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A B S T R A C T

In this paper, we generalize the Koopman–Hill projection method, which was recently introduced for the
numerical stability analysis of periodic solutions, to be included immediately in classical real-valued harmonic
balance (HBM) formulations. We incorporate it into the Asymptotic Numerical Method (ANM) continuation
framework, providing a numerically efficient stability analysis tool for frequency response curves obtained
through HBM. The Hill matrix, which carries stability information and follows as a by-product of the HBM
solution procedure, is often computationally challenging to analyze with traditional methods. To address this
issue, we generalize the Koopman–Hill projection stability method, which extracts the monodromy matrix from
the Hill matrix using a matrix exponential, from complex-valued to real-valued formulations. In addition, we
propose a differential recast procedure, which makes this real-valued Hill matrix immediately available within
the ANM continuation framework. Using as an example a nonlinear von Kármán beam, we demonstrate that
these modifications improve computational efficiency in the stability analysis of frequency response curves.
1. Introduction

The harmonic balance Method (HBM) serves as a valuable instru-
ment in the analysis of nonlinear dynamical systems subject to periodic
forcing. It is employed in wide ranges of engineering applications
including turbomachinery [1], geared systems [2], acoustics [3] and
structural dynamics [4]. Typically, HBM is employed within a path-
following, often also called continuation, framework to find branches
of periodic solutions along a varying parameter. With the aim to
understand and usually mitigate vibrations in engineering applications,
this tool is employed to generate nonlinear frequency response curves,
i.e., compute the nonlinear periodic response of a forced system across
a range of excitation frequencies, or compute the nonlinear free con-
servative response to obtain the nonlinear modes of the system in the
form of their backbone curves and deformed shapes [4].

The state-of-the art methods for the numerical stability analysis
of periodic solutions can be categorized into two families, as their
corresponding operations take place either in the time or the frequency
domain [5,6]. Time domain methods determine the monodromy matrix
by numerical integration of a linear matrix differential equation of the
size of the original problem over one period. Employed in HBM settings,
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these methods do not take advantage of the frequency nature of the
HBM and require reverting back to time domain exclusively for stability
determination. In contrast, frequency domain methods, also commonly
called Hill methods, are based on the Hill matrix, which is strongly
related to the Jacobian of the HBM residual. Some of the eigenvalues of
this matrix approximate the Floquet exponents, which allow to assess
the stability. So-called sorting methods select an appropriate subset of
the complete eigenspectrum. These sorting methods are based on the
eigenvalues themselves [7,8] or the eigenvectors [9,10]. Classically,
the Hill matrix is presented in a complex-valued form that exhibits a
banded block-Toeplitz structure, but in application it is often obtained
in a more practical real-valued formulation that has an identical set
of eigenvalues [11]. Recently, the authors proposed the Koopman–Hill
projection stability method that combines time-domain and frequency-
domain aspects as it determines the monodromy matrix from the
classical complex-valued formulation of the Hill matrix using a matrix
exponential and a projection [12,13].

One specific continuation framework is the Asymptotic Numerical
Method (ANM). Coupled to the HBM, the ANM computes continuous
solution branches of first order differential algebraic systems with
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purely quadratic polynomial nonlinearities [9,14]. A large class of dy-
namical systems involving smooth nonlinearities, such as polynomials
of arbitrary degree, rational functions, or regularized friction, can be
recast into this form [15–17]. In this case, the computation of the real-
valued Hill matrix is straightforward using a condensation operation,
leading to a rather efficient method for stability computation that can
be executed fully in the frequency domain [9].

Despite its prevalence across engineering domains and irrespective
of the continuation framework employed, there are persistent chal-
lenges in the state-of-the-art numerical stability analysis of periodic
solutions found by HBM, mainly because of the computational cost.
For large-scale systems, the numerical integrations needed to obtain
the monodromy matrix in the time domain are often more costly than
finding the periodic solution itself [18–20]. In the frequency domain,
the solution of the complete eigenvalue problem is also a very costly op-
eration [6], hampering the use of sorting methods. Therefore, stability
computation constitutes a bottleneck during the continuation proce-
dure. The overarching aim of the present work is to address these issues
by integrating the Koopman–Hill projection stability method, which
requires neither numerical integration nor the solution of the complete
eigenproblem and can be more efficient than sorting methods [12], into
the ANM continuation framework.

