
HAL Id: hal-04721852
https://hal.science/hal-04721852v1

Submitted on 7 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Review of Data Placement and Replication Strategies
Based on Machine Learning

Amir Najjar, Riad Mokadem, Jean-Marc Pierson

To cite this version:
Amir Najjar, Riad Mokadem, Jean-Marc Pierson. A Review of Data Placement and Replication
Strategies Based on Machine Learning. The 30th International Conference on Parallel and Distributed
Systems (ICPADS 2024), Oct 2024, Belgrade, Serbia. �hal-04721852�

https://hal.science/hal-04721852v1
https://hal.archives-ouvertes.fr


A Review of Data Placement and Replication
Strategies Based on Machine Learning

Amir Najjar , Riad Mokadem , Jean-Marc Pierson
Institut de Recherche en Informatique de Toulouse (IRIT)

Université de Toulouse
Toulouse, France

{amir.najjar, riad.mokadem, jean-marc.pierson}@irit.fr

Abstract—The global increase in data volumes has brought
forth the need for scalable distributed systems that can provide
satisfactory quality of service. Data placement and replication
are well known techniques that provide increased performance,
improved fault tolerance and higher availability. These techniques
often require threshold-based activation mechanisms that can
vary due to the nature of the workload and the underlying
system architecture. Hence, setting and adjusting those thresholds
usually require human intervention. In this context, machine
learning presents a promising facet to automatically define such
thresholds to adapt to different workloads and architectures. In
this paper, we study the data placement and replication strategies
proposed in the literature that employ machine learning. We
classify such strategies based on the machine learning method,
the platform on which they are deployed, the dynamicity and
the achieved objectives. We describe the approach applied by
each strategy as well as possible limitations. In addition, we
provide insights into the experimental environments and metrics
used to evaluate the strategies. We highlight the need to design
data placement and replication strategies that respond better to
modern needs for distributed systems. We also motivate the use
of machine learning to achieve autonomy in distributed systems.

Index Terms—Distributed Systems, Data Replication, Data
Placement, Machine Learning.

I. INTRODUCTION

The rise of social networks has led to the emergence of very
large volumes of data in distributed systems. In such systems,
Quality of Service (QoS) [1] is measured through various
metrics such as response time, throughput, availability and
fault tolerance. Data replication and data placement strategies
are possible mechanisms to satisfy such requirements [2];
placing data closer to the user allows for improved latency [3],
while data replication provides improved response time (RT),
fault tolerance and availability through efficient placement of
the replicas [4].

As such, numerous data placement and replication strategies
have been proposed in distributed systems [5]–[7]. In addition,
concerns have been raised regarding the environmental impact
of such systems [8]. Therefore, such strategies must take
energy consumption into account. Furthermore, such strategies
also need to take into account economic costs in order to
ensure the profitability of providers in commercial usages,
such as the cloud [9].

The previously proposed strategies in the literature are
often based on certain thresholds that require prior knowledge

of the system to be defined [10]–[12]. Statistical methods
have been used to predict these thresholds automatically:
Khatua et al. [13] use time series, Calheiros et al. [14]
use an autoregressive integrated moving average (ARIMA),
and Séguéla et al [15] use control charts to define such
thresholds. Machine learning could be a promising facet to
automatically adapt to the characteristics of the system and
learn such thresholds automatically, without prior knowledge
of the underlying architecture or workload. Hence, eliminating
the need for human intervention. By providing key information
such as workload traces and the state of the environment, a
machine learning model can be built to predict the thresholds
required in a data placement or replication strategy. They could
also be used to predict performance given a certain state of the
system, aiding in the decision of activating the data replication
mechanism and choosing the placement location of data.

Machine learning (ML) has seen increased use in various
fields such as image classification, object detection, and face
recognition. It has also seen use in distributed systems [5]–[7].
ML can be divided into three methods [16]: (i) Supervised
learning which is characterized by a labelled dataset, (ii)
unsupervised learning which is characterized by an unlabeled
dataset, and (iii) reinforcement learning which is characterized
by an environment and one or more agents which learn a
policy through exploring actions and receiving rewards from
the environment accordingly.

Few works in the literature have experimented with inte-
grating ML in data placement and replication strategies. In
this paper, we classify and present an overview of the data
placement and replication strategies that employ ML. We em-
phasize on the contribution each work has brought as well as
its limitations. We present a taxonomy of the strategies based
on ML method. We then take a bird’s eye view to analyze the
tendencies in the strategies with regards to the platform and
the dynamicity. We also focus on the contemporary aspects
of large scale distributed systems, specifically the economical
and environmental aspects. Finally, we delve deeper into the
evaluation objectives of each, classify them and quantify the
improvements perceived.

The rest of this paper is organized as follows: Section
II introduces data placement, data replication, and machine
learning. Section III presents the studied strategies that employ
ML classified by the learning method. Section IV provides a

https://orcid.org/0009-0009-1558-1681
https://orcid.org/0000-0003-3325-7331
https://orcid.org/0000-0001-8948-0474


bird’s eye analysis of the strategies studied, with insights on
tendencies in the strategies. Section V reports the tendencies
in the experimental environments used for evaluation and
reports the results found in the strategies. Section VI provides
conclusive remarks and possible facets to explore in the future
for data placement and replication.

II. BACKGROUND

In this section, we provide an overview of data placement
and replication. In addition, we present a brief description of
machine learning and its three main methods.

A. Data Placement and Replication

Data placement aims to find the appropriate location for data
in a distributed architecture in order to primarily achieve lower
storage costs and/or higher performance [3]. Other objectives
could be achieved such as reduced energy consumption [17]
and increased availability [18]. As tasks and applications
have become increasingly more resource intensive, it has
become challenging to assure a satisfactory QoS. Designing
an efficient data placement strategy therefore allows to meet
QoS demands.

