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ViViDex: Learning Vision-based Dexterous Manipulation
from Human Videos

Zerui Chen1, Shizhe Chen1, Etienne Arlaud1, Ivan Laptev2 and Cordelia Schmid1

Abstract— In this work, we aim to learn a unified vision-based
policy for multi-fingered robot hands to manipulate a variety of
objects in diverse poses. Though prior work has shown benefits of
using human videos for policy learning, performance gains have
been limited by the noise in estimated trajectories. Moreover,
reliance on privileged object information such as ground-truth
object states further limits the applicability in realistic scenarios.
To address these limitations, we propose a new framework
ViViDex to improve vision-based policy learning from human
videos. It first uses reinforcement learning with trajectory guided
rewards to train state-based policies for each video, obtaining
both visually natural and physically plausible trajectories from
the video. We then rollout successful episodes from state-based
policies and train a unified visual policy without using any
privileged information. We propose coordinate transformation
to further enhance the visual point cloud representation, and
compare behavior cloning and diffusion policy for the visual
policy training. Experiments both in simulation and on the real
robot demonstrate that ViViDex outperforms state-of-the-art
approaches on three dexterous manipulation tasks. Qualitative
results are available at: zerchen.github.io/projects/vividex.html.

I. INTRODUCTION

People possess a remarkable ability to manipulate objects
effortlessly with their hands, guided by visual perception. De-
spite significant progress, replicating the dexterity of human
hands with multi-fingered robot hands remains challenging [1],
[2], [3], [4], [5]. This is largely due to the complexity of
translating visual signals into the high-dimensional control
commands required for dexterous manipulation.

Recent developments in deep learning (DL) [6] and
reinforcement learning (RL) [7], [8] have enabled signif-
icant progress in learning-based algorithms for dexterous
manipulation such as in-hand rotation [9], [10], [11], solv-
ing Rubik’s cube [12] and playing the piano [13], [14].
However, it proves challenging to train RL policies as RL
training heavily relies on intricate reward engineering [8]
and extensive computational resources [12]. Furthermore,
unnatural behaviors with high rewards can emerge from
RL training [15]. To address the limitations of RL, some
previous works [16], [17], [18], [19], [20], [21] have turned
to imitation learning using robot demonstrations collected
by teleoperation. While these approaches enhance training
efficiency, they demand substantial human efforts to collect
diverse robot demonstrations and are, hence, difficult to scale.

As human videos capturing hands manipulating ob-
jects [22], [23] are abundant and easy to acquire, there is a
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growing trend in robotics research to utilize human video
demonstrations for learning dexterous manipulation skills [24],
[25], [26], [27], [28]. For example, DexMV [24] proposes to
extract robot and object poses from human videos, and then
employs the data to accelerate RL training via demonstration
augmented policy gradient [16]. However, since the extracted
robot and object poses are noisy, the method needs hundreds
of human videos to learn the manipulation of a single object
and requires reward engineering for different tasks. Moreover,
existing methods [24], [26], [29] often leverage privileged
information of objects in policy learning such as ground-truth
object CAD models and object poses, which are non-trivial
to obtain from visual sensor data in real-world scenarios.

In this work, we propose ViViDex, a new framework
making use of human Videos for Vision-based Dexterous
manipulation. ViViDex consists of three modules as illustrated
in Figure 1. We first obtain human hand and object trajectories
from video demonstrations [24]. Though such trajectories are
noisy and not directly usable for robot control, they provide
examples of natural hand-object interactions. Our second
module then refines the reference trajectories to be physically
plausible. We train a state-based policy with RL for each
reference trajectory. A novel trajectory-guided reward is pro-
posed to keep pose similarity in the reference trajectory while
solving the task. We also augment trajectories during training
to generalize to a broader range of object poses beyond the
pose in the reference trajectory. Finally, we rollout episodes
from optimized state-based policies and distill successful
episodes to a unified vision-based policy using no privileged
object information. To this end, we propose to improve
visual representation by transforming input 3D point clouds
into hand-centered coordinate systems. We evaluate ViViDex
on three dexterous manipulation tasks relocation, pour and
placing inside in simulation and demonstrate significant
improvements over the state-of-the-art DexMV [24] while
using significantly less human demonstrations. Our visual
policy also achieves good performance both in simulation
and on a real robot for both seen and unseen objects.

