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Camille Jeunet-Kelway∗ [0000−0001−8619−3082]
∗ both authors contributed equally

Abstract When studying human brains in relation with digital technologies, or
digital brains, a relatively recent technology may prove particularly promising to do
so: Brain-Computer Interfaces (BCI). Indeed, BCI can decode measures of users’
brain activity in real-time, in order to enable direct control of computers via brain
activity or to monitor users’ mental states when interacting with technologies (so-
called neuroergonomics). This chapter presents an introductory overview of this
technology, i.e., it describes its motivations, brief history, components, principles of
operation and various applications, e.g. for assistive technologies, neurorehabilitation
or safety, performance and user experience assessment and optimisation. It also
touches on the various current limitations of this technology, which makes it rather
different from the science-fiction-like representations it may evoke. Altogether, we
hope this chapter can offer a brief but clear glimpse into what BCI can and cannot
do, and motivate readers to possibly consider them in their future research and/or
developments.

1 Introduction

Digital technologies, and especially neurotechnologies, provide breakthrough op-
portunities i) to enhance one’s control over their body and ii) to understand their
“mind” (in terms of cognitive, motivational and emotional states).

On the one hand, thanks to neurotechnologies, the brain can be used to send
direct commands to digital applications. Indeed, it is now possible to interact with
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our environment without moving: the control intent being directly extracted from
the brain activity and translated into a command for an external device. Thus,
mobility and communication can be restored in paralysed patients, and even enabled
or enhance for all for instance for navigation in a “metaverse”, or in contexts of
distant interaction. A whole research field is dedicated to the optimisation of those
systems called Brain-Computer Interfaces (BCIs). Among BCIs, two types, named
“active” and “reactive” BCIs, are especially relevant for enhancing or restoring
communication and control. We provide details on their functioning and association
challenges hereinafter.

On the other hand, neurotechnologies can be used to detect, directly from one’s
brain, cognitive, motivational or emotional states. This information can then be used
to optimise the human-technology interaction, and thereby one’s well-being and
safety. Thus, for instance, pilots’ attention levels can be assessed in real-time during
critical situations, and the information provided in the cockpit adapted accordingly
so that to optimise decision-making. Again, a whole research field is dedicated to
the optimisation of this approach, named neuroergonomics (NE), which is based on
so-called “passive” BCIs. We also provide more details on the latter in the following
sections of this chapter.

We will first introduce the BCI technology: their historical background, their
functioning, the different types (active, reactive, passive BCIs). Then, we will provide
use-case examples and prospects for i) active/reactive BCIs for communication and
control, and ii) passive BCIs for neuroergonomics.

2 Brain-Computer Interaction: from history to principles

2.1 Historical background

BCIs have been defined in 2002 by Wolpaw et al. [1] as “a communication system in
which messages or commands that an individual sends to the external world do not
pass through the brain’s normal output pathways of peripheral nerves and muscles”.
But the history of BCIs dates back to the end of the 19th century, with Dr. R.
Caton, a neurologist from Liverpool, who was the first person to record the electrical
activity produced by the brain. Those recordings were performed on dogs [2]. It is
in 1924 that Dr. H. Berger (German neurologist and psychiatrist) first succeeded in
applying this method to humans: the electroencephalography (EEG) was born [3]. In
a nutshell, EEG consists in placing electrodes on the scalp to measure the electrical
signals produced by the cortical neurons. H. Berger documented an increased of
amplitude of this electrical activity during sleep and a disappearing when people
would die. From the nineteen-thirties, after the method was validated by engineers,
EEG increasingly developed together with the identification of different types of
brain activities called ”rhythms” (characterised by the associated frequency band
and location) and of their functional roles. In the late fifties, J. Kamiya, psychologist
and researcher at the University of Chicago, demonstrated that patients suffering
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from anxiety disorders could learn to self-regulate alpha rhythms and that this self-
regulation ability correlated with an improvement of their clinical symptoms. This is
one of the first protocols of neurofeedback. Neurofeedback consists in training people
to voluntarily self-regulate specific brain patterns in order to improve or restore
associated abilities. Since then, clinical neurofeedback has developed, especially for
psychiatric (e.g., anxiety disorders, obsessive compulsive disorders) and neurological
(e.g.,epilepsy, Parkinson’s disease). In 1974, with the empowerment of informatics,
Dr. J. Vidal, computer scientist at UCLA, suggested for the first time to use people’s
ability to self-regulate brain patterns in order to send commands to external devices
[4]. This is the birth of brain-computer interaction that, since then, have exponentially
developed in terms of number of academic specialists and industry, and also in
terms of applications (that range from video games to assistive technologies) [5].
Hereinafter is introduced the functioning of BCIs.

