistics and machine learning, the term
“ground truth” is defined as the knowledge of the truth
concerning a specific question. Specific in our works, the
ground truth of specific multi-redox 6-scan CVs corresponds to

the known values of redox features’ voltage positions and their
corresponding underlying mechanism The ground truth of
redox features’ voltage positions are represented by the known
values of Elow and Ehigh, which were calculated following a
uniform protocol for each redox event in the simulated
voltammogram (Supplementary Note 4). The ground truth of
redox’s underlying mechanism is presented by designating the
corresponding yz,i = 1 for the mechanism under which the
voltammograms were simulated, and yz,i = 0 for all the other
ones. The voltammogram data {v, i(E)}n and the correspond-
ing ground truth Elow and Ehigh were normalized before being
deployed for the model’s training, validation, and testing
(Supplementary Note 5).

Design of Deep-Learning (DL) Architecture. A custom-
designed Faster R-CNN architecture was needed to establish
the EchemNet model. The presence of multiple electro-
chemical events/mechanisms within a single cyclic voltammo-
gram precludes the use of image classification algorithms such
as ResNet19 alone. Alternatively, convolutional layer-based
algorithms, specifically object detection algorithms, can be
considered as a mature technology for the elucidation of
electrochemical mechanisms contributing to a convoluted {v,
i(E)}n output. One such architecture, Faster R-CNN,20 is
selected. In such a DL architecture, an online region proposal
network (RPN) is trained end-to-end to perform the tasks of
both redox detection and mechanistic classification (Fig. 2A),
with the deployment of feature pyramid networks27 that
promote multi-scale detections.

However, the intrinsic feature of voltammograms, and more
broadly electrochemical data in general, calls for a 1D
adaptation of the DL architecture. Although typical algorithms

Figure 3. A, Explanations and the logical flow chart of the true positives, false positives, and false negatives in the established EchemNet model for
both redox-event detection and mechanism classification, along with the definitions of metrics for performance evaluation. B, The assay of test-set
voltammograms and the DL model’s performance. The test set is roughly 10% of the whole dataset of simulated voltammograms (Supplementary
Note 1). C, Confusion matrix, a commonly deployed performance evaluation tool that represents the accuracy of a classification model, from the
test-set assay for the whole test set (left) and within the cases of true positive 1 (tp1) after redox-event detection (right). Row count, the number of
encounters when the corresponding mechanism on the row of “True label” were analyzed in the test set.

ACS Electrochemistry pubs.acs.org/electrochem Article

https://doi.org/10.1021/acselectrochem.4c00014
ACS Electrochem. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/suppl/10.1021/acselectrochem.4c00014/suppl_file/ec4c00014_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acselectrochem.4c00014/suppl_file/ec4c00014_si_001.pdf
https://pubs.acs.org/doi/10.1021/acselectrochem.4c00014?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acselectrochem.4c00014?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acselectrochem.4c00014?fig=fig3&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acselectrochem.4c00014/suppl_file/ec4c00014_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acselectrochem.4c00014/suppl_file/ec4c00014_si_001.pdf
https://pubs.acs.org/doi/10.1021/acselectrochem.4c00014?fig=fig3&ref=pdf
pubs.acs.org/electrochem?ref=pdf
https://doi.org/10.1021/acselectrochem.4c00014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of Faster R-CNN are developed for the analysis of two-
dimensional (2D) images,24 object detection in voltammo-
grams is intrinsically a one-dimensional (1D) task, because
from a chemistry perspective the location of every redox event
should only be E-dependent in voltammograms. A deployment
of 2D object detection in voltammograms will explicitly
introduce the magnitude of current density i as a criterion of
redox-event detection, inadvertently position a bias towards
large redox events and significantly decrease the detection
sensitivity towards small ones.