Two central challenges complicate the immediate application of
the Koopman–Hill method in the ANM. Firstly, we show that the
condensation operation that relates the HBM equations to the Hill
matrix for the differential algebraic equation systems (DAE) resulting
from the classical quadratic recast induces truncation errors, which
impact the accuracy of the Koopman–Hill projection approach more
than that of the classical sorting-based approaches. To remedy this, we
introduce in Section 3 a differential recasting procedure that arrives
at a quadratic ordinary differential equation instead of a DAE, such
that the Hill matrix is available immediately without the need for
a condensation operation. A second challenge is posed by the fact
that the Koopman–Hill projection has until now only been derived
for the classical complex-valued Hill matrix, but the ANM framework
(with or without the condensation) returns the Hill matrix in its real-
valued form. In Section 4, we explicitly derive the problem-independent
similarity transforms relating any two Hill matrix formulations and use
these to generalize the Koopman–Hill projection method to arbitrary
Fourier bases. This generalization is applicable to any Hill problem
independent of how the Hill matrix is obtained, but in particular also
for the Hill matrix given in ANM. Finally, in Section 5, we illustrate
the effectiveness of the Koopman–Hill projection method coupled to
ANM with a differential recast, using a modal reduction of a period-
ically forced von Kármán beam as an example of arbitrary size with
polynomial nonlinearities.

2. Theoretical background

In this section, we provide some theoretical background on the
methods used in this work, with a particular focus on frequency-based
continuation methods for finding periodic solutions and determining
their stability.

2.1. Harmonic balance method

Consider a finite-dimensional dynamical system governed by

�̇� = 𝐟 (𝐱, 𝑡) , (1)

where 𝑡 ∈ R denotes time, 𝐱(𝑡) ∈ R𝑛 lies on a state trajectory initialized
at 𝐱(0) = 𝐱0 and 𝐟 ∶ R𝑛 × R → R𝑛 is a sufficiently smooth vector field
which is 𝑇 -periodic in 𝑡.

A 𝑇 -periodic solution is a solution 𝐱p of (1) which fulfills 𝐱p(𝑡+𝑇 ) =
𝐱p(𝑡) for all 𝑡 ≥ 0. The problem of finding such solutions is a boundary
value problem (BVP) as conditions are imposed on both initial and

terminal state. Various methods exist to address this type of BVP, both

2 
in the time domain and in the frequency domain. Techniques such
as shooting, multiple shooting, and collocation all rely on an inter-
play between time-integration (or finite differencing) of the ordinary
differential equation (ODE) (1) and solving nonlinear functions for
periodicity and continuity constraints [21]. In contrast, the harmonic
balance method (HBM) [5,6,10,22,23] is a frequency-based method,
which aims to determine a set of Fourier coefficients approximating
the periodic solution. The sought unknown periodic solution can be
approximated by its complex-valued Fourier expansion up to order 𝑁
via

𝐱p(𝑡) =
𝑁
∑

𝑘=−𝑁
𝐱𝑘ei𝑘𝜔𝑡 =∶ 𝐱p(𝐗cplx, 𝑡) (2)

with 𝜔 = 2𝜋
𝑇 and 𝐗cplx ∶=

(

𝐱−𝑁T,… , 𝐱𝑁T) T∈ C𝑛(2𝑁+1) gathering
the corresponding unknown complex-valued coefficients in a column
vector. Since the periodic solution is known to be real-valued, it can
equivalently be expressed by a real-valued Fourier series

𝐱p(𝑡) = 𝐚0 +
𝑁
∑

𝑘=1
𝐚𝑘 cos 𝑘𝜔𝑡 + 𝐛𝑘 sin 𝑘𝜔𝑡 =∶ 𝐱p(𝐗real, 𝑡) (3)

ith 𝐗real ∶=
(

𝐚0T,… , 𝐚𝑁T,𝐛1T,… ,𝐛𝑁T) T ∈ R𝑛(2𝑁+1) as vector of un-
nowns. The arrangement of the coefficients within 𝐗real is an arbitrary
hoice that does not influence the results of the procedure, and various
rrangements can be found in the literature. Given the equivalence
etween complex and real representations, many of the subsequent
evelopments operate with a general vector 𝐗 of unknown coefficients,
mplicitly assuming the use of the corresponding Fourier series. In
ection 4, we will illustrate linear transformations that facilitate easy
witching between the formulations.

In the HBM, the unknown coefficients 𝐗 are determined by substi-
uting the corresponding Fourier series into the dynamics (1) to obtain
he residual in time

(𝐗, 𝑡) = 𝐟 (𝐱p(𝐗, 𝑡), 𝑡) − �̇�p(𝐗, 𝑡) . (4)

he residual 𝐫 is then expressed as a Fourier series, and its first 𝑁 har-
onics are required to vanish in a Galerkin procedure. This procedure

ields the 𝑛(2𝑁 + 1) algebraic equations

(𝐗) = 𝟎 . (5)

xistence and convergence of these HBM approximations have been
hown under suitable assumptions [5]. While the derivative component
f (4) as well as linear terms in 𝐟 are easy to handle, the frequency
ecomposition of the nonlinear terms in 𝐟 can usually not be expressed
n closed form, except if the nonlinearities are polynomials of low
egree. In order to apply standard predictor–corrector methods, the in-
ividual equations for each order are thus often determined and simul-
aneously solved using the fast Fourier transform with an alternating
requency and time (AFT) method, evaluating 𝐟 in the time domain after
n inverse Fourier transformation of the unknowns in each iteration
tep [24]. An alternative to the AFT and predictor–corrector methods
s the ANM framework, for which the solution branches are computed
sing a higher-order Taylor series expansion, provided the nonlinear
art of 𝐑(𝐗) contains only quadratic polynomials. This method will be
escribed in Section 2.4 in detail.