To summarize, our contributions are three-fold:
• We introduce a new framework ViViDex to learn vision-
based dexterous manipulation policy from human videos.
• We improve the RL rewards for the state-based policy
by imitating trajectories extracted from human videos and
propose a novel model architecture for the vision-based policy.
• Extensive simulation and real robot experiments demon-
strate the effectiveness of our proposed ViViDex approach.
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Fig. 1: The overall framework of our method for learning dexterous manipulation skills from human videos. It consists of
three steps: extraction of reference trajectories from human videos, trajectory-guided state-based policy learning using RL,
and vision-based policy learning using either the behavior cloning or the 3D diffusion policy.

II. RELATED WORK

Dexterous manipulation. Multi-fingered robotic hands enable
robots to perform delicate manipulation operations on objects.
Previous work addressed dexterous manipulation by trajectory
optimization [30], [31], [32], [33], [34], [35], [36] and data-
driven learning methods [16], [24], [25], [29], [37], [38],
[39], [40], [41], [42], [43]. Trajectory optimization methods
usually require well-defined dynamic models for the robot
and the manipulated object, which are sometimes hard to
obtain in practice. Data-driven methods instead directly train
neural policies given robot data. Most of the works [44], [45],
[16], [29], [38], [46], [47], [48] use RL algorithms to train
policies. Nagabandi et al. [47] and Hansen et al. [48] propose
to improve the sample efficiency in RL by jointly learning
the dynamic model and the control policy. To accelerate
the convergence of RL, Rajeswaran et al. [16] introduce
demonstration augmented policy gradients (DAPG) and train
RL with expert demonstrations. Instead of manually collecting
expert demonstrations, ILAD [29] derives demonstration data
via an affordance model [49] and trajectory optimization [50].
Xu et al. [38] and Wan et al. [46] decompose the dexterous
grasping into two sub-tasks: the grasp proposal generation
and the goal-conditioned policy training and largely improve
the generalization of the learned policy. However, RL is data-
inefficient, requires well-designed rewards, and often results
in unrealistic object manipulation. In this work, we leverage
human videos to improve RL training of state-based policies
and then train a unified visual policy that enables object
manipulation given 3D point cloud inputs.
Learning robotic manipulation from human videos. Human
videos naturally provide rich human hands interactions with
diverse objects [51], [52], [53], [54], [55]. Equipping robots
with the capacity to acquire manipulation skills by simply
watching human videos has been an attractive direction [56],
[57], [58], [59], [60]. One line of works [37], [61], [62], [63],
[64] aims to learn generic visual representations from large-
scale human video data [65] and then makes use of such
pre-trained representations to learn control policies. Another
line of works [66], [67], [68] focuses on learning reward
functions from human videos. Chen et al. [66] introduce

DVD, a domain-agnostic video discriminator, to learn multi-
task reward functions. Alakuijala et al. [67] propose a task-
agnostic reward function by using unlabeled human videos.
Some other works [24], [25], [26], [27], [69] explore how
to explicitly leverage human videos to facilitate learning
dexterous manipulation skills. Mandikal et al. [25], [69]
propose to utilize object affordances priors and human
grasping priors to improve the dexterous grasping policy.
DexMV [24] and DexRepNet [26] extract demonstrations
data from human videos and use DAPG algorithm [16] to
launch the RL training with demonstrations. PGDM [28]
proposes to initialize the robot hand configuration at the
given pre-grasp derived from human motions and enable
efficient RL training. Compared to prior work [24], [26], our
method allows to solve more complex manipulation tasks
with fewer videos by using a unified trajectory guided reward
learned from videos and automatic trajectory augmentation.

III. METHOD

This work aims to train vision-based dexterous manipula-
tion policies. However, jointly learning the visual represen-
tation and the control policy is challenging. Therefore, we
first train the state-based policy and then distill the learned
policy to a vision-based policy. To train the state-based policy,
as the pure RL training is ineffective [24], [26], [29], we
extract reference trajectories from human videos and propose
trajectory-guided RL to improve the performance. In the
following, we first present the reference trajectory generation
in Section III-A. Then, we introduce our state-based policy
learning algorithm in Section III-B. Finally, we describe the
visual policy and its training in Section III-C.