Hence, we employed the tools in Faster R-CNN with 1D
custom implementation. A custom-designed 1D RPN gen-
erates a region of interest (RoI), defined as a certain voltage
range (Elow and Ehigh) proposed by the DL model, for possible
detection of a redox event (Fig. 2A). During the training and
validation of DL model, the RoIs generated from RPN are then
compared with the ground truths of Elow and Ehigh defined in
the earlier section, to evaluate the model’s accuracy of redox
detection. In typical 2D image recognition, the algorithm
evaluates the performance of object detection with the term
named as Intersection over Union (IoU), which is calculated as
the ratio of the overlap area (“Intersection”) to the combined
area (“Union”) between an algorithm-detected object and the
corresponding ground truth in a 2D image (hence IoU ∈
[0,1]) (Fig. 2B). In accordance with the 1D adaptation of RPN
and RoI, to assess the quality of object detection, 1D IoU was
calculated as the ratio of the overlap voltage range to the
combined one between algorithm-yielded voltage window
(Elow and Ehigh) and the corresponding ground truth (IoU ∈
[0,1] as well) (Fig. 2B). As shown later, a value of IoU ≥ 0.75
is considered a satisfactory detection of the redox feature by
the DL algorithm. The deployment of 1D RoI and IoU
provides high fidelity between the bounds of known and
predicted redox events in voltammograms, leading to an
algorithm with a highly effective means of mechanism
enumeration from complex voltammogram data (Fig. 2A and
S1, Supplementary Note 5).

The algorithm also deploys ResNet, as reported in our
previous work,12 for the classification in each RoI among the
aforementioned 8 mechanisms and the null class (φ) that
indicates the voltammogram background without any
designated redox events (Fig. 1A). It takes about 12 h to to
train the DL model for about 100,000 epochs. As exemplified
in Fig. 2A, the developed EchemNet after satisfactory training
(Fig. S2) is designed to discern multi-redox CVs and
enumerate the voltage window of the z-th detected redox
event (RoIz) represented as normalized voltage values (Elow
and Ehigh), the corresponding mechanistic propensity distribu-
tion yz = {yz,i} (i = 1 to 9) towards the trained 8 redox
mechanisms plus φ class, and the assignment of the most
probable mechanism.

Performance Evaluation. There are two separate yet
related metrics for the evaluation of a DL model for both
object detection and classification: Metric I, the effectiveness of
the RPN to detect events independent of their mechanism, i.e.
performance in redox detection alone; Metric II, the overall
inference performance which is the combination of redox
detection (matching of predicted voltage windows with the
ground truth) and classification (matching of the predicted
most probable mechanism with the ground truth) of the RoIs
provided by the RPN (Fig. S1).

In the evaluation of object detection alone (Metric I, Fig.
3A), 3 different outcomes are possible through the course of

region proposal and object detection: RoIs represented as Elow
and Ehigh predicted by the RPN could ultimately align with
ground truth of redox bounds (object detection true positive,
tp1; when IoU ≥ 0.75 between the algorithm-yielded proposed
redox voltage window and the corresponding ground truth) or
not (object detection false positive, fp1), and regions where
known true redox bounds were not detected were assigned as
false negatives ( fn).

In the evaluation of overall inference performance (Metric
II, Fig. 3A), a true positive (tp2) is logged when the ground
truth mechanism i for the z-th detected redox is confidently
denoted as the most probable mechanistic propensity in yz
vector (yz,i ≥ 0.7) with good overlap with the redox’s voltage
bounds (IoU ≥ 0.75); while the false positives are further
categorized based on whether the model-yielded RoIs detect a
real redox event ( fp2) or merely detect φ background ( fp3)
(Fig. 2A). There is no delineation between the false negatives
( fn) between object detection (Metric I) and overall inference
(Metric II), hence the fn sub-population remains the same to
the evaluation of object detection and overall inference
metrics.

The developed DL model was evaluated for its performance,
in a protocol similar to our previous report,12 after being
trained by simulated multi-redox CVs ({v, i(E)}n, n = 6; z = 1
to 4; σtrain = 0.01). The test set for the DL model includes
about 8,000 points of 6-scan voltammograms, 10% of the
whole dataset that were not exposed to the developed DL
model during the training process. The DL model exhibits an
average IoU of 0.966 among the test set, where unity
constituted a perfect overlap of predicted bounds with ground
truth voltage windows (Fig. 3B). This is remarkable since
within the DL algorithm a threshold value of IoU for a
satisfactory redox detection is only 0.75.

