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THE LAPLACIAN WITH COMPLEX MAGNETIC FIELDS

DAVID KREJČIŘÍK, THO NGUYEN DUC, AND NICOLAS RAYMOND

Abstract. We study the two-dimensional magnetic Laplacian when the magnetic field
is allowed to be complex-valued. Under the assumption that the imaginary part of the
magnetic potential is relatively form-bounded with respect to the real part of the magnetic
Laplacian, we introduce the operator as an m-sectorial operator. In two dimensions, suf-
ficient conditions are established to guarantee that the resolvent is compact. In the case
of non-critical complex magnetic fields, a WKB approach is used to construct semiclassical
pseudomodes, which do not exist when the magnetic field is real-valued.

1. Introduction

Since the appearance of the highly influential paper [1] at the turn of the millennium, there
has been a growing interest in Schrödinger operators with complex-valued electric potentials.
This is explained not only by diverse physical motivations, but notably due to a new concept
of quantum mechanics where observables can be represented by non-self-adjoint operators
[26, 21]. Moreover, the mathematical studies lead to unprecedented spectral properties such
as the existence of pseudomodes [9, 10, 20, 3] or the existence of eigenvalues accumulating
at non-zero points of the essential spectrum [4, 8, 5].

It is about time that someone would address the case of Schrödinger operators where the
magnetic potential is complex-valued now. This is the subject of the present paper. Our
motivation is not merely our mathematical curiosity, but also strong physical motivations.
Among these, let us mention superconductors [13, 14], quantum statistical physics [24, 2],
speculations about a novel type of magnetic monopoles [25], stability of black holes in
general relativity [16, 17] and the concept of quasi-self-adjointness again [19]. What is
more, complexifying the magnetic field is mathematically much more challenging than its
electric counterpart. That is probably why rigorous results do not exist in the literature
and the objective of this paper is to fill in this gap.

1.1. The problem. We are concerned with the differential expression

(−ih∇−A)2 =
d∑

j=1

(
−ih∂xj

− Aj

)2
, (1.1)

where d ⩾ 1 is the dimension, A = (A1, . . . , Ad) : Rd → Cd is the complexified (magnetic)
vector potential and h is a small positive (semiclassical) parameter. If the imaginary part
of A is non-zero, it is not even clear that (1.1) leads to a well defined operator in L2(Rd).
More specifically, our first concern is

(I) to identify the right subspace of L2(Rd) as a domain on which (1.1) is realised as a
closed operator with non-empty resolvent set.

Our next curiosity is about the realisation of complexified “magnetic bottles”, i.e.,

(II) to find conditions on A which guarantee that the operator has compact resolvent.

Since it is the pseudospectrum which describes non-self-adjoint phenomena, our last task is

(III) to construct pseudomodes in the semiclassical limit h → 0.

Of course, other problems could be raised, but already these three tasks lead to considerable
mathematical challenges.
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1.2. Main results.

1.2.1. The magnetic Laplacian as an m-sectorial operator. In this paper, we deal with
task (I) by assuming that the imaginary part of the vector potential is relatively form-
bounded with respect to the real part of the magnetic Laplacian. More specifically, we
always make the following hypothesis.

Assumption 1.1. Let A ∈ L2
loc(Rd,Cd) and assume that there exist two constants a ∈ (0, 1)

and b ⩾ 0 such that∫
Rd

|(ImA)u|2 dx ⩽ a

∫
Rd

|(−ih∇− ReA)u|2 dx+ b

∫
Rd

|u|2 dx , (1.2)

for all u ∈ C∞
c (Rd).

We define the sesquilinear form naturally associated with (1.1), i.e.,

Qh,A(u, v) :=

∫
Rd

(−ih∇−A)u · (−ih∇−A)v dx , (1.3)

Dom(Qh,A) :=
{
u ∈ L2(Rd) : (−ih∇− ReA)u ∈ L2(Rd,Cd), (ImA)u ∈ L2(Rd,Cd)

}
.

The objective of task (I) is fulfilled by the following theorem.

Theorem 1.2. Under Assumption 1.1, Qh,A is densely defined, closed and sectorial. Then,
the operator defined by

Dom(Lh,A) :=
{
u ∈ Dom(Qh,A) : ∃f ∈ L2(Rd), ∀v ∈ Dom(Qh,A), Qh,A(u, v) = ⟨f, v⟩

}
,

Lh,A :=f ,

is m-sectorial.

While the closed representative Lh,A of (1.1) is easily introduced in all dimensions, it is
well known that its spectral analysis becomes cumbersome in higher dimensions even in the
self-adjoint case. Therefore, we modestly restrict to dimension d = 2 in the sequel. In this
case, the magnetic field

B := curlA = ∂x1A2 − ∂x2A1

is a scalar function. Then pointwise sufficient conditions which guarantee Assumption 1.1
are contained in the following proposition.

Proposition 1.3. Let A ∈ L2
loc(R2,C2) and B ∈ L1

loc(R2). Assume one of the following
conditions:

(C1): there exist ε1 ∈ (0, 1), C1 ∈ R such that

|ImA(x)|2 ⩽ ±ε1hReB(x) + C1 , ∀x ∈ R2 ;

(C2): there exist ε2 ∈
(
0, 1

2

)
, C2 ∈ R such that

|ImA(x)|2 ⩽ ±ε2hImB(x) + C2 , ∀x ∈ R2 .

Then Assumption 1.1 holds.

Of course, the conditions are automatically satisfied if ImA = 0 and if ReB is bounded
from below or from above. If ImB = 0, note that one can choose a real vector potential A,
but that one can also choose a complex gauge (leading to non unitarily equivalent operators).

In practice, when A and B are continuous on R2, it suffices to verify (C1) or (C2) for
large values of |x|. Furthermore, if ImA is bounded and ReB(x) (respectively, ImB(x))
does not change sign for large |x|, then (C1) (respectively, (C2)) holds.
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Example 1 (Homogeneous magnetic field). Unfortunately, Assumption 1.1 excludes the im-
portant case of constant magnetic field B = c ∈ C corresponding to

A(x) := c 1
2
(−x2, x1) or A(x) := c (0, x1) ,

unless Im c = 0. In fact, implementing task (I) in this case seems particularly non-trivial.

Example 2 (Complexified Miller–Simon’s potential). Consider

A(x) :=

(
− cx2

(1 + |x|)α
,

cx1

(1 + |x|)α

)
,

where c := c1 + ic2 ∈ C with c1, c2 ∈ R and α > 0. When c is real, the magnetic Laplacian
with this type of magnetic potential was considered in [23]. When c2 ̸= 0 and if we assume
further that α ⩾ 1 then it can be checked that both condition (C1) and (C2) are satisfied.
Indeed, since |A| is bounded and that

B(x) = c

(
2

(1 + |x|)α
− α|x|

(1 + |x|)α+1

)
is also bounded on R2, we can therefore find sufficient large constants C1 and C2 such
that (C1) and (C2) hold. With more effort, we can see that Dom(Qh,A) = H1(R2) and
Dom(Lh,A) = H2(R2). In particular, when c1 = 0, we have an example of purely imaginary
magnetic fields such that our magnetic Laplacian is well defined.

Example 3. (Purely imaginary exponential magnetic potentials) Now we give an example
of an unbounded purely imaginary A for which (C1) fails but (C2) still holds. Consider

A(x) := ice|x|
2

(−x2, x1) , (1.4)

where c ∈ (−h, h) and h > 0. It can be checked that

|ImA(x)|2 = c2|x|2e|x|2 , ImB(x) = 2c(|x|2 + 1)e|x|
2

.

Hence, we have

|ImA(x)|2 ⩽ c

2
ImB(x), ∀x ∈ R2 .

By choosing C2 = 0 and ε2 ∈
(

|c|
2h
, 1
2

)
, (C2) is verified.

1.2.2. Compactness of the resolvent. Let us now consider task (II) about the compactness
of the resolvent (which implies that the spectrum is purely discrete).