.2. Floquet theory and stability of periodic solutions

Below we recapitulate some classical results of Floquet theory,
hich can be found in standard textbooks, (e.g. [18,25,26]). Consider
𝑇 -periodic orbit 𝐱p of (1). Typically, such an orbit is obtained with

ufficient accuracy using methods like HBM or other periodic solution
olvers. To study stability, we consider a small perturbation 𝐲 ∶= 𝐱−𝐱p
round the periodic orbit. After linearization, the dynamics of this
erturbation is governed by the perturbation equation

̇ (𝑡) =
𝜕𝐟 (𝑡, 𝐱) |

|

|

𝐲(𝑡) ∶= 𝐉(𝑡)𝐲(𝑡) , (6)

𝜕𝐱

|𝐱p(𝑡)
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i.e., a linear dynamical system with a time-periodic system matrix. In
the hyperbolic case, stability of the equilibrium of (6) coincides with
orbital stability of the periodic solution [18].

By virtue of linearity, there exists a principal fundamental solution
matrix 𝜱(𝑡) of (6), which maps initial conditions at time 0 to time 𝑡,
i.e.

𝐲(𝑡) = 𝜱(𝑡)𝐲(0) (7)

or all times 𝑡 ∈ R and all initial conditions 𝐲(0) ∈ R𝑛 [25]. The matrix
(𝑇 ) ∶= 𝜱𝑇 evaluated after one period is called the monodromy matrix

nd its eigenvalues {𝜆𝑙}𝑛𝑙=1 are called Floquet multipliers [18]. If all
igenvalues of 𝜱𝑇 lie strictly inside the unit circle, then the magnitude
f any trajectory of (6) will decay over time, indicating asymptotic
tability of the equilibrium. Conversely, if a Floquet multiplier has an
igenvalue strictly larger than 1, the equilibrium is unstable.

Floquet’s theorem [25,27] states that the fundamental solution ma-
rix can be expressed as the product

(𝑡) = 𝐏(𝑡)e𝐐𝑡 (8)

here 𝐏(𝑡) = 𝐏(𝑡 + 𝑇 ) is a 𝑇 -periodic matrix in C𝑛×𝑛 and 𝐐 ∈ C𝑛×𝑛 is a
onstant matrix. The eigenvalues 𝛼1,… , 𝛼𝑛 of 𝐐 are known as Floquet
xponents and are related to the Floquet multipliers via

𝑖 = e𝛼𝑖𝑇 , 𝑖 = 1,… , 𝑛 . (9)

or each of the 𝑛 Floquet multipliers 𝜆𝑖, there exists an infinite number
f Floquet exponents that fulfill (9), related to each other by �̃�𝑖 =
𝑖 + 𝑘i 2𝜋𝑇 with 𝑘 ∈ Z. If 𝛼 is a Floquet exponent, then there exists a
orresponding Floquet form solution [18]

𝛼(𝑡) = 𝐩𝛼(𝑡)e𝛼(𝑡−𝑡0) (10)

of (6), where 𝐩𝛼(𝑡) = 𝐩𝛼(𝑡 + 𝑇 ) ∈ C𝑛 is a 𝑇 -periodic function.1 These
loquet form solutions can be used to compute the Lyapunov–Floquet
ransformation, which brings (6) into a linear time-invariant (LTI)
orm [25].

Hill’s method, closely related to Hill’s determinant method [10,18],
ffers a frequency-domain-based approach to approximate the Floquet
xponents of (6). By explicitly evaluating the complex-valued Fourier
eries of an unknown Floquet form, it follows that the Floquet expo-
ents are part of the spectrum of the infinite Hill matrix 𝐇∞, which
s composed of the complex-valued Fourier coefficients of the periodic
ystem matrix 𝐉(𝑡) =

∑∞
𝑘=−∞ 𝐉𝑘e𝑖𝜔𝑘𝑡 with blocks 𝐇𝑗𝑘 = 𝐉𝑗−𝑘 − i𝑘𝜔𝛿𝑘𝑗𝐈

for 𝑗, 𝑘 = −∞,… ,∞ [10]. Notably, in a block-Toeplitz fashion, all block
entries along each sub- or superdiagonal of 𝐇∞ have the identical value
𝐇𝑗𝑘 = 𝐇𝑗+𝑙,𝑘+𝑙 = 𝐉𝑗−𝑘.