2.2 Overview of the brain-computer interface (BCI) loop

Designing a BCI system requires setting up a communication loop - an interface -
between the user’s brain and the computer, see Figure 1. This so-called BCI loop
[6], can be described as comprising five main elements, briefly presented below, and
detailed in the subsequent sections:

Fig. 1 Schematic representation of the BCI loop, describing the main components enabling inter-
action between the brain and the computer.

1. Neuromarker production: For users, the first step to control a BCI is to “produce”
a specific pattern of brain activity - a so-called neuromarker - that reflects their
intentions or mental states. For instance, users can imagine a left or right hand
movement, which will change their brain activity in their right or left sensorimotor
cortex respectively.
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2. Measurement of brain activity: Once the user has “produced” this neuromarker,
the BCI will measure the user’s brain activity to later be able to identify which
neuromarker can be recognised from it. Various neuroimaging sensors can be
used to do so, the most used being EEG.

3. Brain signal processing: The brain activity being measured, the recorded signals
will then be processed in order to identify which neuromarker is present, if any. For
instance, this brain signal processing will try to identify whether the users’ EEG
signals contain the neuromarker corresponding to a left or right hand imagined
movement. To do so, various signal processing and machine learning algorithms
are typically used.

4. Decision: Once the neuromarker has been identified, a specific decision can be
taken, usually associated to an action, e.g., the computer cursor can be moved
towards the left if the neuromarker of a left-hand imagined movement was iden-
tified.

5. Feedback: Finally, the BCI loop can be closed by proposing a feedback to users,
informing them about what neuromarker was identified, possibly together with an
indicator of the confidence of the BCI system in this recognition. This feedback
is essential to enable users to learn to control a BCI. BCI control is indeed a skill
that needs to be learned and mastered, and such a learning is only possible with
feedback.

The following section will provide more details about these components.

2.2.1 Brain activity recording techniques

Various neuroimaging modalities are available to measure brain activity in BCIs
[7]. They can be categorised as non-invasive and invasive, depending on whether
the sensors are placed below the skull (for the latter) or on or around the skull
(for the former). Non-invasive techniques included ElectroEncephaloGraphy (EEG),
functional Near-InfraRed Spectroscopy (fNIRS), MagnetoEncephaloGraphy (MEG)
and functional Magnetic Resonance Imagining (fMRI). EEG and MEG measure the
brain electrical and magnetic activity respectively, while fNIRS and fMRI measure
the blood concentration in oxygen in the brain, which reflects which brain areas
are the most active. Among these techniques, fMRI and MEG have the best spatial
resolution - i.e., they can measure the brain activity of the smallest and deepest
brain regions with most precision. Current MEG and fMRI systems are however
very bulky, cannot be transported, and very costly (at least around a million euros
each). In contrast, EEG and fNIRS are portable and relatively cheap. Note that
both fMRI and fNIRS suffer from a low temporal resolution, i.e., they can acquire
brain activity measures only once or a few times per second, contrary to EEG and
MEG which can do so typically hundreds of time per second. Invasive techniques
include mainly ElectroCorticoGraphy (ECoG) and Micro-Electro Array (MEA).
ECoG are sensors measuring the brain electrical activity below the skull, on top of
the cortex (the external layer of the brain), while MEA measures neuron spiking
activity, including possibly single neuron activity, using electrodes penetrating into
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the brain. Invasive techniques usually provide a much better signal-to-noise-ratio and
a much better spatial resolution than non-invasive methods (with MEA having the
best spatial resolution), at the cost of a limited coverage of brain activity (only a few
or even a single brain area can be measured) and the need for surgery to implant the
sensors. Currently, there is no non-invasive brain activity recording technique that
can measure brain activity in the whole brain, with both high spatial and temporal
resolution. Thus, currently, EEG is by far the most used techniques (followed by
fNIRS), as it is relatively cheap, portable, non-invasive and with a high temporal
resolution. In the remainder of this chapter, we will thus focus on EEG-based BCI
applications for communication, control and neuroergonomics.