Theorem 1.4. Let A satisfy Assumption 1.1 and ReA ∈ L∞
loc(R2,R2). Assume one of the

following conditions:

(H1): ReB ∈ C0(R2) and lim
|x|→+∞

|ReB(x)| = +∞ ,

(H2): ImB ∈ C0(R2) and lim
|x|→+∞

|ImB(x)| = +∞ ,

(H3): ImA ∈ C0(R2,R2) and lim
|x|→+∞

|ImA(x)| = +∞ .

Then Lh,A has compact resolvent.

The first condition of the theorem extends the usual magnetic bottle realisation [15] to
the non-self-adjoint setting. More interestingly, it follows that the magnetic Laplacian of
Example 3 (with c ̸= 0) has compact resolvent despite ReB = 0.
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1.2.3. Semiclassical pseudomodes. Finally, let us present our implementation of task (III)
about the construction of semiclassical pseudomodes. To this purpose, let us restrict to
magnetic potentials A ∈ C∞(R2,C2) satisfying Assumption 1.1. In the plane R2, we define
the subset

Γ :=

{
x ∈ R2

∣∣∣∣∣ ImA(x) = 0, B(x) ̸= 0, ∂zB(x) ̸= 0,

Q1(x) > 0, Q1(x)Q3(x)−Q2
2(x) > 0

}
,

where

Q1(x) :=
1

4
Re

[
B(x)

(
1 +

∂zB

∂zB
(x)

)]
+

1

2
∂x1ImA1(x) ,

Q2(x) :=
1

4
Im

[
B(x)

∂zB

∂zB
(x)

]
+

1

4
(∂x1ImA2 + ∂x2ImA1(x)) ,

Q3(x) :=
1

4
Re

[
B(x)

(
1− ∂zB

∂zB
(x)

)]
+

1

2
∂x2ImA2(x) ,

(1.5)

and ∂z := 1
2
(∂x1 − i∂x2) and ∂z := 1

2
(∂x1 + i∂x2) stand for the usual Wirtinger derivatives.

Our main result is the following theorem.

Theorem 1.5. Let x0 ∈ Γ and assume that B is real-analytic at x0. Then there exist
constants C, h0 > 0 and a family of functions (uh)0<h⩽h0

⊂ C∞
c (R2) such that, for all

h ∈ (0, h0), ∥∥(Lh,A − hB(x0)
)
uh

∥∥ ⩽ exp

(
− C

h1/7

)
∥uh∥ . (1.6)

Note that Γ = ∅ if ImA = 0, because Q1Q3 − Q2
2 = 0 in this case. It follows that

the existence of the pseudomode (uh)0<h⩽h0
is possible only in the present non-self-adjoint

setting. Below we provide examples of magnetic potentials for which Γ ̸= ∅; these include
polynomial and oscillating complex magnetic fields.

In order to prove Theorem 1.5, we use the ideas of the magnetic WKB strategy as de-
veloped in [6, 12] in the self-adjoint case to find approximations of eigenfunctions. In our
non-self-adjoint development, it is remarkable that the magnetic potential A does not need
to be analytic for this result to hold. This technical outcome is due to the use of a formal
gauge, which allows for the local transformation to an appropriate analytic potential at x0,
see Section 3.1.

We stress that Theorem 1.5 is not covered by [10]. Indeed, the Weyl symbol of Lh,A is

p(x, ξ) = |ξ − ReA|2 − |ImA|2 − 2i⟨ξ − ReA, ImA⟩ .

Note that p(x, ξ) = 0 is equivalent to ξ − ReA = ±(ImA)⊥ and that

{Re p, Im p}(x, ξ)
= −4(ξ − ReA) · ∂x⟨ξ − ReA, ImA⟩ − 2∂x(|ξ − ReA|2 − |ImA|2) · ImA ,

where {·, ·} is the Poisson bracket. Given x0 ∈ Γ, then for any point (x0, ξ0) ∈ R4 such that
p(x0, ξ0) = 0, we have {Re p, Im p}(x0, ξ0) = 0 (since ImA(x0) = 0), so [10, Thm. 1.2] does
not apply.

1.3. Structure of the paper. In Section 2 we deal with tasks (I) and (II); in particular,
we introduce the operator Lh,A and prove Proposition 1.3 and Theorem 1.4. Task (III) is
considered in Section 3; namely, we establish Theorem 1.5 and provide the specific examples
which the theorem applies to.
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2. Sectorial magnetic Laplacians

The main purpose of this section is to realise the differential expression (1.1) as an m-
sectorial operator in L2(Rd) via a sesquilinear form and study its spectral property compact
resolvent.

Assume A ∈ L2
loc(Rd,Cd). Expanding (−ih∇−A)2, the action of this operator should be

(−ih∇− ReA)2 − (ImA)2 − i (ImA · (−ih∇− ReA) + (−ih∇− ReA) · ImA) .

Aiming at the variational definition, this suggests considering the form domain

Vh,A :=
{
u ∈ L2(Rd) : (−ih∇− ReA)u ∈ L2(Rd,Cd), (ImA)u ∈ L2(Rd,Cd)

}
(2.1)

equipped with the natural inner product

⟨u, v⟩Vh,A
:= ⟨u, v⟩+ ⟨(−ih∇− ReA)u, (−ih∇− ReA)v⟩+ ⟨(ImA)u, (ImA)v⟩ , (2.2)

where ⟨·, ·⟩ denotes the inner product of L2(Rd), linear in the first component.

Remark 2.1. Since A ∈ L2
loc(Rd,Cd), it follows that for all u ∈ L2(Rd),

(ReA)u ∈ L1
loc(Rd,Cd) , (ImA)u ∈ L1

loc(Rd,Cd) .

In particular, (−ih∇−ReA)u and (ImA)u can be understood in the sense of distributions
in (2.1).

Just as in the self-adjoint case, we have the following properties of the form domain.

Proposition 2.2. Let h > 0 and A ∈ L2
loc(Rd,Cd), the following holds.

(a)
(
Vh,A, ⟨·, ·⟩Vh,A

)
is a Hilbert space.

(b) C∞
c (Rd) is dense in Vh,A.

(c) Under the assumption 1.1, Vh,A = Vh,ReA, and two norms ∥ · ∥Vh,ReA
and ∥ · ∥Vh,A

are
equivalent.

Proof. The proof of (a) is standard, and the proof of the density result in (b) follows the
same steps as in [22, Theorem 7.22], so we omit the details here. Using (b), we extend the
assumption (1.2) to hold on the space Vh,A. Consequently, statements in (c) are established.

□

After exploring several key properties of the space Vh,A, we are now ready to prove our
first main theorem.

Proof of Theorem 1.2. We recall the sesquilinear form Qh,A : Vh,A × Vh,A → C defined
in (1.3). It is evident that Qh,A is densely defined. Writing A = ReA+ iImA, we expand
Qh,A as follows

Qh,A(u, v) =

∫
Rd

(−ih∇− ReA− iImA)u · (−ih∇− ReA+ iImA)v dx

=

∫
Rd

(
|(−ih∇− ReA)u|2 − |ImA|2|u|2

)
dx− 2iRe ⟨ImAu, (−ih∇− ReA)u⟩ .

Under the assumption (1.2) (which extends to Vh,A by the density of C∞
c (Rd) in Vh,A), we

obtain that for all u ∈ Vh,A,

ReQh,A(u, u) ⩾ (1− a)

∫
Rd

|(−ih∇− ReA)u|2dx− b∥u∥2 , (2.3)

where a ∈ (0, 1) and b ⩾ 0 are constants from (1.2).
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Next, we estimate the imaginary part of Qh,A(u, u):

|ImQh,A(u, u)| ⩽ 2∥ImAu∥∥(−ih∇− ReA)u∥
⩽ ∥ImAu∥2 + ∥(−ih∇−A)u∥2

⩽ (1 + a)∥(−ih∇−A)u∥2 + b∥u∥2 .
Combining these inequalities, we deduce

|ImQh,A(u, u)| ⩽
1 + a

1− a
ReQh,A(u, u) +

2b

1− a
∥u∥2 .