In practice, only the eigenvalues of a finite-dimensional matrix
approximation of the infinite Hill matrix can be computed numerically.
The matrix 𝐇 of size 𝑛(2𝑁 + 1) × 𝑛(2𝑁 + 1) consists of the 𝑛(2𝑁 + 1)
most centered rows and columns of 𝐇∞ and approximates the original
infinite-dimensional Hill matrix. In Section 4.1 we provide a proof of
the well-known fact that the Jacobian matrix of the HBM equations
coincides with the truncated Hill matrix, making this matrix immedi-
ately available in HBM settings without further construction steps. In
practice, therefore, the block-by-block construction process for the Hill
matrix outlined in the present section is not necessary. In particular,
the Jacobian matrix was used for all numerical examples of this work.

While one might naively expect that the eigenvalues of 𝐇 coincide
with a subset of the Floquet exponents, this is generally not the case due
to truncation errors. If no additional steps are taken, spurious eigenval-
ues without physical meaning may lead to the assertion of instability in

1 If 𝐐 or, equivalently, 𝜱𝑇 are not diagonalizable, then there exist addi-
ional Floquet form solutions of the form (10) where 𝐩𝛼 also has non-periodic

polynomial components. However, for every Floquet exponent, there exists
at least one Floquet form with purely periodic 𝐩𝛼(𝑡) [18]. Only this purely
eriodic Floquet form is required for the developments below.
3 
stable cases, giving the method a reputation of being inaccurate [5,6].
However, this issue can be mitigated if only a subset of eigenvalues is
considered for stability determination instead of all 𝑛(2𝑁 + 1) of them.
In this case, sorting methods are required to identify those eigenvalues
that are most likely to approximate all Floquet exponents well. These
methods rely on symmetry considerations of the eigenvectors [9,10] or
on the magnitude of the imaginary part [7,8,22,28].

For all sorting methods, there currently exist no means to efficiently
and accurately compute only those eigenvalues that are sought. Instead,
all eigenpairs of 𝐇 are computed first, and then most of them are
discarded, resulting in significant computational cost [6]. Sparsity of 𝐇
cannot be reasonably exploited to decrease the computational cost of
solving the complete eigenproblem [29].

2.3. Koopman–Hill projection stability method

In a recent publication by the authors [12,13], an alternative ap-
proach based on the Koopman formalism [30] has been introduced
to derive the Floquet quantities from the Hill matrix. This approach
does not rely on solving the complete eigenvalue problem of the Hill
matrix and is therefore not bound by the computational limitations of
the classical approaches of Section 2.2.

In [12], we showed that the linear time-invariant dynamical system
�̇� = 𝐇𝐳 defined by the truncated Hill matrix of order 𝑁 coincides
with the linear truncated Koopman lift of (6) for a specific set 𝜳 of
observables defined by

𝜳 (𝑡, 𝐲(𝑡)) ∶=
(

ei𝑁𝜔𝑡 ei(𝑁−1)𝜔𝑡 … e−i𝑁𝜔𝑡) T ⊗ 𝐲(𝑡) , (11)

here ⊗ denotes the Kronecker product. The entries of 𝐲(𝑡) in (11) are
rdered by descending frequency. This slightly unusual choice ensures
hat for any initial condition 𝐲(0) of �̇�(𝑡) = 𝐉(𝑡)𝐲(𝑡), choosing the initial
ondition of �̇� = 𝐇𝐳 in agreement with (11) as

(0) = 𝜳 (0, 𝐲(0)) = (1 … 1)T ⊗ 𝐲(0) =∶ 𝐖𝐲(0) (12)

ields the approximation

(𝑡) =∶
(

𝐳−𝑁 (𝑡)T … 𝐳0(𝑡)T … 𝐳𝑁 (𝑡)T
)T ≈ 𝜳 (𝑡, 𝐲(𝑡)). (13)

orrespondingly, due to 𝐳𝑘 ≈ e−i𝑘𝜔𝑡𝐲(𝑡), the middle entry 𝐳0(𝑡) of
he lifted state (13) directly approximates 𝐲(𝑡). Going back from lifted
oordinates 𝐳 to original coordinates 𝐲 ≈ 𝐳0 =∶ 𝐂𝐳 enables the
pproximation of arbitrary trajectories of (6) using the closed-form
olution of the linear time-invariant lifted dynamics

(𝑡) ≈ 𝐳0(𝑡) = 𝐂 e𝐇𝑡 𝐳(0) = 𝐂 e𝐇𝑡 𝐖𝐲(0) (14)

iven by the matrix exponential [12]. The matrix product 𝐂e𝐇𝑡𝐖
n the expression (14) yields a matrix that (in approximation) maps
ny initial condition 𝐲(0) to the point on its trajectory after time 𝑡.
ence, it approximates the principal fundamental matrix 𝜱(𝑡), cf. (7).

n particular, an approximation of the monodromy matrix, i.e., the
undamental solution matrix evaluated at time 𝑇 , can be identified
rom (14) as

𝑇 ≈ 𝐂 e𝐇𝑇 𝐖 . (15)

The Floquet multipliers are then approximated by the eigenvalues
f this matrix product.