A. Reference Trajectory Extraction

To guide our policy training, we extract hand and object
poses from video demonstrations. The poses and shapes
of hands are represented by MANO [70] and result in 3D
locations of joints ψh ∈ R21×3. To account for differences
in geometry, we retarget the human hand pose to the robot
hand pose. Following [24], [71], [72], we formulate the hand
motion retargeting from a video of length T as an optimization
problem and define its objective function as:



Mustard Bottle Tomato Soup Can Sugar Box Large Clamp Mug

Fig. 2: Motion retargeting results for the Allegro hand and
objects under different poses for selected DexYCB videos.
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where qtr represents robot joint rotation angles. ψt
hj denotes

human hand tip and middle phalanx positions. We solve their
robot counterparts x̂t

rj via forward kinematics according to
given qtr. The first term aims to minimize the difference
between the 3D locations of robot joints to those in the
human hand. We also use a regularization term to avoid
sudden changes in the robot pose, where we empirically set
α to 4e-3 and q0r to the mean pose of its motion limits. We
use the NLopt solver [73] for the optimization and port robot
and object motions into the simulator to generate reference
trajectories, which are visually plausible but not physically
plausible. Figure 2 illustrates results of the motion retargeting
for the Allegro robot hand.

B. State-based Policy

We train a state-based policy with RL to recover physically
plausible trajectories, where the above generated reference
trajectories are employed in the reward function to guide
robot hand and object motions. The network architecture for
the state-based policy consists of actor and critic MLPs [74].
It takes both robot and object states as inputs and predicts the
robot control commands. In the following, we will describe
our reward functions and the trajectory augmentation for RL.
Trajectory-guided reward functions. During RL training,
we propose to divide the reference trajectory into two stages:
the pre-grasp stage and the manipulation stage.

During the pre-grasp stage, the robot hand needs to
approach the object without making physical contacts. We
require that the robot approaches the object in a similar way
as humans and define the following reward function as:

Rp =

Tp∑
t=1

10 · exp(−10 ·
∥∥∥xt

rt(q
t
r)− x̂t

rt

∥∥∥2
2
), (2)

where Tp is the length of pre-grasp steps, and x̂t
rt denotes

the robot finger tip positions at the timestep t in the reference
trajectory. xt

rt is the current robot finger tip positions.
When the robot successfully reaches its pre-grasp con-

figuration, the episode starts its manipulation stage. In this
stage, the robot aims to manipulate the object and bring it to
the desired target configuration. Here, we define the reward
function to constrain the robot and object motions jointly:

Rm =

Tr∑
t=Tp+1

λ1R
h
m + λ2R

o
m + λ31cont + λ41lift, (3)

where Tr is the length of the reference trajectory. The first
term Rh

m constrains the hand motions similar to (2). The

second term Ro
m = exp(−α1(
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o − x̂t

o

∥∥∥2
2
+ α2ϕ(θ

t
o, θ̂

t
o)))

constrains the object motions, where xt
o and x̂t

o are the current
object position and its reference at timestep t. ϕ(·) computes
the angular distance between the current object orientation
with its reference θ̂to. The third term computes the number
of finger tips in contact with the object. The forth term
assigns bonus points when the object is lifted off the table.
We empirically set λ1 = 4, λ2 = 10, λ3 = 0.5, α1 = 50 and
α2 = 0.1. Since our reward function is primarily derived
from trajectories in videos, it can be applied across various
manipulation tasks, reducing the need for task-specific reward
engineering as in DexMV [24].
Reference trajectory augmentation. Though the state-based
policy can successfully imitate the hand and object motions
from a video, it remains challenging to generalize to different
initial object positions, rotations and target positions. To
make our policy applicable to different initial and target
object configurations, we introduce our reference trajectory
augmentation strategies during RL training. Specifically, we
randomly set initial object positions or rotations and then
transform the whole reference trajectory accordingly. In order
to further increase the diversity of target object positions, we
augment the original object trajectory through interpolations
between the original last object pose and the target pose. We
similarly interpolate hand motions and use proposed reward
functions to train the state-based policy.