2.2.2 Neuromarkers

Once measured, the brain activity is to be analysed to identify neuromarkers. In
EEG, two main families of neuromarkers are typically analysed: 1) Event-Related
Potentials (ERPs), which are brain responses to specific events or stimuli, with a spe-
cific time course, and 2) oscillatory activity, which corresponds to ongoing changes
in EEG oscillations, i.e., changes in the EEG signal power in various frequency
bands. The amplitude of the ERPs at different latencies following a stimulus and the
power of specific EEG rhythms at different sensor locations have been associated
with different mental states or intentions, and can thus be used to decode the latter.
In addition to these two most common neuromarker types, additional ones can be
used, such as measures of brain signal complexities or measures of synchronisation
between the signals from different brain areas (so-called functional connectivity).
For an overview of the different neuromarkers that can be exploited in BCIs and
the associated BCI paradigms, the interested reader can refer to [8]. We will de-
scribe more specific neuromarkers later in this chapter, when describing different
BCI types.

2.2.3 Signal processing & decision

In order to automatically infer BCI users’ intentions and mental states from their
EEG signals, signal processing and machine learning algorithms are typically used.
Usually, this signal processing pipeline starts with a preprocessing step, to clean and
denoise EEG signals, which are typically affected by various sources of noise and
artifacts [9]. Such artefacts include for instance muscle artefacts (electromyography
- e.g., from facial muscles) that are also recorded by EEG sensors but are not orig-
inating from the brain and thus degrade the EEG signal quality. Then, a step called
feature extraction is performed in order to describe EEG by (ideally a few) relevant
values, called features, for instance by computing the power of EEG signals in various
frequency bands and sensors, when aiming at identifying specific oscillatory activity
neuromarkers [10]. Finally, machine learning algorithms are used to automatically
identify which features correspond to which neuromarker, for instance, whether the
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estimated power in various frequency bands and sensors correspond to a left or right
hand imagined movement. Typically, when a BCI is being used for the first time,
there is need for a calibration phase, during which the user will “produce” known
neuromarkers upon instructions, e.g., by repeatedly imagining a specific hand move-
ment at a specific time. The EEG signals collected during that phase will be used as
labelled training data (i.e., labelled with the known intention or mental state in which
the user was) to train machine learning algorithms. Once calibrated, the machine
learning algorithm will be able to recognise the users’ intention/mental state from
features extracted from ongoing (and unlabelled) EEG signals. Typical algorithms
used for this purpose include linear classification algorithms such as Linear Discrim-
inant Analysis (LDA) or Support Vector Machine (SVM) [11]. Recently, advanced
non-linear classification algorithms such as Riemannian geometry classifiers or Deep
Learning are increasingly more explored [12]. Once the users’ intention/state has
been estimated by these algorithms, they can be associated with a specific command
for the applications controlled by the BCI, e.g., making a wheelchair turn left when
an imagined left-hand movement has been recognised.