The individual steps of this projection-based stability approach are
isualized in Fig. 1. In this projection-based approach, the compu-
ationally intensive eigenvalue problem of the classical Hill methods
s replaced by a matrix exponential. Various methods are available
or efficient numerical calculation of matrix exponentials [31]. The
lassical ‘‘scaling and squaring’’ approach [32] exploits the fact that the
aylor series of e𝐇𝑡 is sufficiently accurate with only few summands

f 𝑡 is very small. Essentially, a small value 𝑡 is chosen such that
= 2𝑚𝑡 for some 𝑚 ∈ N, and then the desired result e𝐇𝑇 follows

rom the easier-to-compute intermediate result e𝐇𝑡 through 𝑚 successive
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Fig. 1. Flowchart illustrating the Koopman–Hill projection stability method.
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quaring operations. While still an operation of order (𝑁3), the scaling
nd squaring approach benefits from sparse patterns in 𝐇, unlike the

solution of the eigenvalue problem. This is also how the built-in expm
command of MATLAB implements the matrix exponential.

In (15), it suffices in principle to compute the action of the ma-
trix exponential on the surrounding matrices, i.e., to obtain 𝐂e𝐇𝑇 or
𝐇𝑇𝐖 immediately without determining the matrix exponential itself.
n ‘‘scaling and squaring’’-inspired Taylor series approaches [33,34],
he repeated matrix–matrix multiplications of the first ‘‘scaling’’ step
n the scaling and squaring approach are then replaced by matrix–
ector multiplications for each column of 𝐖 (or row of 𝐂), reducing
emory requirements and computation time. However, as the resulting
atrices are not square, the ‘‘squaring’’ step cannot be executed and

he 𝑚 squaring iterations are replaced by 2𝑚 additional matrix–vector
ultiplications. This is beneficial if the number of columns of 𝐖 (or,

nalogously, rows of 𝐂) is significantly smaller than the size of 𝐇.
n (15), the difference in size between 𝐇 and 𝐖 is determined only
y the truncation order 𝑁 . Usually, in application problems, 𝑁 is
hosen to be 20 or smaller, in which case the computational benefits
f the squaring steps outweigh the benefits of the matrix–vector mul-
iplication. Similar considerations also hold for other iterative matrix
xponential solvers such as Krylov-based methods [35]. Therefore, the
caling and squaring approach given by expm is used in this work.

.4. ANM continuation framework and quadratic equations

Commonly, the continuation problem for the algebraic residual (5)
n dependence of a parameter 𝜆 ∈ R is solved by predictor–corrector
ethods [5,8,19,36]. In this paper, we consider the asymptotic nu-
erical method (ANM), which solves continuation problems involving

lgebraic systems of the form (5) that have a certain quadratic structure
ithout predictor–corrector steps. In the HBM context, the scalar con-

rol parameter 𝜆 can be the frequency or amplitude of the forcing [9],
he energy of the system in free vibrations [4], or a simple parameter
f the system in the case of self-excited oscillations [3], parameter vari-
tions [37] or continuation of points of special interest like bifurcation
oints [38] or antiresonances [39].

The following sections give a brief overview of the ANM contin-
ation framework to motivate the benefits of the proposed differen-
ial quadratic recast of Section 3. Specific details about ANM can be
ound in [14–16], as well as in [40], where it is compared against
redictor–corrector methods.

.4.1. Continuation and ANM
Continuation seeks to find the solution 𝐗 of (5) as a function of a

arameter 𝜆. Because of fold bifurcation points, which create turning
oints in the branches of solutions plotted in the space (𝐗, 𝜆), the
roblem is locally re-parameterized as a function of a pseudo arc-length
arameter 𝑎. Then, the ANM is based on a high-order Taylor series
xpansion of the solution branch such that �̃� = (𝐗, 𝜆) is expressed as a
ower series of 𝑎:

̃ (𝑎) = �̃�(0) + 𝑎�̃�(1) + 𝑎2�̃�(2) +⋯ + 𝑎𝑃 �̃�(𝑃 ), (16)

ith 𝑃 ∈ N the order of the series, that is chosen of the order 𝑃 = 20
n practice. Then, the method consists of computing all coefficients
̃ (𝑝) with 𝑝 = 1, 2,… , 𝑃 , for a given range of validity 𝑎 ∈ [0, 𝑎max] of
he series (16), such that ‖𝐑(𝐗(𝑎))‖ < 𝜀 for a user-specified tolerance
∈ R. A solution branch in the space (𝐗, 𝜆) is expressed by a succession
 e
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f sections, each section given by �̃�(𝑎) for 𝑎 ∈ [0, 𝑎max] with �̃�(𝑎max)
erving as the starting point of the next section.