Following the protocol of statistical analysis in image
recognition and more generally binary classification,21 the
precision (P) and recall (R) of both metrics are calculated to
evaluate the predictability and sensitivity, respectively, of the
DL model (Fig. 3A). Here P is calculated as the percentage of
true positives (tp) among the sum of tp and false positives
( fp), which represents the accuracy of detecting correct redox
features among all the detected ones; R is calculated the the
percentage of true positives (tp) among the sum of tp and false
negatives ( fn), which represents the sensitivity of not missing
any detections of real redox features. Calculating the harmonic
means of P and R in both metrics lead to the F1 scores, an
overall measure of a model’s performance whose calculation is
shown in Fig. 3A.25 A DL model of high F1 score is not only
accurate in detecting redox features without much incorrect
ones, but also sensitive enough to not miss any real redox
features. As shown in Fig. 3B, the F1 scores in Metrics I and II
reach 0.952 and 0.937, respectively, illustrating strong
performance by the RPN (Metric I) and overall balanced
performance with high values of both precision and recall
(Metric II). Such a performance is satisfactory to say the least,
based on the standard of image recognition,21 within our
aforementioned assumptions and our dataset of simulated
voltammograms.

We also evaluated the class-by-class accuracies from the
developed EchemNet model. As the developed ResNet
classifies RoI into not only the 8 designated electrochemical
mechanisms but also the null class (φ), i.e. the background
without any redox events, we first established a confusion
matrix that includes 8 mechanisms and the φ events with tp1,
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Figure 4. A to D, simulated voltammograms of 6 different scan rates (v = 6) with 1, 2, 3, and 4 redox events (z = 1, 2, 3, and 4), respectively. The
most probable mechanisms from the DL model, also the ground truths, are labelled with corresponding propensity values. The solid dark-red
rectangles denote the ground truths of redox’s voltage windows (Elow and Ehigh in Supplementary Note 4), and the dashed ones of bright-red color
denotes the DL-generated RoIs. E to G, experimental voltammograms of 1 mM cobalt(II) tetraphenylporphyrin (CoIITPP) alone (E), and with 0.1
mM and 0.5 mM chloroacetonitrile (ClCH2CN) (F and G, respectively). 0.1 M tetrabutylammonium hexafluorophosphate (NBu4PF6) in
dimethylformamide (DMF); Ar glove box; 3 mm glassy carbon disk working electrode;−1.5 V to−0.9 V vs. Ag/Ag+ (10 mM AgNO3 in
acetonitrile) reference electrode; Pt wire counter electrode; 10, 20, 30, 50, 70, and 100 mV/s; 3rd cycle; iR-compensated; The formal potential for
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fn, fp1, and fp3 events highlighted (left in Fig. 3C). In machine
learning, a confusion matrix is a commonly deployed
performance evaluation tool that represents the accuracy of a
classification model. Each row in the plots of Fig. 3C enlists the
percentage of redox features, simulated based on a designated
mechanism (“true label” in Fig. 3C), that are classified into a
specific mechanism (“predicted label” in Fig. 3C). The number
of encounters for each mechanism in the test set (“Row
counts” in Fig. 3C) is relatively homogenous among all
mechanisms, illustrating a fair and balanced test to the DL
model. As shown in the left plot of Fig. 3C, accurate
mechanistic classification is achieved among mechanisms.

We further revised the “confusion matrix”, shown as the
right plot of Fig. 3C, to better reflect the accuracy of the DL
model in practical applications. Practically, the DL’s function-
ality in the context of mechanism classification will not be
affected by the presence of fp1 cases with φ prediction (hence
fp3), contributing to 39% of total fp1 cases, when the DL
algorithm unnecessarily yet correctly identifies a voltage
window in the voltammogram that does not have any redox
events and can be easily dropped in our model. Therefore, we
plotted a revised confusion matrix among all tp1 cases, with a
tp2 accuracy of 97.2%, presumably better reflecting the model’s
utility in mechanistic analysis (right in Fig. 3C). Our results
suggest that DISP-1 mechanism is the most confused one,
evident from non-negligible probabilities of mis-assigning a
DISP-1 mechanism as EC/CE one, or vice versa. Such
phenomenon is similar to the one observed in our previous
report of ResNet architecture for mechanism classification
when only one redox event is known to exist.12 The results
reflect the similarity in voltammograms among DISP-1 and
EC/CE mechanisms, as depicted in the textbooks,2,3 when the
single-electron (EC/CE) and two-electron processes (DISP-1)
are both under pure kinetic conditions.