C. The Vision-based Policy

Though our state-based policy can work well for different
manipulation tasks, it requires robot proprioceptive states
and object states as inputs. However, reliably estimating
object states is often not trivial in practice. To alleviate this
issue, we propose a vision-based policy that only takes robot
states and 3D scene point clouds as inputs. To generate
training data for the visual policy, we rollout the optimized
state-based policy and generate diverse physically plausible
trajectories. During the rollout process, we compute the 3D
point clouds PCw ∈ RN×3 from the depth camera, where
PCw is represented under the world coordinate system (i.e.,
the center of the table) and N is the number of points.
Coordinate transformation. As shown in Figure 1, inspired
by [75], we propose to transform PCw into the desired
target coordinate system PCt, which makes the model more
aware of the target position for control predictions. To
capture dense interaction features between the robot and the
object, we additionally transform PCw into different robot
joint coordinate systems (i.e., palm and finger tips). Finally,
we combine point clouds representations under different
coordinate systems PC ∈ RN×3(j+3) and feed them into
PointNet [76], where j is the number of finger tips. Our
visual policy predicts control commands based on extracted
visual features and robot proprioceptive states.



Training. We train our visual policy using either the behavior
cloning (BC) or the recently proposed 3D diffusion pol-
icy [77], [78] from generated physically plausible trajectories.
The BC model directly takes transformed point clouds and
robot states as inputs and predicts robot actions. The diffusion
policy employs the extracted 3D features from PointNet [76]
as the global condition for the denoising model and recovers
actions from Gaussian noise. We train both models with ℓ2
loss between the predicted and ground-truth actions.

IV. EXPERIMENTS

We conduct extensive experiments and evaluate state-
based and visual policies learned by our approach on three
manipulation tasks for five seen and ten unseen objects.

A. Experimental Setting

Video dataset. The DexYCB [51] dataset contains human
demonstration videos of hand-object interactions. Follow-
ing [24], we focus on five objects including mustard bottle,
tomato soup can, sugar box, large clamp and mug. For each
object, we choose three videos which are most similar to those
used in DexMV1 in our experiments. Figure 2 presents motion
retargeting results for these videos. Two evaluation protocols
are used for benchmarking the performance of policies.
Protocol #1 trains the policy for each object separately and
uses initial object poses from the first row of Figure 2. For
Protocol #2, we train a unified policy for all five objects
and adopt three poses for each object shown in Figure 2.
Furthermore, we evaluate the performance on ten unseen
objects, namely master chef can, tuna fish can, pudding box,
gelatin box, potted meat can, banana, pitcher base, bleach
cleanser, wood block and foam brick.
Simulation environment. We follow previous works [16],
[24], [34] by using the the Adroit robot hand and the MuJoCo
simulator for fair comparison. However, this setup is less
realistic, as the robotic hand is not attached to an arm and can
move freely. To address this, we attach an Allegro robot hand
to a UR5 arm, mirroring our actual hardware configuration.
We use the SAPIEN [79] simulator for this setup, which
simplifies creating this more realistic environment and allows
to speed up simulation. Unless specified otherwise, the Adroit
hand in MuJoCo is used for benchmarking against state-of-the-
art methods, while the Allegro hand in SAPIEN is employed
for training visual policies and performing ablation studies.
Manipulation tasks. We follow [24] to evaluate on three
tasks. The first relocate task requires the robot to move an
object to a target position. The pour task aims to grasp a mug
filled with particles and pour the particles into a container.
The success rate is measured by the percentage of particles in
the container. The place inside task aims to grasp a banana
and place it into a mug. The success rate is measured by the
percentage of the banana mesh in the mug.
Evaluation metrics. The success rate (SR) is the major metric
for the above three tasks. For the relocate task, we adopt
the 10cm threshold (SR10) following [24], [29] to define

1The videos in DexMV are not publicly released.

R1 policy R2 policy R3 policy R1 policy R2 policy R3 policy

Fig. 3: Qualitative comparison of state-based policies using
different rewards for Protocol #1 and the Allegro hand. R1
(w/o hand reward in pre-grasp) leads to unstable grasps. R2
(w/o hand reward in manipulation) results in unnatural hand
actions. Our proposed approach R3 uses hand rewards at both
stages and achieves the best performance.

TABLE I: Performance of our state-based policy using
different hand rewards (Allegro hand, Protocol #1). It follows
the extracted human hand trajectory to manipulate objects
(R1), reach the pre-grasp location (R2) or combine both (R3).