The computation of the coefficients of the power series (16) is
articularly efficient if the nonlinear part of the algebraic system (5)
ontains quadratic polynomials only. In this case, each coefficient �̃�(𝑝)

s determined by a linear equation system. The system matrix is identi-
al between all orders 𝑝 = 1, 2,… , 𝑃 , and the right-hand side for the 𝑝th
oefficient only depends on the solution of the 𝑝 − 1 previous systems,
nabling a sequential computation of all desired coefficients. To bring
he residue (4) into quadratic form, the dynamical system (1) must
e recast into a quadratic form by introducing extra unknowns along
ith additional algebraic equations, resulting in differential algebraic
quations (DAE). This operation, left in practice to the user, may appear
estrictive at first sight, but is available for a large class of systems
uch as systems with polynomial nonlinearities (this case will be treated
n the example of Section 2.4.2), and also systems with rational func-
ions [41], transcendental functions [4,16] or constrained systems that
re naturally written under DAE, like multibody systems [42] or large
inite element geometrically exact beam models that include unitary
uaternions [43].

An important feature of the ANM is that 𝑎max is automatically
omputed for a given tolerance 𝜀 in each section, thus enabling the
omputation of a solution branch with automatic step control. More-
ver, if all power series coefficients �̃�(𝑝) are stored for every section,
he ANM has the benefit that not only the section end points �̃�(0) = �̃�(0)

nd �̃�(𝑎max) are known to satisfactory exactness, but also all continuous
oints in between. Most other continuation methods do not possess this
ontinuous resolution. As it is a HBM based method, the Hill matrix can
e easily set up to compute the stability of the periodic solutions, as
hown in Section 2.4.3. The ANM as explained here is implemented in
n open-source software platform called Manlab, with graphical user
nterface capabilities. The public current version, Manlab 4.1.7 [44],
as been taken as starting point for the implementation of the proposed
tability technique and for all computations in the present paper.

.4.2. Example 1a: Algebraic quadratic recast of a quintic nonlinear oscil-
ator

To illustrate the algebraic quadratic recasting approach, we consider
nonlinear Duffing-type oscillator with quintic stiffness:

̈ + 𝑥 + 𝜀�̇� + 𝛼𝑥5 = 𝐹 cos𝜔𝑡 . (17)

he quintic nonlinearity 𝛼𝑥5 is initially not in quadratic form. However,
y introducing new auxiliary states and corresponding constraints 𝑧1 =
2
1, 𝑧2 = 𝑥31 = 𝑥1𝑧1, the system can be written as a quadratic DAE

�̇�1 = 𝑥2 (18a)

�̇�2 = −𝑥1 − 𝜀𝑥2 − 𝛼𝑧1𝑧2 + 𝐹 cos𝜔𝑡 (18b)

0 = 𝑧1 − 𝑥21 (18c)

0 = 𝑧2 − 𝑥1𝑧1 . (18d)

ere, the auxiliary variables 𝑧1, 𝑧2 were chosen in a way that succes-
ively reduces the degree of the non-quadratic monomials involved, to
rrive at (18) by an algebraic quadratic recast.

This procedure is not unique. For instance, an equivalent algebraic
ecast that still retains quadratic structure can be achieved by setting
̃2 = 𝑧21 and then using the equality 𝑥51 = 𝑥1 𝑥41 = 𝑥1�̃�2 in the differential

quation (18b). The task of carrying out the algebraic quadratic recast
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and selecting a pragmatic choice of auxiliary variables for an arbitrary
problem at hand is usually left to the user [9].

In the recast (18), the so-called linear declaration rule [9,17] was
employed: each auxiliary algebraic equation introduces one new aux-
iliary variable and may only depend on other auxiliary variables that
were introduced in the equations above it. This ensures that the partial
derivative of the auxiliary Eqs. (18c), (18d) with respect to 𝐳 has
a lower triangular structure with ones on the diagonal, making it
invertible [15, Section 4.3], [9].

2.4.3. Floquet–Hill stability computation
As introduced above, consider a dynamical system of the form (1)

that was recast into the following quadratic DAE formalism:

�̇� = 𝐟𝑏(𝐱, 𝐳) + 𝐠𝑏(𝑡) (19a)

𝟎 = 𝐟𝑎(𝐱, 𝐳) + 𝐠𝑎(𝑡) , (19b)

where 𝐟𝑏, 𝐟𝑎 are at most quadratic functions in (𝐱, 𝐳), by the introduction
of new auxiliary variables 𝐳 ∈ R𝑛𝑎 [14]. In particular, polynomial
dynamics of arbitrary degree can be treated in a structured fashion
that is illustrated exemplarily in the previous section.2 To differentiate
this classical procedure from the one introduced in Section 3, these
recasting procedures that result in additional algebraic equations will
be called algebraic quadratic recast in the following.