This shows that the form Qh,A is sectorial.
We now verify the closedness of the form. Consider the form

t(u, v) := ⟨(−i∇− ReA)u, (−i∇− ReA)v⟩ ,
which is sectorial and closed on Vh,ReA. By applying [18, Thm. VI.1.33] and noting that
the form ⟨ImA·, ImA·⟩ is t-bounded, we conclude that the form ReQh,A is closed. By a
remark in [18, Sec. VI.1.3], the sectorial form Qh,A is also closed.

Consequently, Qh,A gives rise to an m-sectorial operator Lh,A via the standard represen-
tation theorem [18, Thm. VI.2.1]. □

From now on, we restrict to dimension d = 2.

Lemma 2.3. Let A ∈ L2
loc(R2,C2) and B ∈ L1

loc(R2). Then, for all u ∈ C∞
c (R2), we have∣∣∣∣∫

R2

hReB|u|2 dx
∣∣∣∣ ⩽ ∫

R2

|(−ih∇− ReA)u|2 dx ,∣∣∣∣∫
R2

hImB|u|2 dx
∣∣∣∣ ⩽ ∫

R2

|(−ih∇− ReA)u|2 dx+

∫
R2

|(ImA)u|2 dx .

Proof. SinceA ∈ L2
loc(R2,C2) andB ∈ L1

loc(R2), all the integrals appearing in the statements
of this lemma are well defined. Let u ∈ C∞

c (R2). By observing that

[(−ih∂x1 − A1), (−ih∂x2 − A2)] = ihB ,

we have

ihB|u|2 = u(−ih∂x1 − A1)(−ih∂x2 − A2)u− u(−ih∂x2 − A2)(−ih∂x1 − A1)u .

Integrating by parts, we get∫
R2

ihB|u|2 dx = ⟨(−ih∂x2 − A2)u, (−ih∂x1 − A1)u⟩ − ⟨(−ih∂x1 − A1)u, (−ih∂x2 − A2)u⟩ .

By writing out the real and imaginary parts of A1 and A2, we find that∫
R2

ihB|u|2 dx = 2Im ⟨(ImA2)u, (−ih∂x1 − ReA1)u⟩ − 2Im ⟨(ImA1)u, (−ih∂x2 − ReA2)u⟩

+ i2Im ⟨(−ih∂x2 − ReA2)u, (−ih∂x1 − ReA1)u⟩ .
In other words, we have∫

R2

hReB|u|2 dx = 2Im ⟨(−ih∂x2 − ReA2)u, (−ih∂x1 − ReA1)u⟩ ,

and ∫
R2

hImB|u|2 dx =2Im ⟨(ImA1)u, (−ih∂x2 − ReA2)u⟩

− 2Im ⟨(ImA2)u, (−ih∂x1 − ReA1)u⟩ .
The conclusion follows from the Cauchy–Schwarz inequality. □

Now we are in a position to establish Proposition 1.3.
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Proof of Proposition 1.3. When ImA and ReB satisfy (C1), then Assumption 1.1 is a direct
consequence of the first inequality in Lemma 2.3.

Now, we assume that ImA and ImB satisfy (C2) with the plus sign (for instance). From
the second inequality in Lemma 2.3,∫

R2

|(ImA)u|2 dx ⩽ ε2h

∫
R2

ImB|u|2 dx+ C2∥u∥2

⩽ ε2

∫
R2

|(−ih∇− ReA)u|2 dx+ ε2

∫
R2

|(ImA)u|2 dx+ C2∥u∥2 .

This implies that Assumption 1.1 holds with a = ε2
1−ε2

∈ (0, 1) and b = C2

1−ε2
. □

Now we turn to task (II) about the compactness of the resolvent of Lh,A.

Proof of Theorem 1.4. Thanks to [7, Prop. 4.24], it is equivalent to proving that the injection(
Dom(Lh,A), ∥ · ∥Lh,A

)
↪→
(
L2(R2), ∥ · ∥

)
is compact, where ∥ ·∥Lh,A

:= ∥Lh,A · ∥+∥ ·∥ is the graph norm. From (2.3) and Proposition
2.2(c), there exist γ > 0 and µ > 0 such that for all u ∈ Dom(LA), we have

γ∥u∥2Vh,A
⩽ |Qh,A(u, u) + µ∥u∥2| ⩽ ∥(Lh,A + µ)u∥∥u∥ ⩽

(
1

2
+ µ

)
∥u∥2Lh,A

,

which shows that the injection(
Dom(Lh,A), ∥ · ∥Lh,A

)
↪→
(
Vh,A, ∥ · ∥Vh,A

)
is continuous. Since the space of compact operators forms an ideal within the space of
bounded operator, it remains to explain why

(
Vh,A, ∥ · ∥Vh,A

)
is compactly embedded in

L2(R2).
Let us consider D := {u ∈ Vh,A : ∥u∥Vh,A

⩽ 1} and prove its precompactness in L2(R2)
by means of the Kolmogorov–Riesz theorem (see [7, Thm. 4.14]). We only need to check
the following:

(i) For all ε > 0, there exists ω ⊂⊂ R2 such that
∫
R2\ω |u|

2 dx ⩽ ε2, for all u ∈ D.

(ii) For all ε > 0 and for all ω ⊂⊂ R2, there exists δ > 0 such that∫
ω

|u(x+ s)− u(x)|2 dx ⩽ ε2

for all s ∈ R2 with |s| ⩽ δ and for all u ∈ D.

The equi-integrability condition (i) is satisfied as long as at least one of the assumptions
(H1), (H2), or (H3) holds. This follows from Assumption 1.1, Lemma 2.3, Proposi-
tion 2.2(b), and the continuity of the functions considered in assumptions (H1), (H2),
and (H3). Below, we provide a detailed proof of (i) under the assumption (H1). Since the
proof is identical under the other assumptions, we will omit those cases.

Assume that ReB satisfies (H1). Since ReB is continuous, by the multivariate interme-
diate value theorem [11, Thm. 1.9.5] and the connectedness of the punctured disk in R2, the
condition lim

|x|→+∞
|ReB(x)| = +∞ implies that

lim
|x|→+∞

ReB(x) = +∞ or lim
|x|→+∞

−ReB(x) = +∞ .

Without loss of generality, we assume the first possibility. By adding a constant C > 0
such that ReB + C ⩾ 0 on R2 (to apply Fatou’s lemma in the following step), and using
the first inequality in Lemma 2.3, we obtain

(C + 1)∥u∥2Vh,A
⩾
∫
R2

(ReB+ C)|u|2 dx , ∀u ∈ C∞
c (R2) .
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To extend this inequality to the space Vh,A, we utilise the density of C∞
c (R2) in Vh,A. More

precisely, let u ∈ Vh,A, there exists a sequence (un)n∈N ⊂ C∞
c (R2) such that un

n→+∞−−−−→ u in

Vh,A. By considering a subsequence, still denoted by un, such that un(x)
n→+∞−−−−→ u(x) for

almost every x ∈ R2, Fatou’s lemma yields that

(C + 1)∥u∥2Vh,A
= lim

n→+∞
(C + 1)∥un∥Vh,A

⩾ lim inf
n→+∞

∫
R2

(ReB+ C)|un|2 dx

⩾
∫
R2

(ReB+ C)|u|2 dx , ∀u ∈ VA .

Given ε > 0, using this estimate and the unboundedness of ReB at infinity, there exists a
constant R > 0 such that ∫

|x|>R

|u|2 dx < ε , ∀u ∈ D .

Let us now consider (ii). Let ε > 0 and ω ⊂⊂ R2, we consider a function χ ∈ C∞
c (R2) and

χ = 1 in some neighbourhood of ω. For all u ∈ D,

−ih∇(χu) = ReAχu+ (−ih∇χ)u+ χ(−ih∇− ReA)u ∈ L2(R2) ,

where we used the fact that ReA ∈ L∞
loc(R2,R2). There exists C > 0 such that, for all

u ∈ D,

∥χu∥H1(R2) ⩽ C .