While not detailed here, there are two more important
metrics for the developed DL model: the robustness towards
noises and the sensitivity of detecting small redox features. We
analyzed those two metrics (Fig. S3 and S4) and provided our
insights towards those two features can be found in
Supplementary Note 7. In short, we consider the developed
model robust and sensitive for data taken under good
experimental practices.

Deployment Examples. We first illustrate the utility of
the developed EchemNet model via analyzing simulated
voltammograms. Fig. 4A to 4D display the simulated
voltammograms ({v, i(E)}n, n = 6, σtest = 0.01) with the
numberof redox events z = 1, 2, 3, and 4, respectively, which
was new to the trained DL model. The solid dark-red
rectangles denote the redox events’ voltage windows (Elow and
Ehigh), derived based on our protocol and designated as the
ground truth (Supplementary Note 4), while the dashed ones

of bright-red color denote the RoIs generated from
EchemNet’s analysis. The close match between the designated
ground truths and the analyzed RoIs suggest satisfactory
performance of object detection with a IoU threshold value of
0.75 (tp1 in Fig. 3A). Moreover, each detected redox event is
subject to mechanistic classification via the ResNet architec-
ture. The most probable mechanism for each redox z (RoIz) is
labelled on the voltammograms along with the corresponding
propensity yz,i, while the DL model outputs the whole yz vector
of mechanistic propensities. The high yz,i values for the
correctly predicted mechanisms illustrate the model’s high
analytic fidelity. Statistically, our testing of about 8,000 points
of simulated 6-scan voltammograms report the tp2 accuracies
of 98.2%, 97.8%, 97.2%, and 96.6%, when z = 1, 2, 3, and 4,
respectively. Such results indicate that despite slight decay the
tp2 accuracy is relatively insensitive against the number of
redox events (z) and the developed DL model is robust against
the increasing complexity in the voltammograms.

We deployed the EchemNet to analyze experimental data in
exemplary chemical systems. Cobalt(II) tetraphenylporphyrin
(CoIITPP) is known to undergo a quasi-reversible one-electron
charge transfer (E mechanism) between formally Co(II) and
Co(I) redox states (∼−0.785 V vs. Saturated Calomel
Electrode, SCE24) in dimethylformamide (DMF) (Supple-
mentary Note 6). From experimental voltammograms (n = 6),
such an E mechanism was correctly detected and classified by
the DL model based on both RoI alignment and the
corresponding yz vector that includes mechanistic propensities
of 8 mechanisms plus background (φ) (Fig. 4E).

When chloroacetonitrile (ClCH2CN) was added to the
solution of CoIITPP, the electrogenerated Co(I) species
nucleophilically attacked ClCH2CN electrophile and yielded
Co(III)−CH2CN, rendering the Co(II)/Co(I) redox irrever-
sible (predicted by the model as CE mechanism due to its
cathodic nature). At a more cathodic potential (< ∼−1.0 V vs.
SCE28), the yielded Co(III)−CH2CN species is reported to
undergo multiple steps in a catalytic fashion, yielding
voltammogram responses resembling either a T or ECcat
mechanism.28 At a small equivalent of ClCH2CN (Fig. 4F),
the DL model correctly detects and classifies the catalytic
process at more cathodic potentials (RoI1), while detecting the
Co(II)/Co(I) redox and classifies it as an E mechanism
(RoI2), albeit with a much lower propensity (yE = 60.4 % in
Fig. 4F against 79.1% in Fig. 4E), consistent with the increase
of irreversibility owing to the reaction between Co(I) and
ClCH2CN.24 At a larger equivalent of ClCH2CN (Fig. 4G),
similar catalytic (RoI1) and Co(II)/Co(I) (RoI2) features are
detected from the voltammograms, yet now the Co(II)/Co(I)
redox is so irreversible that the most probable mechanism is
assigned as CE (71.8%), indicative a greater extent of the
reaction between Co(I) and ClCH2CN. The DL analysis of the