Data replication aims to create copies of data in different
locations to provide fault tolerance [19], increased availability
[20], and higher performance [21]. It is important to note that
replicating all data in all locations is not feasible due to storage
constraints and cost of replication. Therefore, a data replication
strategy is required. It aims to answer the following questions:
[9]:

• Which data to replicate?
• When is replication required? i.e., what is the activation

condition for a replication to occur?
• If a replication is to occur, how many replicas are

required? This is commonly referred to as the replication
factor.

• Where should the replica(s) be placed? This is a question
shared with data placement.

• How to minimize the economic cost of replication? This
question is particularly relevant for strategies designed
for the cloud for instance.

B. Machine Learning

Machine learning employs the theory of statistics to make
inference from samples or experience [22]. It can be divided
into three methods:

• Supervised Learning: can be characterized by labelled
data. The goal is to minimize the difference between the
predicted output and the true labels. Common supervised
learning tasks include regression and classification.

• Unsupervised Learning: can be characterized by unla-
belled data. The goal is to learn the underlying relation-
ships in the data, reduce the dimensionality of the data
or clustering the data.

• Reinforcement Learning: one or more agents learn a
policy to interact with an environment through an action-
reward mechanism whereby the actions are performed by

the agent impacting the environment, which in turn sends
back a reward signal to the agent. The objective is to
maximize the long term rewards. In contrast to supervised
and unsupervised learning, a feedback mechanism is
provided through the agent’s exploration of the actions
instead of an explicit dataset or labels.

As opposed to distributed machine learning [23], in this
paper, we study the data placement or replication strategies
that employed ML in their design.

III. ML-BASED DATA PLACEMENT AND REPLICATION
STRATEGIES

This section explores the data placement and replication
strategies proposed in the literature. These strategies have
employed ML in their design and hence are classified based
on the ML method.

A. Supervised Learning

Supervised learning can be used in the design of strate-
gies by using existing traces or by predicting the system
performance given a certain resource allocation. Curino et
al. [5] use decision trees to explain obtained partitions using
predicates on frequently used attributes. Their system is tested
against other methods such as manual partitioning, replication
of all tables and hash partitioning. The performance of their
system often matches or exceeds the best manual partitionings.
A certain limitation of their strategy is the fact that the
transactions are not weighted by their size. It would be more
interesting to minimize the total amount of data transferred
from multi-sited transactions as opposed to the number of
transactions. Moreover, the strategy is static and does not take
into account workload changes over time.

Xiong et al. [24] propose SmartSLA, a cost-sensitive virtu-
alized resource management system for CPU-bound database
services. The authors tested linear regression, regression trees,
boosting and k-nearest neighbors to predict resource allo-
cation. They have found boosting to be the most accurate
predictor. They evaluate the performance of their system using
the TPC-W benchmark [25] and the Yahoo Cloud Serving
Benchmark (YCSB) [26]. A baseline is constructed with a
static allocation of system resources to compare the perfor-
mance. The results show the ability to minimize costs under
dynamic workloads. The main limitation of their strategy is
the fact that the best performing supervised learning technique
still has a relatively high error of 28.6%. The authors could
have explored other ML techniques such as Deep Learning to
obtain more accurate predictions.

Bui et al. [27] tackle the primary issue of static replication in
the Hadoop Distributed File System (HDFS). They implement
Bayesian learning as a means of inference and a Gaussian
process as a probability framework. To evaluate their experi-
ments, they use the Facebook Statistical Workload Injector for
MapReduce (SWIM) [28]. They compare their strategy with
the default replication mechanism and two other strategies in
the literature: ERMS [29] and OPTIMIS [30]. It is worthy to
note that their strategy is based on an underlying assumption



that the percentage of high potential files is less than 10%. This
assumption may not adapt to workloads where data potential
distribution is more uniform.

Shwe and Aritsugi [31] study re-replication in HDFS. They
present a proactive strategy that utilizes local regression [44]
to estimate future CPU and disk utilization for the nodes in
the cluster. They use an extended version of CloudSim [45],
CloudSimEx [46] to compare the performance of their strategy
with the baseline strategy used by HDFS, which simply
chooses random nodes for re-replication. The authors did not
discuss the ability of local regression to accurately predict the
future resource utilization. In addition, while they found that
local regression achieved better results that linear regression,
they have not implemented any other ML techniques, which
could predict future utilization more accurately.

Symvoulidis et al. [32] propose a data placement strategy
in edge systems that classifies users based on mobility: static,
local and mobile users to which different cluster assignment
policies are applied. The classification of users is done via
a deep learning model whose features are built using the
fast causal interference algorithm [22]. They utilize a neural
network whose output layer predicts the mobility class of
the user. The authors find an accuracy of 81% for predicting
user classes. While the improvements for static and local user
classes are substantial, they are not significant for the mobile
class. This may be due to their overly broad classification
of mobile users. A more specific classification with different
policies depending on the mobility level could improve the
performance of their strategy.

B. Unsupervised Learning

Strategies can employ unsupervised learning to group data
or users into clusters for which different policies could be ap-
plied. Yuan et al. [6] utilize k-means clustering for data place-
ment based on dependencies in scientific cloud workflows.
Datasets that are frequently used together are more likely to
be classified within the same cluster. A dependency matrix
is constructed as input features for the clustering algorithm.
They simulate their algorithm on the SwinDew-C environment
[47] and compare the performance between: (i) a random
placement of datasets, (ii) clustered datasets at build-time
then random placement at run-time, (iii) random placement
at build-time then clustering at run-time and (iv) clustering
during build-time and run-time. A particular issue with this
strategy is the absence of dataset size in the dependency
calculation. For example, transferring a large data set could
cost more than transferring multiple small datasets with less
total size. Another limitation is the fact that this strategy works
exclusively in contexts where dependencies between data can
be created.