Then, we notice that, for |s| small enough such that χ(x + s) = 1 on ω, we have, for all
u ∈ D, ∫

ω

|u(x+ s)− u(x)|2 dx =

∫
ω

|(χu)(x+ s)− (χu)(x)|2 dx

⩽
∫
R2

|(χu)(x+ s)− (χu)(x)|2 dx ⩽ C2|s|2 ,

where we used [7, Prop. 2.94]. □

3. WKB construction of pseudomodes

This section is concerned with task (III) about the construction of semiclassical pseudo-
modes. In particular, we establish Theorem 1.5. Throughout this section, we assume that
B ∈ C∞(R2).

Definition 3.1. We say that B is real-analytic at x0, when, in the neighbourhood of x0, B
is the sum of a converging series:

B(x1, x2) =
∑

m,n⩾0

bmn(x1 − x0
1)

m(x2 − x0
2)

n, bmn ∈ C .

The main technical result of this section is the following theorem.

Theorem 3.2. Let x0 ∈ Γ and assume that B is real-analytic at x0. Then, there exist

i) a neighbourhood U of x0 in R2;
ii) a real-analytic function P on U satisfying

ReP (x) = Q(x1 − x0
1, x2 − x0

2) + O
(
|x− x0|3

)
, (3.1)

where Q(u, v) := Q1(x
0)u2 − 2Q2(x

0)uv + Q3(x
0)v2 is a positive definite quadratic

form on R2 with Q1, Q2, Q3 defined as in (1.5);
iii) a sequence of real-analytic functions (aj)j∈N on U with a0(x

0) = 1 and aj(x
0) = 0

for j ⩾ 1;
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such that, for all N ∈ N,

eP/h
(
Lh,A − hB(x0)

)(
e−P/h

N∑
j=0

hjaj

)
= O

(
hN+2

)
(3.2)

locally uniformly on U.

After a translation, we can assume that x0 = 0.

Notation 3.3 (Complexification of a real-analytic function). Assume that a is real-analytic
near the point 0 ∈ R2. We denote by ã the function defined near 0 ∈ C2 by

ã(z, w) := a

(
z + w

2
,
z − w

2i

)
.

Note that

ã(z, z) = a(Re z, Im z) , ∂zã = ∂̃za , ∂wã = ∂̃za . (3.3)

3.1. A choice of the magnetic potential.

Lemma 3.4. There exists a real-analytic and complex-valued function φ in a neighbourhood
Ω of 0 such that

∆φ = B , φ(x1, x2) =
B(0)

4

(
x2
1 + x2

2

)
+ O

(
|x|3
)
.

Proof. By considering the complexification of B in the neighbourhood of 0

B̃(z, w) =
∑

(α,β)∈N2

aα,βz
αwβ ,

with a0,0 = B(0), we introduce the power series

φ̃(z, w) =
1

4

∑
(α,β)∈N2

aα,β
(α + 1)(β + 1)

zα+1wβ+1 .

Then we get

4∂z∂wφ̃(z, w) = B̃(z, w) .

The function z 7→ φ̃(z, z) satisfies the required properties. □

Let φ be the function given by Lemma 3.4, and define

M := (−∂x2φ, ∂x1φ) .

Then M satisfies
∂M2

∂x1

− ∂M1

∂x2

= B on Ω .

By the Poincaré lemma, there exists a function θ ∈ C∞(Ω,C) such that

M = A+∇θ on Ω . (3.4)

From this, we obtain

Lh,M = eiθ/hLh,Ae
−iθ/h on Ω . (3.5)



10 D. KREJČIŘÍK, T. NGUYEN DUC, AND N. RAYMOND

3.2. WKB analysis. In this section, we construct a pseudomode for the operator Lh,M.
More precisely, for N ∈ N, we look for a pseudomode in the form

uh(x) = e−S(x)/h

N∑
j=0

aj(x)h
j ,

attached to a quasi-eigenvalue λ(h) = hµ. Here, S and aj are real-analytic functions defined
in the neighbourhood of 0 ∈ R2, and µ ∈ C.

Let us consider the formal conjugated operator acting locally:

L S
h,M := eS/hLh,Me

−S/h

= (−ih∂1 −M1 + i∂x1S)
2 + (−ih∂2 −M2 + i∂x2S)

2

= E0 + hE1 + h2E2 ,

where the differential expressions E0, E1 and E2 are given by

E0 := (−M1 + i∂x1S)
2 + (−M2 + i∂x2S)

2 ,

E1 := ∆S + 2(∇S + iM) · ∇ ,

E2 := −∆ .

Then, we have

eS/h (Lh,M − λ(h))uh(x) =
[
E0 + h(E1 − µ) + h2E2

] N∑
j=0

aj(x)h
j =

N+2∑
j=0

ϕj(x)h
j ,

where the functions ϕj are explicitly given by

h0 : E0a0 =: ϕ0 ,

h1 : E0a1 + (E1 − µ) a0 =: ϕ1 ,

h2 : E0a2 + (E1 − µ) a1 + E2a0 =: ϕ2 ,

... (3.6)

hN : E0aN + (E1 − µ) aN−1 + E2aN−2 =: ϕN ,

hN+1 : (E1 − µ) aN + E2aN−1 =: ϕN+1 ,

and the last function ϕN+2 is

hN+2 : E2aN =: ϕN+2 .

3.2.1. The eikonal equation. Let us find S such that E0 = 0, i.e.,

(−M1 + i∂x1S)
2 + (−M2 + i∂x2S)

2 = 0 .

It is equivalent to the equation

(i∂x1S − ∂x2S −M1 − iM2) (i∂x1S + ∂x2S −M1 + iM2) = 0 .

Let us choose S such that

i∂x1S − ∂x2S −M1 − iM2 = 0 .

Then we have
2∂zS = M2 − iM1 = 2∂zφ .

In particular, S − φ is holomorphic. By using Notation 3.3, this suggests taking

S̃(z, w) = φ̃(z, w) + f(z) ,

where f(z) is a holomorphic function (in a neighbourhood of 0 ∈ R2) to be determined later
in the neighbourhood of 0 ∈ C. Note that ∆S = B.
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3.2.2. Towards the transport equations. Now, we consider the operator E1.

By using the expression of M and the choice of S̃, we have

(∇S + iM) · ∇ = (∂x1S + iM1) ∂x1 + (∂x2S + iM2) ∂x2

=(∂x1φ− i∂x2φ+ f ′(z)) ∂x1 + (∂x2φ+ i∂x1φ+ if ′(z)) ∂x2

=2 (2∂zφ+ f ′(z)) ∂z .

Thus, for any real-analytic function a near the point x0, we have

Ẽ1a =
[
4 (2∂zφ̃+ f ′(z)) ∂w + B̃

]
ã .

Note also that

Ẽ2a = −4∂z∂wã .

From (3.6), we are led to the the system of the transport equations

h1 :
[
4 (2∂zφ̃+ f ′(z)) ∂w + B̃− µ

]
ã0 = 0 ,

h2 :
[
4 (2∂zφ̃+ f ′(z)) ∂w + B̃− µ

]
ã1 = 4∂z∂wã0 ,

...

hN+1 :
[
4 (2∂zφ̃+ f ′(z)) ∂w + B̃− µ

]
ãN = 4∂z∂wãN−1 .

3.2.3. Choosing f and determining S. Since 0 ∈ Γ, we have ∂zB(0) ̸= 0 and thus

∂wB̃(0) = ∂̃zB(0) = ∂zB(0) ̸= 0 .

In virtue of the holomorphic implicit function theorem, there exists a unique holomorphic
function w, in the neigborhood of 0 ∈ C, such that

w(0) = 0, B̃(z, w(z)) = B(0) . (3.7)

In particular,

w′(0) = − ∂zB̃

∂wB̃
(0) = −∂zB

∂zB
(0) . (3.8)

Remark 3.5. Note that the function w solves the same effective equation as in [6], but that
we are not in the case of a magnetic well.