Figure 4. continued

the CoII/ITPP redox was determined as−1.278 V versus ferrocene/ferrocenium (Fc/Fc+). H to K, experimental voltammograms of 1 mM 1-methyl-
2-azaadamantane-N-oxyl (1-Me-AZADO) alone (H), 1 mM 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-MeO-TEMPO) alone (I), 1 mM 1-
Me-AZADO with 50 mM benzyl alcohol (PhCH2OH) (J), and 0.5 mM 1-Me-AZADO and 0.5 mM 4-MeO-TEMPO with 50 mM PhCH2OH (K).
0.15 M NaHCO3/Na2CO3 buffer (pH 9.14); Ambient conditions in N2; 3 mm glassy carbon disk working electrode; 0.05 to 0.85 V vs. Saturated
Calomel Electrode (SCE); Pt wire counter electrode; 50 mV/s; 3rd cycle; iR-compensated. L, experimental voltammograms of Pt disk electrode in 1
M H2SO4 under N2 atmosphere.−0.25 V to 1.6 V vs. Ag/AgCl (3 M KCl) reference electrode; Pt wire counter electrode; 10, 20, 50, 100, 200, mV/
s; 3rd cycle; iR-compensated. *, the feature of H2 re-oxidation. The RoIs from EchemNet and the corresponding propensity distribution vectors yz
towards 8 mechanisms plus background (φ) are all labelled in E to L. The voltammograms plotted in E to L have been normalized in both axes so
that the exact E and i values are not displayed. More information about experimental methods is available in Supplementary Note 6.
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electrochemical data for CoIITPP in the presence of ClCH2CN
is satisfactory.

We then challenged the DL model to analyze the redox and
catalysis of nitroxyl derivatives in aqueous solutions,29,30 but
now with only a single voltammogram curve (n = 1) instead of
the default value of 6 (Supplementary Note 6). This is
intended to test whether the DL model, while trained by {v,
i(E)}n (n = 6), is applicable towards electrochemical datasets
with a smaller number of scan rates. As implemented in our
prior work,12 we populated the 3D input tensor with 6
identical voltammograms and scan rates and fed the tensor into
the DL model for analysis (Supplementary Note 5).

Quasi-reversible redox features of an E mechanism were
successfully detected and classified by the DL model for 1-
methyl-2-azaadamantane-N-oxyl (1-Me-AZADO) (Fig. 4H)
and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-MeO-
TEMPO) (Fig. 4I). When benzyl alcohol (PhCH2OH)
substrate is added to the solution of 1-Me-AZADO, two-
electron electrocatalytic oxidation of PhCH2OH via the ECcat
(or EC’) mechanism emerges (Fig. 4J).3,29,30 Such voltam-
metric response is correctly detected and identified (RoI2), yet
a false positive ( fp3) is also yielded with a yφ = 78.0% (RoI1).

When PhCH2OH is added to a mixture of 1-Me-AZADO
and 4-MeO-TEMPO, both 1-Me-AZADO and 4-MeO-
TEMPO serve as ECcat electrocatalysts in parallel, albeit at
different catalytic onset potentials (Fig. 4K).29 The resultant
voltammogram display a two-step staircase shape, which was
not close to any of the scenarios by which the DL model was
trained. Surprisingly, the DL model correctly detects and
classifies the general trend of the ECcat mechanism (RoI4),
amid one fp3 (RoI1) and two fp2 (RoI2 and RoI3) cases with
high φ propensities (> 75%) (Fig. 4K). It is interesting that
both fp2 cases correctly detect redox events beyond the
background and the second most likely mechanism is ECcat for
both (6.13% and 16.3%, respectively). Our results suggest that
the EchemNet may still be used for voltammograms with fewer
scan rates (n < 6), yet prone to false-positive outputs.
Practically, the issue of false-positives can be addressed in post-
analysis by removing any detections whose φ propensity is
larger than a threshold (say, 60% based on Fig. 4J and 4K).
Our results hint that the EchemNet could be “stretched” a bit
for the analysis of scenarios new to the model (more discussion
in Supplementary Note 8), but a more systematic evaluation
ought to be conducted in the future.

The reported EchemNet model was further deployed to
analyze voltammograms of polished Pt disk electrode in 1 M
H2SO4 under N2 environments (Fig. 4L, see Supplementary
Note 6). As a classic textbook example of electrochemically
active materials,2 within the solvent window four major
features are expected: the cathodic proton-reduction reaction,
the surface bound hydrogen underpotential deposition, the
surface redox chemistry of oxide formation, the anodic water-
oxidation reaction. The developed DL model correctly
identified the surface redox of hydrogen underpotential
deposition (RoI2, ySR = 88.5%), as well as the anodic water
oxidation reaction (RoI3, yT = 89.7%). However, the DL model
has mis-assigned the cathodic proton reduction as ECcat (EC’)
mechanisms in RoI1 ( fp2). The surface oxide redox was
detected as RoI5, but mechanistically designated primarily as
double-layer capacitive charging (yφ = 93.4%) with surface
redox (ySR = 5.32%) as the second most probable mechanism.