Wang et al. [33] propose a data placement and task repli-
cation scheme for scientific workflows. They indicate that the
strategy proposed in [6] does not take into account the size
of the datasets. To tackle this limitation, the value in the
constructed dependency matrix is multiplied by the size of the
dataset. The k-means algorithm is then run on the dependency

matrix with the Euclidean distance as a measure of similarity
between vectors. The authors then compare their build-time
placement strategy to a random placement strategy and to the
strategy proposed in [6]. The run-time task replication strategy
is compared to a strategy where no task replication occurs and
to another where tasks are only replicated on a single level.
Similar to the previous strategy, this strategy is adapted to
scientific workflows where the notions of dependency between
data exists. As such, it may be difficult to adopt it for other
types workflows.

Sellami et al. [34] propose a data placement strategy in
HDFS. They utilize Kernel Density Estimation [48] to pre-
dict future resource utilization to devise a migration plan to
reallocate data from overloaded workers to underloaded ones.
They use Fuzzy Formal Concept Analysis [49] to model the
relationships between tasks and their consumed partitions.
They compare their strategy to the strategies proposed by
Jyothi et al. [50] and Xu et al. [51]. The author compares the
execution time of their framework under varying workloads
but do not compare to other strategies.

Ahmed et al. [35] propose a solution that clusters files into
three groups in HDFS: hot, warm and cold. The replication
policies are 3x and 2x for the hot and warm clusters respec-
tively, while the erasure coding policy is applied to the files
in the cold cluster. A k-means clustering algorithm then uses
features such as access date and frequency to separate the
files into the three aforementioned clusters. They compare the
performance of their solution to the default solutions proposed
by Hadoop as well as a solution proposed by Kaseb et Al.
[52] (CPHARIF). The authors have not experimented with
changing the default replica placement location.

In addition to incorporating supervised learning,
Symvoulidis et al. [32] also use k-means clustering to
separate the servers into different clusters, to which the
clients will be assigned. The clustering is based on the
proximity between the nodes. Their strategy has been
described in detail previously. (Refer to Section III-A)

C. Reinforcement Learning

Reinforcement learning can be used to train agents to
interact with the environment defined by distributed systems to
learn a strategy or adjust the thresholds required to activate the
placement or replication mechanisms. Morffi et al. [7] utilize
Q-Learning to allocate replicated fragments in a distributed
database. They utilize an ϵ-greedy policy [53] to train their
agent. The results are compared to other metaheurisitc solu-
tions such as simulated annealing and genetic algorithms. The
main shortcoming of this strategy is its static nature. The ob-
tained results are also worse compared to other metaheuristic
algorithms.

Cano et al. [36] propose a background execution framework
for cluster management tasks, such as data migration between
storage tiers, disk balancing and garbage collection. The
authors have found that dynamically executed tasks based on
fixed thresholds suffer from performance degradation due to
heterogeneity and the inability to adapt to varying workflows.



TABLE I
OVERVIEW AND CLASSIFICATION OF STUDIED STRATEGIES

Strategy Replication Platform Dynamic Objective Learning Sim Real
Curino et al. (2010) [5] ✓ Cloud Response Time Supervised ✓ ✓
Xiong et al. (2015) [24] ✓ Cloud ✓ Economic Supervised ✓

Bui et al. (2016) [27] ✓ Cloud ✓
Availability

Fault Tolerance Supervised ✓

Shwe and Aritsugi (2017) [31] ✓ Cloud ✓
Availability

Response Time Supervised ✓

Symvoulidis et al. (2023) [32] Edge ✓ Response Time Supervised
Unsupervised ✓

Yuan et al. (2010) [6] Cloud ✓ Bandwidth Consumption Unsupervised ✓
Wang et al. (2014) [33] ✓ Cloud ✓ Response Time Unsupervised ✓

Sellami et al. (2021) [34] Cloud ✓ Response Time Unsupervised ✓

Ahmed et al. (2023) [35] ✓ Cloud ✓
Availability

Response Time Unsupervised ✓

Morffi et al. (2007) [7] ✓ Unspecified Response Time Reinforcement ✓
Cano et al. (2017) [36] Cloud ✓ Response Time Reinforcement ✓
Noel et al. (2019) [37] Cloud ✓ Response Time Reinforcement ✓
Liu et al. (2019) [38] ✓ Cloud ✓ Response Time Reinforcement ✓

Ferreira et al. (2020) [39] ✓ Cloud ✓ Throughput Reinforcement ✓

Lu et al. (2022) [40] ✓ Cloud ✓
Response Time

Throughput Reinforcement ✓

Alkassab et al. (2023) [41] ✓ Edge Response Time Reinforcement ✓
Javed et al. (2023) [42] ✓ Edge Throughput Reinforcement ✓
Zhang et al. (2023) [43] Cloud ✓ Response Time Reinforcement ✓ ✓

Hence, they propose Q-learning to trigger such threshold-
based tasks. They provide hierarchical data movement, known
as tiering, as an example. It is important to note that Curator
is only involved in moving data downwards (e.g. from SSD to
HDD). This could be seen as a limitation of their framework.

Noel et al. [37] design an Adaptive Resource Manage-
ment (ARM) system for Ceph [54], an object-based storage
database. The major factors that cause performance degra-
dation in such systems are hardware heterogeneity and the
interference from background tasks such as data scrubbing.
They use a stochastic policy gradient to mitigate performance
hotspots. A shortcoming of their strategy is a static assumption
of the workload nature. While the aim of the authors was for
the system to be autonomous, information about the nature of
the workload may not always be available, requiring human
intervention. The authors compare the performance of their
algorithm with the baseline performance of Ceph and another
state of the art method called DLR [55].

Liu et al. [38] propose DataBot+, a framework for low
latency in data center networks that uses deep Q-networks to
automatically learn the optimal placement policies. They use
the MSR Cambridge Traces [56] to compare against HASH
(which is used by HDFS), commonIP [57], Sinbad [58], and
DataBot [59] (which did not consider data analytical latency).
A certain limitation of their strategy is that the replication
factor is a fixed hyperparameter.