To find periodic solutions of (1), the HBM is applied to the 𝑛 = 𝑛𝑏+𝑛𝑎
differential algebraic Eqs. (19) to arrive at a set of 𝑛(2𝑁 + 1) quadratic
algebraic equations of the form (5), that can be written as

𝜔𝐃𝐗 = 𝐅𝑏(𝐗,𝐙) (20a)

𝟎 = 𝐅𝑎(𝐗,𝐙), (20b)

where 𝜔 is the frequency of the Fourier series, 𝐃 is a constant ma-
trix corresponding to the time-differentiation operation, (𝐅𝑏,𝐅𝑎) are
two quadratic functions and (𝐗,𝐙) gather the Fourier coefficients of
(𝐱(𝑡), 𝐳(𝑡)). The Fourier coefficients of the quadratic nonlinearity of (19)
can be computed explicitly [14, Appendix A], so (𝐃,𝐅𝑏,𝐅𝑎) can be
assembled directly and no alternating frequency–time scheme is nec-
essary in the ANM–HBM approach.

The fact that (19) is a DAE incurs some additional steps in the
stability computation as the classical Floquet theory only holds for
ODEs. A possible approach for the stability computation is to go back
from the DAE to the underlying ODE (1) and assemble the Hill ma-
trix entry by entry [10]. This is possible as, by the implicit function
theorem, there is an implicit relationship 𝐳(𝑡) = 𝐳(𝐱(𝑡), 𝑡) given by 𝐟𝑎 if
𝜕𝐟𝑎∕𝜕𝐳 is invertible, relating 𝐟𝑏 and the original ODE (1) by substitution.
The invertibility can for instance be ensured by the linear declaration
rule, cf. Section 2.4.2. However, it also works in other more complex
cases for which 𝐟𝑎(𝐱, 𝐳, 𝑡) is a general quadratic function, in the case of
regularized friction laws for instance [40,41].

This substitution can also be carried out directly in the frequency
domain [9], yielding the Hill matrix as a function of the Jacobians of
the HBM algebraic system (20) computed at the periodic solution 𝐱p(𝑡).
Equation (20b) implicitly defines 𝐙 = 𝐙(𝐗) and its partial derivative

𝜕𝐙(𝐗)
𝜕𝐗

= −
(

𝜕𝐅𝑎
𝜕𝐙

)−1 𝜕𝐅𝑎
𝜕𝐗

, (21)

enabling the computation of the Hill matrix:

𝐇 ≈ 𝜕
𝜕𝐗

𝐅𝑏(𝐗,𝐙(𝐗)) − 𝜔𝐃

=
𝜕𝐅𝑏
𝜕𝐗

−
𝜕𝐅𝑏
𝜕𝐙

(

𝜕𝐅𝑎
𝜕𝐙

)−1 𝜕𝐅𝑎
𝜕𝐗

− 𝜔𝐃. (22)

2 For general transcendental nonlinearities, it is sometimes necessary to
express (19) in a differentiated format, explicitly treating the initial conditions
of the constraints [17]. This algebraic quadratic recast in differentiated form is
not considered in this work as it is not necessary for polynomial nonlinearities.
5 
Fig. 2. Hill matrix of order 𝑁 = 20 and truncation effects for the algebraically recast
Duffing oscillator (18) with 𝜔 = 1.35, 𝛼 = 1, 𝐹 = 3, 𝜀 = 0.25.

If the linear declaration rule is observed, the Jacobian 𝜕𝐅𝑎∕𝜕𝐙 is lower
triangular and invertible as well. Consequently, after the periodic solu-
tion (𝐗p,𝐙p) is found using HBM, the Hill matrix can be computed using
the above condensation operation in order to compute the stability,
as explained in [9,10] and Section 2.2. As an example, Fig. 2(a)
shows the norm of each block entry of 𝐇 for a Hill matrix of the
quintic Duffing example of Section 2.4.2, computed using the algebraic
quadratic recast (18) and the condensation operation (22) with the
parameters 𝜔 = 1.35, 𝛼 = 1, 𝐹 = 3, and 𝜀 = 0.25. The banded block
Toeplitz structure that is expected from the Hill matrix appears to be
visible: Entries that lie on the same diagonal have approximately the
same norm, which decays towards the corners.3