In Fig. 4L, the misassignment of RoI1 is possibly due to the
feature of H2 re-oxidation in the voltammogram (highlighted

as * in Fig. 4L) that was not part of the training dataset
designed as T mechanism (See Supplementary Note 3). The
mis-assignment of RoI5 is hypothesized to originate from the
small and relatively broad feature of surface oxide on Pt, as the
training data were established with a minimal ratio of 5
between the redox signal and the double-layer capacitive
charging (See Supplementary Note 3 and Table S1). Our
results suggest much room of improvements for the
EchemNet’s deployment on more complicated electrochemical
systems. The mis-assignment in RoI1 highlights the importance
of proper training set that includes all the possible variations in
a certain mechanism; the unsatisfying assignment in RoI5
suggests that the DL model should be more sensitive (i.e.
higher weights) towards small redox features when the signal
intensity is comparable to the double-layer capacitive current.

■ CONCLUSION
In this work, we demonstrated the feasibility of a DL model to
detect and analyze redox features in cyclic voltammograms of
multiple redox events. We developed a custom-designed Faster
R-CNN architecture that tailors to the 1D data format in
electrochemical characterizations. Furthermore, we evaluated
the DL model’s performance against simulated and some
exemplary experimental voltammograms. Such an EchemNet
model aligns well with the need for high-throughput data
analysis in a general-purpose autonomous electrochemistry
platform, which is expected to automatically analyze
experimentally measured data on-the-fly with little if any a
priori knowledge of the chemical system and transduce the
available finite information from the analytical results into a
decision-making process for the next robotic experiment
execution. The EchemNet model’s capability of detecting an
arbitrary number of redox events is commensurate with a data
analysis process that accommodates a wide range of redox
events, expected or unexpected, with little if any a priori
chemistry knowledge.

The inner working of our DL model resembles if not repeats
the numerical simulation/fitting procedures classically applied
in quantitative mechanistic analysis of voltammograms (Fig.
S5). As commonly quipped as a fancy fitting program, a DL
model conducts classification tasks by numerically fitting
through neural networks of various architectures. Therefore,
when a DL model is asked to analyze a new voltammogram,
effectively the model numerically “fits” the voltammogram in a
single-pass against all the PDEs defined by their corresponding
mechanisms in a parallel manner, instead of the iterative
manner in the classic approach (Fig. S5). Although numerical
simulation/fitting remains needed in the DL-based analysis to
extract quantitative thermodynamic/kinetic information, the
probabilistic manner of DL analysis differs from the classic one
that relies heavily on the manual selection of mechanism
formalism and the resultant PDEs.

The DL model’s probabilistic approach of mechanistic
classification avoids deterministic mechanistic assignments,
undesired when only finite information is available during the
experimental exploration, and allows for a decision-making
process based on the analyzed propensity distribution. As
showcased in our recent experimental demonstration,20 our
EchemNet model will augment the productivity of human
researchers (more discussion in Supplementary Note 9).

Additional research of the DL model is needed in order to
achieve the aforementioned functionality in an autonomous
electrochemistry platform (more discussion in Supplementary
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Note 10). In particular, additional deployment of the DL
model towards a large dataset of experimental voltammograms
with diverse mechanisms is desired to further evaluate if not
validate the model’s utility in real-life applications. Noting the
tremendous benefits of public datasets in the field of image
recognition,31,32 we call for the establishment of a public
database of curated experimental voltammograms with a wide
range of mechanisms. Such a public database will not only help
benchmark future models’ performance but also provide the
training set for additional model refinement. A synergistic
combination of simulated voltammograms that numerically
exhaust all possible mechanistic variations and experimental
ones that offer the taste of real-life scenarios is hypothesized to
yield an artificial intelligence of electrochemical mechanistic
deciphering that rivals if not surpass human intelligence.
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