Hand Reward
Eo ↓ Eh ↓ SRo ↑ SRh ↑ SR3 ↑Pre-grasp Manipulation

R1 × ✓ 0.048 0.21 0.35 0.00 0.00
R2 ✓ × 0.0033 0.077 0.95 0.32 1.00
R3 ✓ ✓ 0.0019 0.032 0.97 0.79 1.00

the success rate. To measure the accuracy more precisely,
we add a more rigorous threshold of 3cm and compute the
success rate SR3. For the state-based policy, we additionally
evaluate how well the physically plausible trajectory matches
the reference trajectory using four metrics [28]: Eo computes
the average object position error between the current object
trajectory and its reference trajectory over time; Eh computes
the average finger tips position error between the current robot
hand trajectory and its counterpart over time; SRo reports the
fraction of timesteps where Eo is below 1cm; SRh computes
the fraction of timesteps where Eh is lower than 5cm.

Implementation details. We use PPO [74] to optimize the
state-based policy. The RL training takes around 2 hours on a
single A100 GPU for each video. We rollout 100 successful
trajectories from the state-based policy for each video, where
trajectories differ in initial object positions, orientations and
target positions. During rollouts, we render 3D scene point
clouds from the depth camera. These data are used to train
our visual policy, which takes robot joint positions and 3D
point clouds as inputs. Training our visual policy on a single
A100 GPU takes around 10 hours using behavior cloning
and about 20 hours using the diffusion policy, both based on
data from 15 videos. For testing, we run 300 episodes with
different initial configurations and report the average success
rate. The length of a single episode is 60, 80 and 100 for the
relocate task, place inside task and pour task, respectively.
The real robot takes around 1 minute to execute an episode.



TABLE II: Comparison with state-of-the-art methods on relocate task for state-based policies. We optimize a state-based
policy using a single human video for each object (S6, S7, S8) (Protocol #1), while previous methods usually need about 100
videos for each object (S2-S4). * indicates that we re-train the method from [24] with 20 DexYCB videos for each object.

Methods Robot Hands Training
algorithms

Num.
videos

Mustard bottle Tomato can Sugar box Large clamp Mug Avg.
SR10 SR3 SR10 SR3 SR10 SR3 SR10 SR3 SR10 SR3 SR10 SR3

S1 DexMV [24] Adroit TRPO [80] 0 0.06 - 0.67 - 0.00 - 0.51 - 0.49 - 0.35 -
S2 DexMV [24] Adroit SOIL [81] 97 0.33 - 0.98 - 0.67 - 0.89 - 0.71 - 0.72 -
S3 DexMV [24] Adroit GAIL+ [82] 97 0.06 - 0.66 - 0.00 - 0.52 - 0.53 - 0.50 -
S4 DexMV [24] Adroit DAPG [16] 97 0.93 - 1.00 - 0.00 - 1.00 - 1.00 - 0.79 -
S5 DexMV [24]∗ Adroit DAPG [16] 20 1.00 0.63 1.00 0.56 0.09 0.00 0.08 0.00 0.02 0.00 0.44 0.24

S6 Ours Adroit PPO [74] 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
S7 Ours Allegro PPO [74] 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
S8 Ours w/o rot. Allegro PPO [74] 1 0.85 0.85 1.00 0.99 0.99 0.97 0.98 0.95 0.97 0.94 0.96 0.94

TABLE III: Performance of visual policies for each object on
relocate task with SR3 using Protocol #1 and Allegro hand.

Algorithms #Points Mb. Tc. Sb. Lc. Mug Avg.

V1 BC 512 0.99 0.82 0.82 0.78 0.90 0.86
V2 BC 2048 1.00 1.00 0.87 0.91 1.00 0.96
V3 Diffusion 2048 1.00 0.97 0.98 0.99 0.99 0.99

B. Evaluation of the State-based Policy on the Relocate Task

We evaluate the state-based policy on the relocate task
using both the Adroit and Allegro hands. We follow Protocol
#1 to train the state-based policy then evaluate each policy
on the same object with novel placement of the object.
Specifically, we randomly change the initial object position
and rotation around z-axis for each testing episodes.

1) Ablation Studies: We first perform ablations to validate
the importance of our hand rewards at the pre-grasp and the
manipulation stages in state-based policy learning. Table I
presents the averaged performance over all objects for
policies with different reward functions for the Allegro
hand. The policy in R1 uses the proposed hand reward Rh

m

in the manipulation stage but follows the previous reward
function [24], [29], [16] in the pre-grasp stage which is to
minimize the distance between the robot and the object. It
achieves poor performance due to the lack of guidance from
the human hand trajectory to approach the object. As shown
in the first column of Figure 3, the policy has difficulties in
arriving at a plausible pre-grasp configuration to stably lift
the object. The policy in R2 employs the proposed reward
function Rp in the pre-grasping stage but follows PGDM [28]
(i.e., Ro

m and 1lift) in the manipulation stage. The reward
function in PGDM constrains the object motions to be close
to the reference trajectory but does not add any constraints on
the hand motions, which results in unnatural robot actions as
shown in the second column of Figure 3. Our proposed policy
in R3 utilizes hand rewards in both stages, which outperforms
R1 and R2 on all the metrics and produces more robust and
realistic grasps as shown in the last column of Figure 3.