Ferreira et al. [39] utilize Deep Reinforcement Learning
to dynamically tune the parameters of a replication middle-
ware to achieve performance gains in terms of throughput.
The replication middleware used is the Apache Bookkeeper
Distributed Log. Evaluation was performed using the TPC-
C benchmark [60]. While significant improvements over the
baseline configuration were perceived, no other configurations

were used for comparison.
Lu et al. [40] propose RLRP, a deep reinforcement learning

replica placement strategy. The underlying architecture is Deep
Q-Networks with two types of agents: placement agents and
migration agents. The ϵ-greedy policy [53] is used to explore
the state space. Their system is also extended to heterogeneous
environments. The state is augmented by additional features:
CPU utilization, I/O access rate and network resources. The
underlying Deep Q-Network architecture is also changed from
a multi-layer perceptron to an encoder-decoder based on
stacked LSTM cells with attention mechanism. The system
is tested in both homogeneous and heterogeneous systems
against multiple strategies in the literature. A key limitation
of this research is the fact that the replication factor is deter-
mined by the upper-layer application. Therefore, the authors
exclusively treat the placement of replicas and do not discuss
the number of replicas.

Alkassab et al. [41] deploy Deep Q-Networks and Deep
Recurrent Q-Networks to implement a prefetcher for video
content on edge networks. To evaluate their prefetcher, they
use various other prefetching algorithms such as Belady-
Prefetch and top-k Popularity [61]. The authors have compared
their strategy to baseline strategies only and have not explored
other strategies in the literature.

Javed et al. [42] develop a Deep Q-Network agent to
optimize the placement of data requested by users on multiple
base stations in the context of mmWave networks for Extended
Reality applications. The ϵ-greedy policy [53] is used to
explore the solution space. The performance of their agent is
evaluated against the BEST-CQI heuristic, which chooses the
set of base stations with the best channel quality to the user.
While the authors compare the performance of their strategy
on different replication factors, the replication factor is a fixed



Fig. 1. Strategy distribution by platform Fig. 2. No. of publications between 2000 and 2023 Fig. 3. Strategy distribution by ML method

hyperparameter.
Zhang et al. [43] propose a hierarchical storage framework

with dynamic data placement in which storage devices with
different properties in terms of speed and volume are available.
Frequently accessed data can be placed in higher tiers, which
are faster but typically are less in volume than lower tiers.
The authors propose the implementation of a reinforcement
learning agent at each tier to manage the migration of data
between different tiers. They use the temporal difference
(TD(λ)) learning [53]. They compare the performance of their
system to other common rule based policies. In [62], they
extend their system for scientific datasets, where some of the
state variables are better adapted to the nature of the dataset
such as the use of an interestingness measure over the size
of the file in the protein translocation dataset [63]. While
the authors compare their policy with three other rule-based
policies based on common rules, much more common policies
such as Least Recently Used or Least Frequently Used are not
included in the comparison [64].

IV. ANALYSIS

Table I presents an overview and classification of the
strategies proposed in the literature. Most of the strategies
study placement as well as replication, whereas [6], [32], [34],
[36], [37], [43] study placement exclusively. The majority of
the strategies proposed are dynamic, with only four of the
strategies being static [5], [7], [41], [42]. Dynamic strategies
allow to adapt the placement and replication mechanisms to
changing workloads and can therefore perform better than
static strategies in such circumstances.

Fig. 1 presents a pie chart of the platforms on which the
strategies are deployed. Achieving satisfactory QoS in large
scale systems is more challenging. Thus, most of the strategies
proposed (78%) are adopted to the cloud architecture. Few
other strategies are adopted to the the edge architecture (17%)
[32], [41], [42]. Finally, Morffi et al. [7] did not specify the
platform on which their strategy is implemented.

The importance of optimization in large-scale distributed
systems can be further confirmed by studying the amount of
papers published per year. Fig. 2 shows the cumulative number
of published papers by year of publication. We notice a steady

increase in the number of papers published throughout the
years and a sharp increase in 2023.

As for optimization objectives, response time improvement
was dominant, with only few strategies studying other objec-
tives such as availability and fault tolerance. Objectives are
more deeply explored in Section V.

It is also important to highlight that most strategies have
aimed to optimize the objective studied. However, in plat-
forms such as the cloud, rather than maximizing performance,
achieving a satisfying QoS consistently to clients can be suf-
ficient. Such leniency can allow to introduce other objectives
such as the reduction of energy consumption or the reduction
of economic costs. However, we notice a lack in the literature
when it comes to the aforementioned aspects. The economical
aspect of large scale systems has not been studied sufficiently
despite its importance in commercial contexts. In addition,
with increasing power costs and concerns about the envi-
ronmental impact of distributed systems, energy consumption
needs to be considered when designing a data placement
and/or replication strategy. Current research fails to take into
account this aspect despite the fact that ML techniques can be
adapted to multiple dimensions of optimization.

The machine learning methods in the strategies proposed
varied, with five strategies using supervised learning, five
strategies using unsupervised learning, and nine strategies
using reinforcement learning. Fig. 3 shows the number of
strategies that employed each machine learning method. A
more detailed taxonomy of learning methods for each strat-
egy is shown in Fig. 4. Strategies that employed supervised
learning focused primarily on predicting the expected objective
given a certain resource allocation. The use of unsupervised
learning remains limited to specific contexts where it is
possible to form clusters for users or datasets based on their
characteristics. Reinforcement learning allows for the use of
simulated environments or real scenarios instead of relying on
workload traces.

V. EVALUATION

This section explores the different evaluation environments
used by the previously discussed strategies. We also discuss
the different evaluation objectives and provide insights about
the perceived improvements by these strategies.