2.2.4 Feedback

The last component of the BCI loop is the feedback the users are provided with
to help them learn to control a BCI. The most typical feedback type is a visual
gauge, e.g., a gauge extending towards the left or right to indicate that the BCI has
recognised a left or right imagined hand movement respectively, with the length
of the gauge representing the confidence of the BCI in its estimation. However,
recent research has shown that different types of feedback can help BCI users learn
better and faster, e.g., richer and more realistic feedback (e.g., seeing a virtual
hand moving, possibly in immersive virtual reality, when an imagined movement is
detected) [13], multimodal feedback combining visual and tactile or audio feedback
(the former being usually more effective than the later) [14], or even social feedback
with artificial learning companions providing advice and guidance to BCI trainees
based on their performance and progression [15]. For an overview of BCI feedback
research, the interested reader can refer to [16]. This feedback learning process can
enable BCI users to learn BCI control and thus to increase their proficiency: their
mental commands can be increasingly accurately recognised by the BCI with such
feedback training.

2.3 Three main types of BCIs

Zander & Kothe [17] have suggested a classification of BCIs into 3 main categories
characterised by i) specificities in the BCI loop and ii) the applications they are the
most relevant for.
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2.3.1 Active BCIs

Objective. The objective of active BCIs is to send voluntary commands to external
applications. Functionning. The specificity of active BCIs is that they allow asyn-
chronous control. In other terms, users decide when they want to send a command
–the later being most often emitted through mental imagery. Indeed, as mentioned
earlier, mental imagery tasks such as mental calculation, mental navigation or motor
imagery (i.e. imagination of movements) are associated with modulations of specific
brain oscillations that can be detected using the EEG. Hence, during the calibration
of the BCI, users are asked to perform mental imagery tasks (for instance imagining
left and right hand motor imagery). The associated brain patterns (here, theoretically,
modulations of sensorimotor rhythms over the right and left sensorimotor cortices,
respectively) are measured and associated with specific commands, e.g., making a
wheelchair turn left and right respectively. After some training, that includes infor-
mative (neuro)feedback, users are supposedly able to control the wheelchair through
the voluntary, and asynchronous (self-paced), imagination of left and right hand
movements. Challenges. The asynchronous control of active BCIs assumes a con-
tinuous recording of the brain activity and the ability to detect intentional commands
and only intentional commands. Yet, in real-life settings, when people interact with
their environment, a lot of modulations occur in their brains thus making “false pos-
itive detection” most likely. A first challenge thus consists in identifying paradigms
that minimise the false positives (command sent while not intended) and also false
negatives (no command detected while there was an intention to). A second major
challenge for this kind of BCIs is the user training. Indeed, users have to learn to self-
regulate specific brain activities to produce patterns that are i) stable (the same as the
ones produced during the calibration) so that they can be recognised and translated
into commands, and also ii) distinct between the commands so that this translation
is reliable. Many factors seem to impact those self-regulation abilities, including
individual characteristics (e.g., personality, cognitive profile) and the interface and
training design (e.g., instructions, feedback) [16]. A main challenge thus consists in
adapting the training procedures (and especially the feedback) so that a reliable and
efficient BCI control is accessible to as many users as possible.