2) State-of-the-art comparison: Table II presents the
quantitative comparison of our state-based policy and state-
of-the-art models [24]. S1 to S4 denote four model variants
reported in [24] for the Adroit hand. As their training data
is not released, we re-train their best model DAPG [16]
(S4) using 20 DexYCB videos and report the results in S5
for fair comparison. We can see that the performance drops

significantly for some objects, i.e., large clamp and mug.
This suggests that their approach needs a large number of
videos to effectively learn how to handle objects with complex
shapes. Our proposed policy in S6 significantly outperforms
all previous methods despite only using one training video
per object. Though S4 also performs well for mustard bottle,
tomato soup can, large clamp and mug, it easily knocks down
thin objects (e.g., sugar box) when the robot approaches the
object and achieves poor performance. Our hand reward
addresses this problem by mimicking the human pre-grasping
trajectory. As shown in S7, we achieve the same performance
with the Allegro hand. S8 is a variant of our model S7 without
rotation augmentation in the z-axis during training. The
performance only drops insignificantly when tested for such
rotations. This demonstrates the robustness of our method.

C. Evaluation of the Visual Policy on the Relocate Task

Here, we evaluate our proposed visual policy on the
relocate task and present a detailed experimental analysis.

1) Learning from a single video per object: We first
investigate whether replacing the ground-truth object state in
the state-based policy with visual point cloud inputs can affect
the performance. For each video, we follow Protocol #1 to
train a separate visual policy using the rollout data obtained
from the state-based policy S7 in Table II, and evaluate under
novel object placements as in the evaluation of the state-based
policy. The results are presented in Table III. Compared with
V1 that uses 512 points, V2 samples 2048 points and improves
the overall performance, which shows the importance of point
clouds densities. By comparing V2 and V3, the 3D diffusion
policy [78] can achieve more robust performance than the
plain behavior cloning algorithm. Our visual policies only
perform slightly worse than our state-based policies.

2) Learning a unified multi-object visual policy from
multiple videos: Finally, we adopt Protocol #2 and train a
single policy for all objects with the Allegro hand and report
its performance in Table IV. We test the policy under three
initial poses for each object shown in Figure 2. From V4 to V6,
we gradually increase the number of videos for each object
from one to three and observe a significant improvement
in performance. Then, V7 additionally transforms the 3D
point clouds into the target coordinate system. As a result,
the model becomes more aware of its target and largely
improves the average performance for seen objects from



TABLE IV: Performance of unified visual policies on relocate
task under SR3 using Protocol #2 and Allegro hand. We
compare the performance using different number of human
videos and point clouds under different coordinate systems.

Algo. Vid. Coor. sys. Seen Unseen
avg.

target hand Mb. Tc. Sb. Lc. Mug Avg.

V4 BC 1×5 × × 0.33 0.33 0.33 0.30 0.42 0.34 0.31
V5 BC 2×5 × × 0.55 0.57 0.36 0.56 0.66 0.54 0.33
V6 BC 3×5 × × 0.69 0.80 0.83 0.86 0.88 0.81 0.38

V7 BC 3×5 ✓ × 0.93 0.92 0.99 0.93 0.99 0.95 0.37
V8 BC 3×5 ✓ ✓ 0.93 0.97 0.97 0.98 1.00 0.97 0.41

V9 Diff. 3×5 ✓ ✓ 0.97 0.99 1.00 0.99 0.99 0.99 0.50

TABLE V: Comparison with state-of-the-art methods on the
pour and the place inside tasks using the Adroit hand. Our
approach uses a single human video for each task, while
previous methods need more than 91 human videos.