In order to solve the above transport equations, we will choose a function f(z) such that

2∂zφ̃(z, w(z)) + f ′(z) = 0 .

Lemma 3.6. Let φ be given in Lemma 3.4, w be the holomorphic function given in (3.7)
and θ given in (3.4). Letting

f(z) := −
∫
[0,z]

2∂zφ̃(ζ, w(ζ)) dζ + Im θ(0) , (3.9)

we have

f(0) = Im θ(0), f ′(0) = 0, f ′′(0) =
B(0)

2

∂zB

∂zB
(0) .

In particular,

ReS(x) = Im θ(0) + Q̃1x
2
1 − 2Q̃2x1x2 + Q̃3x

2
2 + O(|x|3) ,



12 D. KREJČIŘÍK, T. NGUYEN DUC, AND N. RAYMOND

where

Q̃1 =
1

4
Re

[
B(0)

(
1 +

∂zB

∂zB
(0)

)]
, Q̃2 =

1

4
Im

[
B(0)

∂zB

∂zB
(0)

]
,

Q̃3 =
1

4
Re

[
B(0)

(
1− ∂zB

∂zB
(0)

)]
.

Proof. A straightforward computation gives

f ′′(0) = −2∂2
zzφ̃(0)− 2w′(0)∂2

zwφ̃(0) .

Due to Lemma 3.4, we have

∂2
zzφ̃(0) = 0 , ∂2

zwφ̃(0) =
B(0)

4
,

and we get the value of f ′′(0) by using (3.8).
Since S(x1, x2) = φ(x1, x2) + f(x1 + ix2), we can write

S(x1, x2) = Im θ(0) +
B(0)

4

[
x2
1 + x2

2 +
∂zB(0)

∂zB(0)
(x1 + ix2)

2

]
+ O(|x|3) ,

so that

ReS(x) = Im θ(0) +
1

4
Re

[
B(0)

(
1 +

∂zB(0)

∂zB(0)

)]
x2
1 +

1

4
Re

[
B(0)

(
1− ∂zB(0)

∂zB(0)

)]
x2
2

− 1

2
Im

[
B(0)

∂zB(0)

∂zB(0)

]
x1x2 + O(|x|3)

= Im θ(0) + Q̃1x
2
1 − 2Q̃2x1x2 + Q̃3x

2
2 + O(|x|3) .

□

3.2.4. Solving the first transport equation. With the choice (3.9), we can write

8 [∂zφ̃(z, w)− ∂zφ̃(z, w(z))] ∂wã0(z, w) +
(
B̃(z, w)− µ

)
ã0(z, w) = 0 . (3.10)

Taking w = w(z) and using (3.7), we see that (3.10) has a holomorphic solution ã0 such
that ã0(0) ̸= 0 if and only if

µ = B(0) .

Let us explain this. The Taylor formula gives

∂zφ̃(z, w)− ∂zφ̃(z, w(z)) = (w − w(z))V (z, w) ,

B̃(z, w)− B̃(z, w(z)) = (w − w(z))F (z, w) ,

where

V (z, w) =

∫ 1

0

B̃(z, w(z) + t(w − w(z)) dt, F (z, w) =

∫ 1

0

∂wB̃(z, w(z) + t(w − w(z)) dt .

Notice that V (0) = B(0) ̸= 0, so that near 0 ∈ C2, we have V (z, w) ̸= 0. By using µ = B(0),
the first transport equation becomes

∂wã0(z, w) +
1

8

F (z, w)

V (z, w)
ã0(z, w) = 0 .

Therefore, we have

ã0(z, w) = A0(z)J(z, w) , J(z, w) := exp

(
−
∫
[w(z),w]

1

8

F (z, u)

V (z, u)
du

)
,

where A0(z) is a holomorphic function to be determined such that A0(0) = 1.
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3.2.5. Solving the second transport equation. Let us now consider the second transport equa-
tion

(w − w(z)) [8V (z, w)∂w + F (z, w)] ã1(z, w) = 4∂z∂wã0(z, w) . (3.11)

Letting w = w(z), we necessarily get that

4∂z∂wã0(z, w(z)) = 0 ,

which means that

∂wJ(z, w(z))A
′
0(z) + ∂z∂wJ(z, w(z))A0(z) = 0 .

This allows us to determine A0 of the previous step. From the definition of J , we have

∂wJ(z, w(z)) = −1

8

F (z, w(z))

V (z, w(z))
,

and thus

∂wJ(0, w(0)) = −1

8

∂wB̃

B̃
(0) = −1

8

∂zB

B
(0) ̸= 0 .

This leads to the choice

A0(z) = exp

(
−
∫
[0,z]

∂z∂wJ

∂wJ
(u,w(u)) du

)
,

which is not allowed in the case of a magnetic well in the self-adjoint case. In particular,

ã0(z, w) = exp

(
−
∫
[0,z]

∂z∂wJ

∂wJ
(u,w(u)) du

)
exp

(
−
∫
[w(z),w]

1

8

F (z, u)

V (z, u)
du

)
.

With this choice, (3.11) becomes

∂wã1(z, w) +
1

8

F (z, w)

V (z, w)
ã1(z, w) =

1

2

T0(z, w)

V (z, w)
,

with

T0(z, w) =

∫ 1

0

∂2
w∂zã0(z, w(z) + t(w − w(z))) dt .

We have

ã1(z, w) = J(z, w)

∫
[w(z),w]

T0(z, u)

2J(z, u)V (z, u)
du+A1(z)J(z, w),

where A1(z) is a holomorphic function to be determined with A1(0) = 0.

3.2.6. Induction. By induction, the solution of the j+1-th transport equation can be written
as

ãj+1(z, w) = J(z, w)

∫
[w(z),w]

Tj(z, u)

2J(z, u)V (z, u)
du+Aj+1(z)J(z, w) ,

with

Tj(z, w) =

∫ 1

0

∂2
w∂zãj(z, w(z) + t(w − w(z))) dt

and Aj+1 is determined by the constraint (coming from the j + 2-th equation):

4∂z∂wãj+1(z, w(z)) = 0 . (3.12)

We have

∂wãj+1(z, w) = ∂wJ(z, w)

∫
[w(z),w]

Tj(z, u)

2J(z, u)V (z, u)
du+

Tj(z, w)

2V (z, w)
+Aj+1(z)∂wJ(z, w) ,
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so that

∂z∂wãj+1(z, w(z))

=

[
−∂wJ w′(z)

Tj

2V
+ ∂zJ

Tj

2V
+ ∂z

(
Tj

2V

)
+A′

j+1∂wJ +Aj+1∂
2
zwJ

]
(z, w(z)) .

Since J(z, w(z)) = 1, we have ∂zJ(z, w(z)) = −w′(z)∂wJ(z, w(z)). Therefore, Aj+1 satisfies
the equation

∂wJ(z, w(z))A
′
j+1(z) + ∂2

zwJ(z, w(z))Aj+1(z) = Gj(z) ,

where

Gj(z) := −
[
∂zJ

Tj

V
+ ∂z

(
Tj

2V

)]
(z, w(z)) .

Thus,

Aj+1(z) = A0(z)

∫
[0,z]

Gj(u)

A0(u)
du .

Therefore, we have, for all j ⩾ 0,

ãj+1(z, w) = J(z, w)

∫
[w(z),w]

Tj(z, u)

2J(z, u)V (z, u)
du+ ã0(z, w)

∫
[0,z]

Gj(u)

A0(u)
du , (3.13)

where

Tj(z, w) =

∫ 1

0

∂2
w∂zãj(z, w(z) + t(w − w(z))) dt ,

and

Gj(u) =

[(
∂zJ

B(0)
+

1

2
∂z

(
1

V

))
∂2
w∂zãj +

1

2B(0)
∂2
w∂

2
z ãj +

w′(u)

4B(0)
∂3
w∂zãj

]
(u,w(u)) .