2.3.2 Reactive BCIs

Objective. The objective of reactive BCIs is also to send voluntary commands to
external applications. Functioning. Contrary to active BCIs, reactive BCIs mostly
enable synchronous control. Indeed, reactive BCIs get their name from the fact
that commands are sent through the brain patterns generated automatically as a
reaction to stimuli of interest produced by the system, and to which the users pay
attention to. Those brain patterns are called event-related potentials (ERPs). Many
different ERPs exist. Among them, the P300 and SSVEPs (for steady-state visual
evoked potentials) are currently the most used in brain-computer interaction due to
the relative ease to measure them using EEG. The P300 is a positive (P) potential
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occurring around 300ms after the appearance of stimulus of interest on which one
focuses their attention. In the P300 speller application for instance, which has been
designed to enable severely paralysed patients to communicate, letters/symbols flash
the ones after the others. Each time the symbol the patient wants to select flashes,
a P300 is triggered. Several flashes are required for smoothing the brain signal
(increasing the signal-to-noise-ratio) and enabling a reliable detection of this P300
and a translation into a command. SSVEP-based BCIs rely on the fact that observing
a light flashing at a certain frequency will induce an increase of the amplitude of the
brain activity at the same frequency in the visual cortex. Thus, equipping for instance
different domestic appliances with LED lights flashing at different frequencies could
enable switching them on/off simply by looking at them. Despite the constraint of
enabling only synchronous control, reactive BCIs have a main advantage being that
they are very reliable with performances around 90% of good detection. Challenges.
The main challenge with reactive BCIs is to prevent the visual fatigue generated by
the stimuli, for instance using other sensory modalities (auditory and tactile stimuli
can be used).

2.3.3 Passive BCIs

Objective. The objective of passive BCIs is to measure the mental states of a
person in order to adapt an interactive system accordingly, in real-time. Mental
states encompasses cognitive (e.g., attention), motivational and emotional (e.g.,
frustration) states. Functioning. Passive BCIs rely on our capacity to identify brain
activity patterns (oscillations or ERPs) that specifically underlie mental states of
interest and that can be reliably detected using the brain recording method used
(i.e., most often, the EEG). Indeed, based on those patterns, it is then possible to
infer the mental state of a person and to adapt the system with which they are
interacting accordingly, in real-time. For instance, the difficulty of training exercises
can be reduced when high mental workload levels are detected. One kind of ERP is
especially relevant for passive BCIs, the so-called error potentials that are triggered
when one notices an error in the interaction they are involved in. For instance, when
manipulating a mouse, if the cursor stops moving unexpectedly, an error potential
will likely be elicited. Error potentials can be used for instance to evaluate user
experience: if error potentials are elicited when people click on a button because
the page displayed is not the one they expected to see, then the application interface
should be revised. Challenges. The main challenge here consists in identifying
neuromarkers (i.e., brain activity patterns) that are both reliable and specific. Brain
activity variability is far from being fully understood, and identifying invariants
representing specific mental states whatever the mental/motor task performed is a
real challenge, what is more due to the fact that such mental states usually involve
multiple brain areas, both at the cortical and sub-cortical levels (the latter being
difficult to assess using the EEG).



Brain-Computer Interaction and Neuroergonomics 9

3 BCIs for communication and control: applications, limitations
and prospects

Now that BCI principles are exposed, the following sections will present their main
application areas, starting by using them for communication and control, which can
be notably useful for assistive technologies, entertainment or neurorehabilitation.

3.1 Control of assistive technologies for communication and mobility

Applications. Assistive technologies benefit a lot from neurotechnologies and BCIs
in particular as the latter enable severely paralysed persons to control external de-
vices, without moving. Two main application areas are developed: mobility and
communication [18]. Smart wheelchairs, prosthetics and exoskeletons are certainly
the most emblematic applications of active BCIs. Regarding communication, the
most relevant paradigm seems to be reactive BCIs with, for instance, the P300
speller introduced earlier that enables a digital spelling. Limitations. As mentioned
earlier in this chapter, active control through mental imagery is not very reliable yet
and requires a lot of cognitive resources. Therefore, most systems are coupled with
other paradigms to increase reliability. For instance, BCI-controlled wheelchairs
might be equipped with infrared sensors to detect and avoid obstacles and thereby
rely on a shared-control paradigm [19]. Active (mental imagery) and passive (er-
ror potentials) BCIs can also be combined so that an erroneous recognition of a
mental command can be detected thanks to the elicitation of an error potential and
corrected. Prospects. The reactive BCI-based communication applications are very
reliable and increasingly usable thanks to a reduction of the time required to se-
lect letters/symbols and thus communicate. Regarding active BCI-based mobility
applications, current research and development directions suggest that for them to
be sufficiently reliable, EEG should be replaced by electrocorticography or intra-
cortical electrode arrays as the latter provide a better signal-to-noise ratio and more
stable data [20]. With those invasive methods, relying on a surgical operation and
continuous recordings of brain activity, come multiple ethical concerns including
questions of acceptability, accessibility, safety and benefits/risk ratio.