Methods Training
algorithms

Num.
videos

Pour
success rate

Place inside
success rate

L1 DexMV [24] TRPO [80] 0 / 0 0.01 0.03
L2 DexMV [24] SOIL [81] 101 / 91 0.04 0.28
L3 DexMV [24] GAIL+ [82] 101 / 91 0.03 0.16
L4 DexMV [24] DAPG [16] 101 / 91 0.27 0.31

L5 Ours PPO [74] 1 / 1 0.97 0.68
L6 Ours Diffusion 1 / 1 0.97 0.68

81% to 95%. To further incorporate fine-grained hand-object
interaction features, we further transform 3D points into hand
joint coordinate systems in V8. Benefiting from extracting
rich hand-object interaction features, V8 achieves even better
performance than V7. Different from V8, V9 trains the visual
model using 3D diffusion policy and achieves an average
success rate of 99% under the challenging test scenario.

To investigate the generalization of our visual policies, we
evaluate their performance using three different initial poses
for ten unseen YCB objects. In Figure IV from V4 to V6, our
model better generalizes to novel objects when using more
videos. V8 incorporates fine-grained interaction features and
enhances generalization. Compared with the behavior cloning,
V9 significantly improves the unseen success rate from 41%
to 50% by using the 3D diffusion policy, which demonstrates
better robustness and generalization abilities.

D. Evaluation of our policy on Pour and Place inside Tasks

We further evaluate our approach on the pour and place
inside tasks and report results in Table V. Rows L1-L4 show
results for state-based policies [24] using the Adroit hand
as well as 91 and 101 video demonstrations for pour and
place inside tasks respectively. While we use only single
human video for training, our state-based policy L5 for the
Adroit hand achieves 97% and 68% success rates on these
two tasks respectively, significantly outperforming 27% and
31% success rates corresponding to the best models of [24].
By taking advantage of high-quality trajectories generated by
L5, our visual policy L6 also achieves high performance.

E. Real world experiments

To further demonstrate the advantages of ViViDex, we
evaluate its performance on real-world dexterous manipulation.

TABLE VI: Success rate of visual policies on relocate task
using the real robot. We evaluate 10 episodes for each object.

Methods Unified
policy

Seen Unseen
Avg.

Mb. Tc. Sb. Lc. Mug Avg.

R1 BC × 10/10 8/10 9/10 8/10 9/10 0.88 -
R2 BC ✓ 9/10 7/10 7/10 5/10 8/10 0.72 0.58
R3 Diffusion ✓ 10/10 7/10 8/10 7/10 8/10 0.80 0.68

(a) Real-world experiments setup (b) Visual policy execution

Fig. 4: Illustrations of our real-world robot experimental setup
and the performance of our proposed ViViDex algorithm.
As shown in Figure 4(a), we use a UR5 robotic arm equipped
with an Allegro hand and a single RealSense D435 RGB-D
camera. Since point clouds for the real-world experiments are
noisier than those in simulation, we use the state-based policy
to collect data in the real world and then learn a unified visual
policy based on real data. We run state-based policies in the
simulator for specific object locations and run them on the
real robot by placing the object in the same locations. This
allows us to collect 3D scene point clouds and robot states for
each execution step and build the real-robot training dataset.
We collect five robot trajectories for each object and train the
visual policy using our collected real-robot data. As shown in
Figure 4(b), our visual policy can then manipulate the object.
We summarize the quantitative results on the real robot in
Table VI. We adopt the initial pose for seen objects from
the first row of Figure 2 and include five unseen objects for
evaluation: cracker box, spray bottle, bleach cleanser, water
bottle and pudding box. R1 trains five policies separately and
achieve an average success rate of 88%. R2 and R3 learn
unified policies for five objects and demonstrate the ability to
grasp unseen objects. The diffusion policy R3 also achieves
better performance than BC in real experiments.

V. CONCLUSION

We introduce ViViDex, a new framework for learning
vision-based dexterous manipulation from human videos. Our
approach extracts reference trajectories from human videos
and uses them as a reward in training state-based policies with
RL. This generates diverse physically plausible trajectories.
We rollout these trajectories for training a visual policy, which
takes as inputs robot proprioceptive states and 3D point clouds.
To enhence visual policies, we further transforms 3D point
clouds into hand-centered coordinate systems. We conduct
extensive ablation experiments to validate the effectiveness of
ViViDex on different simulators and a real robot. We show
that our visual policies outperform state-of-the-art accuracy
on different tasks by a significant margin and generalize to
unseen objects. Future work aims at leveraging internet videos
for acquiring more general dexterous manipulation skills and
investigating advanced 3D pose estimation algorithms.
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