3.3. Proof of Theorem 3.2. We have constructed holomorphic functions S̃(z, w) and
(ãj(z, w))j∈N0

which are defined in a neighbourhood of 0 ∈ C2. Now we take w = z and
recall Notation 3.3. For all N ⩾ 0, we have

eS/h (Lh,M − hµ)

(
e−S/h

N∑
j=0

hjaj

)
= (−∆aN)h

N+2 .

From (3.5), we have

eP/h (Lh,A − hµ)

(
e−P/h

N∑
j=0

hjaj

)
= (−∆aN)h

N+2 , P := S + iθ . (3.14)

From the definitions of θ and M, we have ∇θ(0) = M(0) − A(0) = −A(0) and thus
∇Im θ(0) = −ImA(0) = 0. Notice that

Im ∂2
1θ(0) = Im

(
−∂2

12φ(0)− ∂1A1(0)
)
= −∂1ImA1(0) ,

Im ∂2
2θ(0) = Im

(
∂2
12φ(0)− ∂2A2(0)

)
= −∂2ImA2(0) ,

Im ∂2
12θ(0) = Im

(
∂2
11φ(0)− ∂1A2(0)

)
=

ImB(0)

2
− ∂1ImA2(0)

= −1

2
(∂1ImA2(0) + ∂2ImA1(0)) .

From Lemma 3.6 and using Taylor expansion for Im θ, we deduce that

ReP (x) = Q1(0)x
2
1 − 2Q2(0)x1x2 +Q3(0)x

2
2 + O(|x|3) .

This concludes the proof of Theorem 3.2.
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3.4. Proof of Theorem 1.5.

3.4.1. Preliminaries.

Notation 3.7. We will use the following notation for a polydisc

P (0;R1, R2) :=
{
(z, w) ∈ C2 : |z| < R1 and |w| < R2

}
.

For K ⊂ C2, we write
∥ã(z, w)∥K := sup

(z,w)∈K
|ã(z, w)| .

When K = P (0;R1, R2), we simply write ∥ · ∥K = ∥ · ∥R1,R2 . For m,n ∈ N, we denote
Jm,nK := [m,n] ∩ Z.

Lemma 3.8. For a holomorphic function ã(z, w) defined in a neighbourhood of P (0;R1, R2),
we have, for all (z, w) ∈ P (0;R1, R2),∣∣∂2

w∂zã(z, w)
∣∣ ⩽ 2R1R2∥ã∥R1,R2

(R1 − |z|)2 (R2 − |w|)3

and ∣∣∂2
w∂

2
z ã(z, w)

∣∣ ⩽ 4R1R2∥ã∥R1,R2

(R1 − |z|)3 (R2 − |w|)3
,
∣∣∂3

w∂zã(z, w)
∣∣ ⩽ 6R1R2∥ã∥R1,R2

(R1 − |z|)2 (R2 − |w|)4
.

Proof. For example, the Cauchy formula gives∣∣∂2
w∂zã(z, w)

∣∣ = ∣∣∣∣ 2

(2πi)2

∫
|z|=R1

∫
|w|=R2

ã(ξ1, ξ2)

(ξ1 − z)2(ξ2 − w)3
dξ1dξ2

∣∣∣∣
⩽

2R1R2∥ã∥R1,R2

(R1 − |z|)2 (R2 − |w|)3
.

□

Lemma 3.9. Let (aj)j∈N be the real-analytic sequence given in Theorem 3.2, then there exist
constants m > 0, δ0 > 0 such that, for all j ⩾ 0 and for all x ∈ D(x0, δ0),

|aj(x)| ⩽ mj+1j7j, |∇aj(x)| ⩽ mj+1j7j, |∆aj(x)| ⩽ mj+1j7j . (3.15)

Proof. Let us prove that there exists m > 0 such that, for all j ⩾ 0 and all (z, w) in a
neighbourhood of 0 ∈ C2,

|ãj(z, w)| ⩽ mj+1j7j . (3.16)

The key to get the growth control is the recursion relation (3.13): we see that ãj+1 is related
to derivatives ∂2

w∂zãj, ∂
2
w∂

2
z ãj, and ∂3

w∂zãj.
Consider C,R1, R2 > 0 such that, for all z ∈ D(0, R1),

|w(z)| ⩽ C|z| < R2 . (3.17)

For all (z, w) ∈ P (0;R1, R2) and for all t ∈ [0, 1], we have

|w(z) + t(w − w(z))| < max(C|z|, |w|) < R2 . (3.18)

Then, Lemma 3.8 yields that, for all (z, w) ∈ P (0;R1, R2),

|Tj(z, w)| ⩽
∫ 1

0

|∂2
w∂zãj(z, w(z) + t(w − w(z))| dt

⩽
∫ 1

0

2R1R2∥ãj∥R1,R2

(R1 − |z|)2 (R2 − |w(z) + t(w − w(z))|)3
dt

⩽
2R1R2∥ãj∥R1,R2

(R1 − |z|)2 (R2 −max{C|z|, |w|})3
.
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Then, the first term in (3.13) can be controlled, for all (z, w) ∈ P (0;R1, R2),∣∣∣∣J(z, w)∫
[w(z),w]

Tj(z, u)

2J(z, u)V (z, u)
du

∣∣∣∣
=

∣∣∣∣J(z, w)∫ 1

0

Tj(z, w(z) + t(w − w(z)))

2(JV )(z, w(z) + t(w − w(z)))
(w − w(z)) dt

∣∣∣∣
⩽∥J∥R1,R2

∥∥∥∥ 1

JV

∥∥∥∥
R1,R2

R1R2∥ãj∥R1,R2

(R1 − |z|)2 (R2 −max{C|z|, |w|})3
|w − w(z)|

⩽∥J∥R1,R2

∥∥∥∥ 1

JV

∥∥∥∥
R1,R2

2R1R
2
2∥ãj∥R1,R2

(R1 − |z|)2 (R2 −max{C|z|, |w|})3
.

For the second term in (3.13), we have, for all (z, w) ∈ P (0;R1, R2),∣∣∣∣ã0(z, w)∫
[0,z]

Gj(u)

A0(u)
du

∣∣∣∣
⩽|z| ∥ã0∥R1,R2

∥∥∥∥ 1

A0

∥∥∥∥
R1

×
∫ 1

0

∣∣∣∣[( ∂zJ

B(0)
+

1

2
∂z

(
1

V

))
∂2
w∂zãj +

1

2B(0)
∂2
w∂

2
z ãj +

w′(tz)

4B(0)
∂3
w∂zãj

]
(tz, w(tz))

∣∣∣∣ dt
⩽|z|∥ã0∥R1,R2

∥∥∥∥ 1

A0

∥∥∥∥
R1

[(
∥∂zJ∥R1,R2

|B(0)|
+

1

2

∥∥∥∥∂z ( 1

V

)∥∥∥∥
R1,R2

)∫ 1

0

∣∣∂2
w∂zãj(tz, w(tz))

∣∣ dt
+

1

2|B(0)|

∫ 1

0

∣∣∂2
w∂

2
z ãj(tz, w(tz))

∣∣ dt+ ∥w′∥R1

4|B(0)|

∫ 1

0

∣∣∂3
w∂zãj(tz, w(tz))

∣∣ dt] .

From Lemma 3.8, we have, for all (z, w) ∈ P (0;R1, R2),∫ 1

0

∣∣∂2
w∂zãj(tz, w(tz))

∣∣ |z| dt ⩽ 2R2
1R2 ∥ãj∥R1,R2

(R1 − |z|)2 (R2 − C|z|)2
,

∫ 1

0

∣∣∂2
w∂

2
z ãj(tz, w(tz))

∣∣ |z| dt ⩽ 4R2
1R2 ∥ãj∥R1,R2

(R1 − |z|)3 (R2 − C|z|)3
,

and ∫ 1

0

∣∣∂3
w∂zãj(tz, w(tz))

∣∣ |z| dt ⩽ 6R2
1R2 ∥ãj∥R1,R2

(R1 − |z|)2 (R2 − C|z|)4
.