3.2 Enhancing interaction for entertainment applications

Applications. BCIs can also be used, for healthy users and motor impaired users
alike, as an alternative or additional control modality for entertainment applications,
typically video games and virtual reality [21, 22]. Typically active BCIs can be used to
navigate virtual environments by using mental imagery, while reactive BCIs, notably
P300-BCIs or SSVEP-BCIs, can be used to select virtual objects or to activate virtual
buttons that are flashing or flickering. Such BCI-based commands can either replace
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classical mice/game pads, to provide a new and original control modality, or be used
as a complementary command to classical game pads. For the former, various video
game prototypes have been proposed, in which virtual avatars are fully controlled by
a BCI [22, 21], whereas for the later, the avatar can be controlled by a game pad and
additional in-game super-power can be triggered using the BCI, see, e.g., [23, 24].
Some of such applications are even commercialised now, see, e.g., the NextMind
system that is based on SSVEP-like neuromarkers for gaming and virtual reality.
Limitations. While all such applications are particularly appealing for the general
public, it should be mentioned that current BCIs are not reliable, and make frequent
mistakes in the mental command recognised. As such, fully controlling a video game
using a BCI can be rapidly frustrating and demotivating. While SSVEP-related BCIs
are more reliable than active BCIs and thus possibly more useful for this type of
application, it should be stressed that game pads and computer mice are still by far
the most efficient and effective control devices for video games. Prospects. Future
research in BCI for entertainment thus needs to either vastly improve the reliability of
BCIs, or find new ways to use BCIs for entertainment that are less reliant on reliable
control. The former is less likely in the short term. For the latter, it may seem more
promising to use passive BCIs (rather than active or reactive ones) for dynamically
adapting the game content and/or parameter (e.g., difficulty) to the players’ mental
states.

3.3 Neurorehabilitation

Applications. For neurological and psychiatric pathologies associated with well-
identified pathological brain patterns, active BCIs and neurofeedback can be used to
enhance (neuro)rehabilitation procedures and favour motor and cognitive recovery.
For instance, in patients who underwent a stroke and experience motor aftereffects,
standard rehabilitation procedures involve mental imagery: patients are asked to
imagine movements in order to stimulate their sensorimotor cortex, foster synaptic
plasticity (i.e., the reconstruction of connections between the neurons) and thereby
favour motor recovery. The main limitation of this approach is that therapists do
not know i) when exactly the patient imagines the movement, which results in the
impossibility to provide a synchronised feedback, and ii) if the patient actually trig-
gers their sensorimotor cortex (or other brain areas, in which case the impact on
motor recovery would be reduced). With BCIs, it is possible to detect modulations
of brain activity in the sensorimotor cortex and thereby i) to provide a real-time
feedback, synchronised with the imagination, thus closing the sensorimotor loop
and fostering synaptic plasticity, and ii) to inform the therapist so that they can guide
the patients to identify the most efficient strategies. Beyond stroke rehabilitation,
the number of clinical studies investigating the efficiency of BCIs to enhance the
efficiency of neurorehabilitation procedures for patients with Parkinson’s disease,
epilepsy, post-traumatic stress disorders, attention deficits and many others has sig-
nificantly increased in the last years. Limitations. While theoretically more efficient
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than standard approaches (especially for attention deficits [25] and stroke rehabili-
tation [26]), BCI-based approach remain barely used in clinical settings. This can
be explained, at least in part, by acceptability factors: it is not enough to design a
technology, the latter then has to be usable by the end-users [27]. Therapists should
be trained, hospitals should allocate specific funding, the population (including the
clinicians, patients and their family) should be properly informed. Prospects. BCI
technologies will become increasingly affordable. They are also increasingly pub-
licised. Therefore, if inderdisciplinary and intersectoral collaborations arise in the
coming years, and if acceptability and organisational constraints are considered,
BCIs for neurorehabilitation should develop a lot in the near future.