Machine Learning Method

Supervised Learning Unsupervised Learning Reinforcement Learning

Curino et al. (2010)

Xiong et al. (2015)

Bui et al. (2016)

Shwe and Aritsugi (2017)

Symvoulidis et al. (2023)

Yuan et al. (2010)

Wang et al. (2014)

Ahmed et al. (2023)

Sellami et al. (2021)

Symvoulidis et al. (2023)

Morffi et al. (2007)

Cano et al. (2017)

Noel et al. (2019)

Liu et al. (2019)

Ferreira et al. (2020)

Lu et al. (2022)

Alkassab et al. (2023)

Javed et al. (2023)

Zhang et al. (2023)

Fig. 4. Taxonomy based on ML method

A. Evaluation Environment

To validate their strategies, some works relied on simulation
results [6], [31]–[33], [38], [40]–[42]. Other works relied on
real environments [7], [24], [27], [34]–[37], [39]. Finally, a
few works used both simulation and real environments [5],
[43]. Fig. 5 demonstrates the percentages of strategies based
on evaluation environments. Simulated environments were
most frequently used (50%), while real environments were
used slightly less (39%). Finally, few works relied on both
simulation and real environments (11%).

Common benchmarks used for the evaluation of strategies
were the YCSB Benchmark, [26] the TPC benchmark family,
[25], [60] and the Facebook cluster traces [28]. We see the
use of simulators such as CloudSimEx [46] in [31]. Other
strategies developed ad-hoc simulation environments for their
experiments. Python was a commonly used as a programming
language for such environments [33], [42]. Finally, Yuan et
al. [6] relied on SwinDeW-C, [47] a simulation environment
developed in their institution.

B. Evaluation Objectives

We study objectives targeted by the different strategies
discussed in this review. These objectives concern improving
response time, increasing throughput, providing fault toler-
ance, increasing availability and reducing economic costs. Fig.
6 provides a summary of the objectives of these strategies.

1) Response Time & Throughput: Response time was the
most common objective in the studied strategies. Here, we
consider all measures having an impact on response time.
Shwe and Aritsugi [31] study the improvement in the mean
time to repair, which measures the time it takes for the system
to re-replicate after a failure occurs. They find improvements

between ∼2 minutes and ∼23 minutes compared to the default
Hadoop re-replication policy. Symvoulidis et al. [32] measure
improvements in latency. They report a reduction of 60% for
static or local users and 10% for mobile users compared to
other strategies in the literature. Wang et al. [33] measure
the makespan of datasets, which is the total time required to
execute a set of related tasks or operations. They measure im-
provements of 25% compared to a random placement strategy.
Ahmed et al. [35] observe an improvement of 28.2% and 29%
on read and write execution times compared to CPHARIF [52].
Cano et al. [36] observe improvements on latency in varying
workloads compared to a strategy with thresholds fixed on
heuristics. The improvements range from 2% on a varying
workload to 20% on a read heavy workload. Noel et al. [37]
compare the read and write response times of their strategy
to the default scheme and to DLR [55]. Read response time
is improved by 50% and 43% compared to the baseline and
DLR respectively. Write response times are improved by 33%
and 36% compared to the baselines and DLR respectively. Liu
et al. [38] reduce user-experienced latency for 23.8% of users
compared to HASH, a higher percentage than other strategies
(up to ∼15% for Databot [59] and ∼10% for Sinbad [58] and
commonIP [57]). Lu et al. [40] also tackle read response time
and perceive an improvement of 10% - 50% compared to other
schemes. Curino et al. [5] reduce bandwidth consumption by
reducing the number of distributed transactions. They have
found a reduction of 30% compared to simple partitioning
schemes. Yuan et al. [6] measure data movements in scientific
workflows and report a reduction of 50% compared to random
strategies. Wang et al. [33] improve upon the aforementioned
work by accounting for the size in data movements and
measure an improvement of 10%. Sellami et al. [34] reduce



Fig. 5. Strategy distribution by evaluation environment Fig. 6. Strategy distribution by objective

the amount of required workers by 2 to 15 compared to
Xu et al. [51] and by 5 to 22 compared to Jyothi et al.
[50] on a workload of jobs varying between 100 and 300,
therefore limiting the amount of data migrations. Alkassab
et al. [41] measure the prefetching accuracy and coverage in
content delivery networks. These metrics insure efficiency in
bandwidth consumption and improved user experience. They
measure an improvement of 17% - 28% compared to the
popularity-based strategies. Zhang et al. manage to reduce file
transfers. They record 45 transfers per timestep using their
RL-based policy compared to 311 per timestep using rule-
based policies, making the RL-based policy about 6 times
more efficient than rule-based policies.

Other strategies aimed to increase throughput. Ferreira et
al. [39] measure throughput through the number of client
replicated and written transactions and the number of client
requests. They record an improvement of 370.99% on written
transactions compared to a baseline configuration on some of
the metrics. Lu et al. [40] increase read and write throughput
by 30% - 40% and 10% respectively compared to other
schemes. Javed et al. [42] measure the percentage of frames
delivered within the deadline. They perceive an increase of up
to 1.3% compared the BEST-CQI, a significant improvement
in the context of extended reality.

2) Fault Tolerance: Fault tolerance is another objective that
the discussed strategies aimed to improve. It is important
to note that data placement strategies [6], [32], [34], [36],
[37], [43] which do not replicate or apply erasure coding do
not offer any fault tolerance. While data replication strategies
provide fault tolerance, most strategies did not provide mea-
surements. The strategy proposed by Bui et al. [27] provides
the same fault tolerance as the default Hadoop replication
strategy while having a lower average replication factor of
1.22 compared to 3 for Hadoop.

3) Availability: Availability has also been studied as an
objective. Shwe and Aritsugi [31] use the overload probability
as a metric for availability. An overloaded node may not be
able to respond to user requests thus reducing availability.
They reduce overload probability from 50% to 0% compared
to the default policy. Ahmed et al. [35] provide the highest
availability while consuming 50% and 1.12% less storage

compared to the default Hadoop replication scheme and the
strategy proposed in [52] respectively.