Let us consider R0
1, R

0
2, C1, C > 0 such that, for all R1 ⩽ 2R0

1, R2 ⩽ 2R0
2,

∥J∥R1,R2 +

∥∥∥∥ 1

JV

∥∥∥∥
R1,R2

+∥ã0∥R1,R2 +

∥∥∥∥ 1

A0

∥∥∥∥
R1

+∥∂zJ∥R1,R2 +

∥∥∥∥∂z ( 1

V

)∥∥∥∥
R1,R2

+∥w′∥R1 ⩽ C1 ,

and, for all z ∈ D(0, 2R0
1),

|w(z)| ⩽ C|z| < 2R0
2 . (3.19)

From (3.13), there exists a constant C2 > 0 (depending only on R0
1, R

0
2) such that, for all

ℓ ⩾ 0 and for all (z, w) ∈ P (0;R1, R2),

|ãℓ+1(z, w)| ⩽ C2
∥ãℓ∥R1,R2

(R1 − |z|)3 (R2 −max{C|z|, w})4
. (3.20)

We fix j ∈ N and let, for all k ∈ J0, j − 1K,

r1,k :=

(
2− k

j

)
R0

1, r2,k :=

(
2− k

j

)
R0

2 .
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Thanks to (3.19), we see that (3.17) holds for R1 = r1,k and R2 = r2,k with a constant
C defined in (3.19). Thus, the estimate (3.20) also holds for all k ∈ J0, j − 1K, i.e., for all
(z, w) ∈ P (0; r1,k, r2,k),

|ãk+1(z, w)| ⩽ C2

∥ãk∥r1,k,r2,k
(r1,k − |z|)3 (r2,k −max{C|z|, w})4

. (3.21)

This holds in particular for all (z, w) ∈ P (0; r1,k+1, r2,k+1). From the second inequality in
(3.19), CR0

1 < R0
2, and thus, for |z| < r1,k+1, we have

C|z| < Cr1,k+1 = C

(
2− k + 1

j

)
R0

1 <

(
2− k + 1

j

)
R0

2 = r2,k+1.

This shows that, for all (z, w) ∈ P (0; r1,k+1, r2,k+1),

1

(r1,k − |z|)3 (r2,k −max{C|z|, w})4
⩽

1

(r1,k − r1,k+1)
3 (r2,k − r2,k+1)

4 =
j7

(R0
1)

3(R0
2)

4
.

From (3.21) (with ℓ = k), there exists C3 > 0 such that, for all k ∈ J0, j − 1K,

∥ãk+1∥r1,k+1,r2,k+1
⩽ C3j

7∥ãk∥r1,k,r2,k .
Multiplying these estimates, we get

∥ãj∥R0
1,R

0
2
⩽ (C3j

7)j∥ã0∥2R0
1,2R

0
2
. (3.22)

Then, the estimate (3.16) follows with m = max{C3, ∥ã0∥2R0
1,2R

0
2
}.

Finally, the estimates on the derivatives of ãj are elementary consequences of (3.22). Indeed,

∂̃x1aj(z, w) = (∂zãj + ∂wãj) (z, w) , ∂̃x2aj(z, w) = i (∂zãj − ∂wãj) (z, w) ,

∆̃aj(z, w) =4∂z∂wãj(z, w) ,

so that Cauchy estimates give, for all (z, w) ∈ P (0;R0
1, R

0
2),∣∣∣∂̃x1aj(z, w)

∣∣∣ ⩽ R0
1R

0
2(R

0
1 +R0

2)∥ãj∥R0
1,R

0
2

(R0
1 − |z|)2 (R0

2 − |w|)2
,

∣∣∣∂̃x2aj(z, w)
∣∣∣ ⩽ R0

1R
0
2(R

0
1 +R0

2)∥ãj∥R0
1,R

0
2

(R0
1 − |z|)2 (R0

2 − |w|)2
,

∣∣∣∆̃aj(z, w)
∣∣∣ ⩽ 4R0

1R
0
2∥ãj∥R0

1,R
0
2

(R0
1 − |z|)2 (R0

2 − |w|)2
.

Then, by using theses estimates (3.22) for all (z, w) ∈ P
(
0;

R0
1

2
,
R0

2

2

)
, this concludes the

proof. □

3.4.2. Proof of Theorem 1.5. Let us recall (3.1). Since Q is positive, there exist δ > 0 and
M1,M2 > 0 such that

M1|x|2 ⩽ ReP (x) ⩽ M2|x|2, for all x ∈ D(0, δ) . (3.23)

By considering δ sufficiently small, we can assume that (3.15) holds.
Let χ ∈ C∞

c (R2) be a smooth cut-off function which is equal to 1 near 0 and has support
in a compact subset of D(0, δ). We define our pseudomode as

uh(x) := χ(x)e−P (x)/h

a0(x) + N(h)∑
j=1

hjaj(x)

 , N(h) := ⌊(emh)−1/7⌋ .

Here, m is a constant appearing in (3.15) and ⌊·⌋ denotes the floor function.
By construction in Theorem 3.2, for all j ⩾ 1, aj(0) = 0. Thus, for all x ∈ D(0, δ),

|aj(x)| =
∣∣∣∣∫ 1

0

d

dt
aj(tx) dt

∣∣∣∣ = ∣∣∣∣∫ 1

0

x · ∇aj(tx) dt

∣∣∣∣ ⩽ mj+1j7j|x| .
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Then, by using (3.15) and the definition of N(h), we have, for some C1 > 0,

N(h)∑
j=1

hj|aj(x)| ⩽
N(h)∑
j=1

hjmj+1j7j|x| ⩽
N(h)∑
j=1

me−j|x| ⩽ C1|x| . (3.24)

Since a0(0) = 1, there exists C2 > 0 (independent of h) such that, in a neighbourhood of 0,∣∣∣∣∣∣a0(x) +
N(h)∑
j=1

hjaj(x)

∣∣∣∣∣∣ ⩾ |a0(x)| − C1|x| ⩾ C2 .

By using (3.23), we get ∫
R2

|uh(x)|2 dx ≳ h
1
2 .

Let us now prove that for each ε ∈ (0, 1), eεP/h (Lh,A − hµ)uh(x) is exponentially small.
We write

eεP/h (Lh,A − hµ)uh(x)

= eεP/h [Lh,A, χ]

(
e−P/h

N∑
j=0

hjaj

)
︸ ︷︷ ︸

Ih

+χeεP/h (Lh,A − hλ)

(
e−P/h

N∑
j=0

hjaj

)
︸ ︷︷ ︸

Jh

,

where

[Lh,A, χ] = −2h2∇χ · ∇ − h2∆χ+ 2h iA · ∇χ .

The term Ih is a function supported on supp(∇χ):

Ih = e−
(1−ε)P

h

−2h2∇χ ·
N(h)∑
j=0

hj∇aj +
(
−h2∆χ+ 2h∇P · ∇χ+ 2h iA · ∇χ

)N(h)∑
j=0

hjaj

 .

Thanks to (3.24), we notice that
∑N(h)

j=0 hjaj(x) is bounded uniformly in x ∈ D(0, δ) and in

h. Similarly,

N(h)∑
j=0

hj∇aj(x) is also uniformly bounded.

Then, there exist C, C̃ > 0 such that, for all h ∈ (0, h0) and for all x ∈ D(0, δ),

|Ih(x)| ⩽ Ce−(1−ε)M1|x|2/h1supp ∇χ(x) ⩽ Ce−(1−ε)C̃/h .

For Jh, we can notice that, by construction and by using Lemma 3.9,

|Jh(x)| =
∣∣χ(x)e−(1−ε)P (x)/hhN(h)+2∆aN(h)

∣∣ ≲ (hmN(h)7
)N(h)

≲ e−N(h) ≲ e−C/h1/7

,

where, in the last estimate, we used the fact that N(h) > 1
(emh)1/7

− 1.