4 BCIs for Neuroergonomics: applications, limitations and
prospects

In addition to using BCIs for controlling various interactive systems, BCIs can be
used for Neuroergonomics, to study the brain in the wild, notably to assess and
optimise safety, performance, learning or user experience directly through brain
activity [28]. Hereafter we present three families of BCI-based neuroergonomics
applications: 1) for safety critical systems such as aeronautics and transportation; 2)
for training and education and 3) for user experience optimisation.

4.1 Safety and performance in aeronautics and transportation

Applications. In many critical systems with a human-in-the-loop, such as in aero-
nautics and transportation, there is a need to ensure the safety and performance of
the operators across time and situations. Doing so notably requires monitoring those
operators’ states (e.g., their fatigue or vigilance), to assess the impact of the latter on
the critical system operation, and possibly optimise it dynamically so as to improve
safety and performance. Interestingly enough, these operators’ mental states can be
monitored using passive BCIs [29, 30]. For instance, a number of research works
have demonstrated the possibility to estimate mental states such as fatigue, attention,
vigilance or mental workload in both plane pilots and/or car drivers [31, 29]. In
turns, these mental state estimates can be used to dynamically adapt the interac-
tion with the system, e.g., changing the amount of information displayed in a plane
cockpit to avoid pilot overload, or to increase the level of automation proposed in
autonomous cars if the driver is too tired or not paying attention. The later type
of technology would be called a NeuroAdaptive Technology (NAT), i.e., a system
adapting its properties based on neural information [32]. Limitations. The main
limitation of this neuroergonomic approach to safety and performance in aeronau-
tics and transportation lies in the specificity of the neuromarkers used to estimate
the operators’ mental states mentioned above. Indeed, while many proof-of-concepts
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have been made, they were often made in a single context and for studying a single
operator’s mental state. As such, it is unclear whether the identified neuromarkers
and associated BCIs to identify them would still work if used when other mental
states are also varying (e.g., does fatigue also impact the identified neuromarker of
mental workload?). In other words, it is still unclear how specific these neuromarkers
are, and how much they can be confounded by other states. Prospects. Future re-
search in this area will thus need to study the specificity of the various neuromarkers
identified, and possibly identified new neuromarkers, representing mental states that
can be useful to also monitor in this context (e.g., information overload or attention
tunnelling). Estimating such neuromarkers and mental states from EEG is also not
enough to ensure useful NATs. Indeed, there is also a need to build models (typically
computational models) describing how changes in the monitored mental states affect
the operation of the critical system targeted, so as to be able to provide suitable and
timely interventions (e.g., when to increase or decrease the system autonomy?), in
order to optimise safety and performance.