4) Economical Aspect: The rise of the cloud as a service
and other architectures such as the fog or the edge has been
mainly due to the existence of a profit venture. It is surprising
then that aside from [24], none of the other strategies have
tackled the economic perspective. Xiong et al. manage to
reduce the weighted SLA penalty cost by 17.80% on average
compared to a baseline resource allocation. In fact, there is
a general lack in the literature when it comes to studying the
economical aspect of data placement and replication strategies
regardless of whether they are ML-based.

VI. CONCLUSION

As assuring satisfactory QoS has become essential in dis-
tributed systems, there is a need to design effective data place-
ment and replication strategies. However, current strategies of-
ten rely on threshold-based activation mechanisms that require
fine tuning according to the nature of the workflow and the
underlying architecture, usually through human intervention.
ML is a promising facet to define such thresholds in an
automatic manner. This has led us to survey the data placement
and replication strategies that employ ML. We have presented
a taxonomy of the strategies based on the ML method while
providing the concept behind each strategy as well as potential
limitations. In addition, we characterized such strategies by
the platform on which they are deployed, the dynamicity and
the achieved objective. We highlighted the recent increase
in use of ML to design strategies. Finally, we provided in-
depth insights by analyzing the tendencies in the evaluation
environment and evaluation metrics.

Current research fails to meet all contemporary expectations
for distributed systems. In particular, distributed systems have
seen increased commercial use. This is important to keep in
mind as a replication incurs an economic cost. For example,
in the cloud paradigm, assuring a satisfactory QoS to clients is
sufficient, which allows to introduce other objectives such as
the reduction of economic cost. In addition, concerns about
the environmental impact of such systems have also been
raised, as datacenters are increasingly consuming more energy.
Few strategies in the literature tackle the aforementioned



aspects while achieving autonomy. We believe that ML-based
strategies could incorporate the two aforementioned aspects.
With the global increase of data volumes, a strategy should
achieve the following requirements:

• Have both data placement and replication mechanisms;
modern QoS requirements include response time as well
as fault tolerance and availability.

• Have the ability to dynamically adapt to workload
changes and evolution in the system.

• Satisfy application domain QoS requirements.
• Include the economical aspect in case of commercial use.
• Aim to reduce energy consumption.
• Employ ML in order to achieve autonomy and eliminate

human intervention.
In terms of ML method, reinforcement learning seems to

be the most suitable for a strategy design. The ability to learn
directly from a simulated or a real environment presents an
effective mechanism. On the other hand, supervised learning
requires the presence of a labelled dataset, through the form
of access traces. While certainly viable, acquiring traces can
prove to be a difficult task. Finally, unsupervised learning
requires specific circumstances where relations between data
and/or between users can be established, such as scientific
workflows or edge networks with different user mobility
classes. Hence, the potential for unsupervised learning is fairly
limited to specific domains.

In the future, we plan to incorporate the aforementioned
requirements to design an autonomous data replication strategy
based on reinforcement learning in the cloud. Our primary
objectives are increasing provider profit and reducing the
environmental impact. To validate our strategy, we plan to
compare it to other state of the art strategies using simulations
and real environments.

REFERENCES

[1] D. Armstrong and K. Djemame, “Towards quality of service in the
cloud,” in Proc. of the 25th UK Performance Engineering Workshop,
2009.

[2] D. J. Abadi, “Data management in the cloud: Limitations and opportu-
nities,” IEEE Data Eng. Bull., vol. 32, no. 1, pp. 3–12, 2009.

[3] S. Mazumdar, D. Seybold, K. Kritikos, and Y. Verginadis, “A survey on
data storage and placement methodologies for cloud-big data ecosys-
tem,” Journal of Big Data, vol. 6, no. 1, pp. 1–37, 2019.

[4] S. Goel and R. Buyya, “Data replication strategies in wide-area dis-
tributed systems,” in Enterprise service computing: from concept to
deployment, pp. 211–241, IGI Global, 2007.

[5] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload-
driven approach to database replication and partitioning,” Proc. VLDB
Endow., vol. 3, p. 48–57, sep 2010.

[6] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A data placement strategy
in scientific cloud workflows,” Future Generation Computer Systems,
vol. 26, no. 8, pp. 1200–1214, 2010.

[7] A. Rodriguez Morffi, D. Paz, M. Mainegra Hing, and L. González, “A
Reinforcement Learning Solution for Allocating Replicated Fragments
in a Distributed Database,” Computacion y Sistemas, vol. 11, pp. 117–
128, 12 2007.

[8] P. Lindberg, J. Leingang, D. Lysaker, S. U. Khan, and J. Li, “Comparison
and analysis of eight scheduling heuristics for the optimization of energy
consumption and makespan in large-scale distributed systems,” The
Journal of Supercomputing, vol. 59, pp. 323–360, 2012.

[9] R. Mokadem and A. Hameurlain, “A data replication strategy with tenant
performance and provider economic profit guarantees in Cloud data
centers,” Journal of Systems and Software, vol. 159, p. 110447, 2020.

[10] M.-C. Lee, F.-Y. Leu, and Y.-p. Chen, “PFRF: An adaptive data repli-
cation algorithm based on star-topology data grids,” Future generation
computer systems, vol. 28, no. 7, pp. 1045–1057, 2012.

[11] X. Bai, H. Jin, X. Liao, X. Shi, and Z. Shao, “RTRM: A response time-
based replica management strategy for cloud storage system,” in Grid
and Pervasive Computing: 8th International Conference, GPC 2013 and
Colocated Workshops, Seoul, Korea, May 9-11, 2013. Proceedings 8,
pp. 124–133, Springer, 2013.

[12] U. Tos, R. Mokadem, A. Hameurlain, T. Ayav, and S. Bora, “A perfor-
mance and profit oriented data replication strategy for cloud systems,” in
2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing,
Advanced and Trusted Computing, Scalable Computing and Commu-
nications, Cloud and Big Data Computing, Internet of People, and
Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld),
pp. 780–787, Ieee, 2016.