This concludes the proof of Theorem 1.5.

3.5. Examples. Of course, Theorem 1.5 is only interesting if one can ensure that Γ is not
empty. Let us discuss conditions on A and B to ensure that 0 ∈ Γ.

First, since ∂zB(0) ̸= 0, we observe that 0 cannot be a critical point of B at 0. Then,
also since ImA(0) = 0, we write

B(x1, x2) = a+ bx1 + cx2 + O
(
|x|2
)
,

ImA1(x1, x2) = dx1 + ex2 + O
(
|x|2
)
,

ImA2(x1, x2) = fx1 + gx2 + O
(
|x|2
)
,
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in a neighbourhood of 0, where a, b, c ∈ C and d, e, f, g ∈ R. Below, we will denote a1, b1, c1
(respectively, a2, b2, c2) as the real parts (respectively, imaginary parts) of a, b, c. Let us find
conditions on these coefficients so that 0 ∈ Γ. We have

B(0) = a1 + ia2 , ∂zB(0) =
1

2
[b1 + c2 + i(b2 − c1)] , ∂zB(0) =

1

2
[b1 − c2 + i(b2 + c1)] ,

∂x1ImA1(0) = d , ∂x2ImA1(0) = e , ∂x1ImA2(0) = f , ∂x2ImA2(0) = g .

Then, we obtain

∂zB

∂zB
(0) =

b21 + b22 − c21 − c22 − i2(b1c1 + b2c2)

(b1 − c2)2 + (b2 + c1)2
,

Re

[
B(0)

∂zB

∂zB
(0)

]
=
a1 (b

2
1 + b22 − c21 − c22) + 2a2(b1c1 + b2c2)

(b1 − c2)2 + (b2 + c1)2
,

Im

[
B(0)

∂zB

∂zB
(0)

]
=
a2 (b

2
1 + b22 − c21 − c22)− 2a1(b1c1 + b2c2)

(b1 − c2)2 + (b2 + c1)2
,

and thus,

Q1(0) =
1

2

[
a1 (b

2
1 + b22 − b1c2 + b2c1) + a2(b1c1 + b2c2)

(b1 − c2)2 + (b2 + c1)2
+ d

]
,

Q2(0) =
1

2

[
a2 (b

2
1 + b22 − b1c2 + b2c1)− a1(b1c1 + b2c2)

(b1 − c2)2 + (b2 + c1)2
+ e

]
,

Q3(0) =
1

2

[
a1 (c

2
1 + c22 − b1c2 + b2c1)− a2(b1c1 + b2c2)

(b1 − c2)2 + (b2 + c1)2
+ g

]
.

Here, in Q2(0), we have used f−e = a2 deduced from ∂x1ImA2(0)−∂x2ImA1(0) = ImB(0).
Then, 0 ∈ Γ if and only if

a1 ̸= 0 or a2 ̸= 0 , (3.25)

b1 ̸= c2 or b2 ̸= −c1 , (3.26)

Q1(0) > 0 , (3.27)

Q1(0)Q3(0)−Q2
2(0) > 0 . (3.28)

Example 4 (Polynomial complex magnetic fields). In this example, we want to provide a
class of polynomial B such that Lh,A is well defined and 0 ∈ Γ. We consider

B(x1, x2) = a+ bx1 + cx2 +R(x1, x2) ,

where

• a, b, c ∈ C such that a1 > 0, a2 = 0 and b2c1 − b1c2 > 0 ,
• R : R2 → R is a polynomial such that

R(0) = ∂x1R(0) = ∂x2R(0) = 0 and |x|4 = o (R(x)) as |x| → +∞ .

Let us choose the following magnetic potential

A1(x1, x2) = 0 , A2(x1, x2) =

∫ x1

0

B(s, x2) ds .

Since R is real-valued, we have

ReB(x1, x2) = a1 + b1x1 + c1x2 +R(x1, x2) , ImA2(x1, x2) =
b2
2
x2
1 + c2x1x2 .

From the asymptotic behaviour of R, we deduce that

|ImA(x)|2 = o (ReB(x)) , as |x| → +∞ .
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Then, (C1) is satisfied (and thus Assumption 1.1 holds). This allows us to define Lh,A by
Theorem 1.2. Furthermore, since |ReB(x)| → +∞ as |x| → +∞, the operator has discrete
eigenvalues by Theorem 1.4.

Since a1 > 0 and b2c1 − b1c2 > 0, (3.25) and (3.26) hold. Note that d = e = g = 0 and
a2 = 0, we have

Q1(0) =
1

2

a1 (b
2
1 + b22 + b2c1 − b1c2)

(b1 − c2)2 + (b2 + c1)2
,

Q2(0) =− 1

2

a1 (b1c1 + b2c2)

(b1 − c2)2 + (b2 + c1)2
,

Q3(0) =
1

2

a1 (c
2
1 + c22 + b2c1 − b1c2)

(b1 − c2)2 + (b2 + c1)2
.

Obviously, Q1(0) > 0. Let us compute

Q1(0)Q3(0)−Q2(0)
2 =

a21
[
(b21 + b22 + b2c1 − b1c2) (c

2
1 + c22 + b2c1 − b1c2)− (b1c1 + b2c2)

2]
4 [(b1 − c2)2 + (b2 + c1)2]

2 .

Notice that (
b21 + b22 + b2c1 − b1c2

) (
c21 + c22 + b2c1 − b1c2

)
− (b1c1 + b2c2)

2

=(b2c1 − b1c2)
[
(b1 − c2)

2 + (b2 + c1)
2
]
.

This yields that

Q1(0)Q3(0)−Q2(0)
2 =

a21 (b2c1 − b1c2)

4(b1 − c2)2 + (b2 + c1)2
> 0 .

Thus, we have 0 ∈ Γ. By Theorem 1.5, there exist a pseudomode u(·, h) such that

∥(Lh,A − ha1)uh(x)∥ ⩽ exp

(
− C

h1/7

)
∥uh(x)∥ , as h → 0 . (3.29)

Example 5 (Bounded oscillating magnetic fields). Consider the magnetic potential

A1(x1, x2) = − sin(x1)x2 + i cos(x2) , A2(x1, x2) = i cos(x2) .

We have
B(x1, x2) = sin(x1) + i sin(x2) .

Since ImA is bounded, both conditions (C1) and (C2) hold, therefore, the magnetic Lapla-
cian Lh,A is well-defined by Theorem 1.2. Let us find the set Γ in this explicit example.
Take x0 = (x1, x2) ∈ Γ, we have

ImA(x0) = 0 ⇐⇒ cos(x2) = 0 .

Then, it implies that B(x0) ̸= 0 and

∂zB(x0) = ∂zB(x0) =
1

2
cos(x1) .

Therefore, it is obvious that

∂zB(x0) ̸= 0 ⇐⇒ cos(x1) ̸= 0 .

By straightforward calculation, we obtain

Q1(x
0) =

1

2
sin(x1), Q2(x

0) = 0, Q3(x
0) = −1

2
sin(x2) .

Therefore, it yields that

Q1(x
0) > 0 ⇐⇒ sin(x1) > 0 ,

Q1(x
0)Q3(x

0)−Q2
2(x

0) > 0 ⇐⇒ sin(x2) = −1 .
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The above analysis leads to

Γ = {(x1, x2) ∈ R2 : sin(x1) > 0, cos(x1) ̸= 0, cos(x2) = 0, sin(x2) = −1}

=
{
(0, π) \

{π
2

}
+ 2kπ : k ∈ Z

}
×
{
−π

2
+ 2πn : n ∈ Z

}
.

Then, Theorem 1.5 states that: for each x0
1 ∈ (0, π) \

{
π
2

}
+ 2kπ for some k ∈ Z, we can

construct a pseudomode u(·, h) such that∥∥(Lh,A − h(sin(x0
1)− i)

)
uh(x)

∥∥ ⩽ exp

(
− C

h1/7

)
∥uh(x)∥ , as h → 0 . (3.30)
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