4.2 Intelligent tutoring systems for training and education

Applications. As mentioned earlier, passive BCIs can also be used to facili-
tate/improve learning. Intelligent tutoring systems [33] consist in computerised tutors
that adapt in real-time in order to optimise users’ learning. To do so, they include a
“student model” that makes use of behavioural (posture, number of clicks, ...) and
sometimes physiological (eye pupil size, skin conductance) to infer the mental state
of the student (cognitive workload, frustration, attention, ...). With BCIs, it is now
possible to design “neuroadaptive” tutoring systems that make use directly of the
student’s brain activity to infer their mental states. Brain activity information might
be more specific than physiological data. For instance, variations of skin conduc-
tance can be related to emotions, but also to room temperature of circadian rhythm.
Limitations. While promising, it should be noted that we are still far from the identi-
fication of stable and fully reliable neuromarkers of humans’ cognitive states. Given
the complexity of brain activity and the low signal-to-noise ratio of EEG activity, we
should all be careful when claiming that we can infer one’s mental state. Prospects.
The most relevant approach seems to combine different indicators (self-reported,
behavioural, physiological, neurophysiological) in order to define models of mental
state indicators that are as precise and reliable as possible. Then, a compromise
should be determined as precision (using multiple sensors) should not come at a cost
of usability and acceptability. For those systems to be useful, they first have to be
used. And multiple, expensive sensors might discourage stakeholders to adopt those
promising technologies.
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4.3 Measuring and improving user experience in interactive set-ups

Applications. Beyond aeronautics, transportation and education/training, and maybe
more generally, BCI and Neuroergonomics can be used to assess User eXperience
(UX) with interactive systems in general. Typically, passive BCIs can be used to
monitor UX with various input devices (e.g., mice, haptic or tactile devices) - to
assess and compare these devices - but also to monitor UX with output devices
(e.g., various displays), to monitor users’ perception [34, 35]. For instance, it has
been shown that mental workload could be monitored from EEG during 3D object
manipulation tasks or 3D navigation tasks (input devices) [36] - to assess when and
where an input can be too cognitively demanding to use; while EEG can also be used
to assess visual comfort with stereoscopic displays [37] or to detect users’ perception
with system errors displayed in virtual reality [38] (output devices). These types of
assessment can be used in complement to traditional UX assessments methods (e.g.,
questionnaires or interview), to obtain better insights into the UX with a given
system, and thus to design a better system. Like for aeronautics and transportation,
such BCI-based UX assessments can be used to design NATs, that will use these
assessment to dynamically reconfigure the user-interface, in order to optimise UX
on the fly, e.g., by correcting errors detected in the users’ EEG (see [39] for a
review). Limitations. The limitations here would be similar to that of safety-critical
systems (although to a lesser extent as safety is usually less an issue in the present
contexts) and to intelligent tutoring systems, i.e., the neuromarkers identified for
various UX metrics may not be very specific, and thus the UX assessment should
be considered carefully. Moreover, while EEG is suitable to be used in the design
and testing phase of interactive devices with testers in the lab, it is currently not
so usable and comfortable for everyday prolonged use. Prospects. Future works
will thus need to focus on assessing the specificity of UX neuromarkers in complex
real-life situations, and possibly to design EEG sensors that are more transparent
and wearable, and passive BCIs that are more usable and acceptable altogether, so
that NATs optimising UX could be used outside the lab.

5 Conclusion

Overall, this chapter presented a brief and introductory overview of the current
state of BCI technology and neuroergonomics. It presented the motivations for BCI
research and how they work, notably regarding their main components that are neuro-
markers, brain imaging modalities, signal processing and feedback. It also described
what are the main applications and usages of BCIs, either for communication and con-
trol, which includes assistive technologies, entertainment and neurorehabilitation, or
for Neuroergonomics, notably for assessing and optimising safety and performance
in aeronautics and transportation, for education and training, or for optimising user
experience with interactive systems. Altogether BCIs and Neuroergonomics are thus
very promising to study human brains in relation with digital technologies, i.e., dig-
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ital brains, and possibly to enhance this relationship using NATs. However, beyond
science fiction and beyond unfortunately too-often exaggerated media representa-
tions, BCIs are (fortunately) far from being able to read minds, and currently still
suffer from various limitations. There are notably not reliable enough, may lack
specificity in the mental states they can recognise, and are uncomfortable, tedious
and inconvenient to use in real-life, among other [40]. Consequently, there is still a
lot of research needed before they can be used in daily life outside laboratories. The
research community is working hard in that direction.
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