Evaluation of Artificial Intelligence-Based Gleason Grading Algorithms "in the Wild" - Archive ouverte HAL
Article Dans Une Revue Modern Pathology Année : 2024

Evaluation of Artificial Intelligence-Based Gleason Grading Algorithms "in the Wild"

Khrystyna Faryna
  • Fonction : Auteur correspondant
Leslie Tessier
  • Fonction : Auteur
Juan Retamero
  • Fonction : Auteur
Saikiran Bonthu
  • Fonction : Auteur
Pranab Samanta
  • Fonction : Auteur
Nitin Singhal
  • Fonction : Auteur
Camelia Radulescu
Xavier Farré
  • Fonction : Auteur
Jacqueline Fontugne
Rainer Grobholz
  • Fonction : Auteur
Agnes Marije Hoogland
  • Fonction : Auteur
Murat Oktay
  • Fonction : Auteur
Paromita Roy
  • Fonction : Auteur
Paulo Guilherme
  • Fonction : Auteur
Theodorus H. van der Kwast
Geert Litjens

Résumé

The biopsy Gleason score is an important prognostic marker for prostate cancer patients. It is, however, subject to substantial variability among pathologists. Artificial intelligence (AI)ebased algorithms employing deep learning have shown their ability to match pathologists' performance in assigning Gleason scores, with the potential to enhance pathologists' grading accuracy. The performance of Gleason AI algorithms in research is mostly reported on common benchmark data sets or within public challenges. In contrast, many commercial algorithms are evaluated in clinical studies, for which data are not publicly released. As commercial AI vendors typically do not publish performance on public benchmarks, comparison between research and commercial AI is difficult. The aims of this study are to evaluate and compare the performance of top-ranked public and commercial algorithms using real-world data. We curated a diverse data set of whole-slide prostate biopsy images through crowdsourcing containing images with a range of Gleason scores and from diverse sources. Predictions were obtained from 5 top-ranked public algorithms from the Prostate cANcer graDe Assessment (PANDA) challenge and 2 commercial Gleason grading algorithms. Additionally, 10 pathologists (A.C., C.R., J.v.I., K.R.M.L., P.R., P.G.S., R.G., S.F.K.J., T.v.d.K., X.F.) evaluated the data set in a reader study. Overall, the pairwise quadratic weighted kappa among pathologists ranged from 0.777 to 0.916. Both public and commercial algorithms showed high agreement with pathologists, with quadratic kappa ranging from 0.617 to 0.900. Commercial algorithms performed on par or outperformed top public algorithms. (c) 2024 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States and Canadian Academy of Pathology. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).
Fichier principal
Vignette du fichier
1-s2.0-S0893395224001431-main.pdf (5.36 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04721197 , version 1 (04-10-2024)

Licence

Identifiants

Citer

Khrystyna Faryna, Leslie Tessier, Juan Retamero, Saikiran Bonthu, Pranab Samanta, et al.. Evaluation of Artificial Intelligence-Based Gleason Grading Algorithms "in the Wild". Modern Pathology, 2024, 37 (11), pp.100563. ⟨10.1016/j.modpat.2024.100563⟩. ⟨hal-04721197⟩
47 Consultations
11 Téléchargements

Altmetric

Partager

More