[13] S. Khatua, A. Ghosh, and N. Mukherjee, “Optimizing the utilization
of virtual resources in Cloud environment,” in 2010 IEEE International
Conference on Virtual Environments, Human-Computer Interfaces and
Measurement Systems, pp. 82–87, 2010.

[14] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload
Prediction Using ARIMA Model and Its Impact on Cloud Applications’
QoS,” IEEE Transactions on Cloud Computing, vol. 3, no. 4, pp. 449–
458, 2015.

[15] M. Séguéla, R. Mokadem, and J.-M. Pierson, “Dynamic Energy and
Expenditure Aware Data Replication Strategy,” in 2022 IEEE 15th
International Conference on Cloud Computing (CLOUD), pp. 97–102,
2022.

[16] E. Alpaydin, Introduction to machine learning. MIT press, 2020.
[17] N. Maheshwari, R. Nanduri, and V. Varma, “Dynamic energy efficient

data placement and cluster reconfiguration algorithm for MapReduce
framework,” Future Generation Computer Systems, vol. 28, no. 1,
pp. 119–127, 2012.

[18] H. Jin, X. Yang, X.-H. Sun, and I. Raicu, “Adapt: Availability-aware
mapreduce data placement for non-dedicated distributed computing,” in
2012 IEEE 32nd International Conference on Distributed Computing
Systems, pp. 516–525, IEEE, 2012.

[19] Y. Qu and N. Xiong, “RFH: A resilient, fault-tolerant and high-
efficient replication algorithm for distributed cloud storage,” in 2012 41st
International Conference on Parallel Processing, pp. 520–529, IEEE,
2012.

[20] D.-W. Sun, G.-R. Chang, S. Gao, L.-Z. Jin, and X.-W. Wang, “Modeling
a dynamic data replication strategy to increase system availability
in cloud computing environments,” Journal of computer science and
technology, vol. 27, no. 2, pp. 256–272, 2012.

[21] N. Mansouri, “Adaptive data replication strategy in cloud computing
for performance improvement,” Frontiers of Computer Science, vol. 10,
pp. 925–935, 2016.

[22] P. Spirtes, C. Glymour, and R. Scheines, Causation, prediction, and
search. MIT press, 2001.

[23] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, “A survey on distributed machine learning,” Acm
computing surveys (csur), vol. 53, no. 2, pp. 1–33, 2020.

[24] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and H. Hacgümüş,
“SmartSLA: Cost-Sensitive Management of Virtualized Resources for
CPU-Bound Database Services,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 5, pp. 1441–1451, 2015.

[25] D. A. Menascé, “TPC-W: A benchmark for e-commerce,” IEEE Internet
Computing, vol. 6, no. 3, pp. 83–87, 2002.

[26] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM symposium on Cloud computing, pp. 143–154, 2010.

[27] D.-M. Bui, S. Hussain, E.-N. Huh, and S. Lee, “Adaptive Replication
Management in HDFS Based on Supervised Learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 28, no. 6, pp. 1369–
1382, 2016.

[28] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing
in big data systems: a cross-industry study of MapReduce workloads,”
Proc. VLDB Endow., vol. 5, p. 1802–1813, aug 2012.

[29] Z. Cheng, Z. Luan, Y. Meng, Y. Xu, D. Qian, A. Roy, N. Zhang,
and G. Guan, “ERMS: An Elastic Replication Management System for
HDFS,” in 2012 IEEE International Conference on Cluster Computing
Workshops, pp. 32–40, 2012.

[30] G. Kousiouris, G. Vafiadis, and T. Varvarigou, “Enabling Proactive Data
Management in Virtualized Hadoop Clusters Based on Predicted Data



Activity Patterns,” in 2013 Eighth International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, pp. 1–8, 2013.

[31] T. Shwe and M. Aritsugi, “Proactive Re-replication Strategy in HDFS
based Cloud Data Center,” in Proceedings of The10th International
Conference on Utility and Cloud Computing, UCC ’17, (New York,
NY, USA), p. 121–130, Association for Computing Machinery, 2017.

[32] C. Symvoulidis, A. Kiourtis, G. Marinos, J.-D. Totow Tom-Ata, G. Ma-
nias, A. Mavrogiorgou, and D. Kyriazis, “A User Mobility-Based Data
Placement Strategy in a Hybrid Cloud/Edge Environment Using a
Causal-Aware Deep Learning Network,” IEEE Transactions on Com-
puters, vol. 72, no. 12, pp. 3603–3616, 2023.

[33] M. Wang, J. Zhang, F. Dong, and J. Luo, “Data Placement and Task
Scheduling Optimization for Data Intensive Scientific Workflow in
Multiple Data Centers Environment,” in 2014 Second International
Conference on Advanced Cloud and Big Data, pp. 77–84, 2014.

[34] M. Sellami, H. Mezni, M. S. Hacid, and M. M. Gammoudi, “Clustering-
based data placement in cloud computing: a predictive approach,”
Cluster Computing, vol. 24, no. 4, pp. 3311–3336, 2021.

[35] M. A. Ahmed, M. H. Khafagy, M. E. Shaheen, and M. R. Kaseb,
“Dynamic Replication Policy on HDFS Based on Machine Learning
Clustering,” IEEE Access, vol. 11, pp. 18551–18559, 2023.

[36] I. Cano, S. Aiyar, V. Arora, M. Bhattacharyya, A. Chaganti, C. Cheah,
B. Chun, K. Gupta, V. Khot, and A. Krishnamurthy, “Curator: Self-
Managing Storage for Enterprise Clusters,” in 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), (Boston,
MA), pp. 51–66, USENIX Association, Mar. 2017.

[37] R. R. Noel, R. Mehra, and P. Lama, “Towards Self-Managing Cloud
Storage with Reinforcement Learning,” in 2019 IEEE International
Conference on Cloud Engineering (IC2E), pp. 34–44, 2019.

[38] K. Liu, J. Peng, J. Wang, B. Yu, Z. Liao, Z. Huang, and J. Pan, “A
learning-based data placement framework for low latency in data center
networks,” IEEE Transactions on Cloud Computing, vol. 10, no. 1,
pp. 146–157, 2019.

[39] L. Ferreira, F. Coelho, and J. Pereira, “Self-tunable DBMS Replication
with Reinforcement Learning,” in Distributed Applications and Interop-
erable Systems (A. Remke and V. Schiavoni, eds.), (Cham), pp. 131–147,
Springer International Publishing, 2020.

[40] K. Lu, N. Zhao, J. Wan, C. Fei, W. Zhao, and T. Deng, “RLRP:
High-Efficient Data Placement with Reinforcement Learning for Modern
Distributed Storage Systems,” in 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 595–605, 2022.

[41] N. Alkassab, C.-T. Huang, and T. L. Botran, “DeePref: Deep Reinforce-
ment Learning For Video Prefetching In Content Delivery Networks,”
arXiv preprint arXiv:2310.07881, 2023.

[42] M. A. Javed, P. Liu, and S. S. Panwar, “Predictive Data Replication for
XR Applications in Multi-Connectivity Enabled mmWave Networks,”
in 2023 International Balkan Conference on Communications and
Networking (BalkanCom), pp. 1–5, 2023.

[43] T. Zhang, A. Hellander, and S. Toor, “Efficient Hierarchical Storage
Management Empowered by Reinforcement Learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 35, no. 6, pp. 5780–
5793, 2023.

[44] C. Loader, Local regression and likelihood. Springer Science & Business
Media, 2006.

[45] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[46] N. Grozev and R. Buyya, “Performance modelling and simulation of
three-tier applications in cloud and multi-cloud environments,” The
Computer Journal, vol. 58, no. 1, pp. 1–22, 2015.

[47] Y. Yang, K. Liu, J. Chen, X. Liu, D. Yuan, and H. Jin, “An Algorithm
in SwinDeW-C for Scheduling Transaction-Intensive Cost-Constrained
Cloud Workflows,” in 2008 IEEE Fourth International Conference on
eScience, pp. 374–375, 2008.

[48] M. Kristan and A. Leonardis, “Online discriminative kernel density
estimator with gaussian kernels,” IEEE transactions on cybernetics,
vol. 44, no. 3, pp. 355–365, 2013.

[49] J. Poelmans, D. I. Ignatov, S. O. Kuznetsov, and G. Dedene, “Formal
concept analysis in knowledge processing: A survey on applications,”
Expert systems with applications, vol. 40, no. 16, pp. 6538–6560, 2013.

[50] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tu-
manov, J. Yaniv, R. Mavlyutov, I. Goiri, S. Krishnan, J. Kulkarni, et al.,
“Morpheus: Towards automated SLOs for enterprise clusters,” in 12th

USENIX symposium on operating systems design and implementation
(OSDI 16), pp. 117–134, 2016.

[51] M. Xu, S. Alamro, T. Lan, and S. Subramaniam, “Cred: Cloud right-
sizing with execution deadlines and data locality,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 12, pp. 3389–3400,
2017.

[52] M. R. Kaseb, M. H. Khafagy, I. A. Ali, and E. M. Saad, “An improved
technique for increasing availability in Big Data replication,” Future
Generation Computer Systems, vol. 91, pp. 493–505, 2019.

[53] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine learning, vol. 3, pp. 9–44, 1988.

[54] S. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, “Ceph:
A scalable, high-performance distributed file system,” in Proceedings of
the 7th Conference on Operating Systems Design and Implementation
(OSDI’06), pp. 307–320, 2006.

[55] R. R. Noel and P. Lama, “Taming Performance Hotspots in Cloud
Storage with Dynamic Load Redistribution,” in 2017 IEEE 10th Inter-
national Conference on Cloud Computing (CLOUD), pp. 42–49, 2017.

[56] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Transactions
on Storage (TOS), vol. 4, no. 3, pp. 1–23, 2008.

[57] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
“Volley: Automated data placement for geo-distributed cloud services,”
in NSDI, 2010.

[58] M. Chowdhury, S. Kandula, and I. Stoica, “Leveraging endpoint flexi-
bility in data-intensive clusters,” ACM SIGCOMM Computer Communi-
cation Review, vol. 43, no. 4, pp. 231–242, 2013.

[59] K. Liu, J. Wang, Z. Liao, B. Yu, and J. Pan, “Learning-based adaptive
data placement for low latency in data center networks,” in 2018 IEEE
43rd Conference on Local Computer Networks (LCN), pp. 142–149,
IEEE, 2018.

[60] “TPC-C.” https://www.tpc.org/tpcc/.
[61] L. A. Belady, “A study of replacement algorithms for a virtual-storage

computer,” IBM Systems Journal, vol. 5, no. 2, pp. 78–101, 1966.
[62] T. Zhang, A. Gupta, M. A. F. Rodrı́guez, O. Spjuth, A. Hellander, and

S. Toor, “Data management of scientific applications in a reinforcement
learning-based hierarchical storage system,” Expert Systems with Appli-
cations, vol. 237, p. 121443, 2024.

[63] V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter, “Annotated high-
throughput microscopy image sets for validation.,” Nature methods,
vol. 9, no. 7, pp. 637–637, 2012.

[64] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim, “On the existence of a spectrum of policies that subsumes the
least recently used (LRU) and least frequently used (LFU) policies,” in
Proceedings of the 1999 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, pp. 134–143, 1999.

https://www.tpc.org/tpcc/

	Introduction
	Background
	Data Placement and Replication
	Machine Learning

	ML-Based Data Placement and Replication Strategies
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Analysis
	Evaluation
	Evaluation Environment
	Evaluation Objectives
	Response Time & Throughput
	Fault Tolerance
	Availability
	Economical Aspect


	Conclusion
	References