However, a closer inspection reveals that the condensation opera-
tion (22) in the frequency domain causes truncation effects towards the
edges of the Hill matrix that deteriorate the block Toeplitz structure.
For the Hill matrix, all blocks 𝐇𝑗+𝑙,𝑘+𝑙 that lie on the same diagonal are
expected to have the identical value 𝐉𝑗−𝑘, cf. Section 2.2. For every
block diagonal, we take the most centered block as reference 𝐉𝑗−𝑘.
Fig. 2(b) shows the relative difference between these reference blocks
and other blocks on the same diagonal, expected to have the identical
value. Towards the outer edges of the matrix, this error is significant,
up to almost 30%. A possible explanation is due to truncation effects
in the algebraic auxiliary variables. Any function 𝐱(𝑡) parameterized

3 Along the main diagonal, there are additional terms of the form i𝑘𝜔,
which are expected to vary. The Hill matrix is thus not block Toeplitz in the
strict sense, however in the present section we are mainly interested in effects
that concern the off-diagonal components of 𝐇 and use the wording ‘‘block
Toeplitz’’ accordingly.
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by its Fourier coefficients 𝐗 is implicitly assumed to have bandwidth
, i.e., frequency components outside the truncation order 𝑁 are

ssumed to be zero. However, this is not necessarily also the case for
he signal 𝐳(𝐱(𝑡), 𝑡) implicitly defined by the relationship between base
nd auxiliary variables. The frequency components of 𝐳(𝐱(𝑡), 𝑡) outside
he admissible range are not reflected in 𝐙(𝐗), potentially leading to

the truncation effects in (22).
In the symmetry-based stability approach of [9,10] that is classically

employed in the ANM, the Floquet exponents are determined as those
eigenvalues of 𝐇 with the most symmetrical eigenvectors, which are
usually characterized by large values in the center and small values to-
wards the edges [10]. For this reason, they are not significantly affected
by the deterioration of the Toeplitz structure, which mainly impacts
the outermost columns of the computed Hill matrix, cf. Fig. 2(b). In
contrast, the matrix exponential of the Koopman–Hill stability method
involves all rows of the Hill matrix equally, making it more sensitive
to effects that deteriorate the expected block Toeplitz structure.

3. Differential quadratic recast for polynomial dynamics

As detailed in the previous sections, the Hill matrix for a system
in DAE form produced by the algebraic quadratic recast suffers from
truncation effects, impacting the accuracy of the Koopman–Hill projec-
tion method. To avoid the condensation step (22), a quadratic recast
procedure which results in an ordinary differential equation without
any additional algebraic equations is sought.

The so-called exact quadratization (EQ) problem has been treated
in the literature for polynomials [45] and also for larger system
classes [46,47]. In contrast to the algebraic recast, the auxiliary equa-
tions are defined in differentiated form, yielding a set of ODEs, together
with constraints on their initial conditions. This is sufficient for numer-
ical forward integration in time, when the extended state is constrained
by the initial condition to a physically meaningful manifold. In the
ANM–HBM continuation procedure, however, initial conditions are
only implicitly determined by the unknown Fourier coefficients with
no guarantee on satisfying any additional constraints. It is there-
fore necessary to enforce physical meaning for all solutions that can
be admitted by the ANM–HBM procedure. This could be dealt with
similarly as non-polynomial nonlinearities are treated in [4,17]: for
each auxiliary variable, one of its HBM equations is replaced by its
corresponding initial condition. Similarly as with the algebraic recast
above, additional steps would then be necessary to reconstruct the
correct Hill matrix from the Jacobian of these modified HBM equations,
adding computational effort and limiting interpretability.

Alternatively, the auxiliary states could be designed in such a fash-
ion that solutions retain desirable properties even outside the physically
meaningful manifold. In [48], a dissipativity-preserving quadratization
s proposed which retains the stability properties of equilibria of the
riginal dynamics even outside the physically meaningful manifold.
ith a similar aim but for arbitrary stationary solutions, we propose a

ifferential quadratic recast procedure for polynomial dynamics based on
Baumgarte-like stabilization that arrives at a larger ODE (like the EQ
ould), adding only differential auxiliary equations instead of algebraic
nes. The proposed differential recast guarantees that there do not
xist any spurious stationary solutions for arbitrary initial conditions
nd ensures that all solutions converge to the physically meaningful
anifold. This leaves ANM–HBM applicability unchanged while also
irectly making the Hill matrix and Floquet theory applicable without
ny prior inversions or substitutions. In many practical cases (for ex-
mple mechanical systems with linear kinematics and nonlinearities of
egree less than five), the resulting number of unknowns and, thus, the
omputational effort of the HBM with ANM will be identical between

lgebraic and differential recast. c

6 
3.1. Example 1b: Differential quadratic recast of a quintic nonlinear oscil-
lator

Before treating general polynomial nonlinearities, we revisit the
nonlinear Duffing-type oscillator with polynomial stiffness of degree
5 (17) of Section 2.4.2. The differential quadratic recast strives to
arrive at a system of purely differential equations without algebraic
constraints which resembles the DAE (18) as much as possible. To
soften the algebraic conditions (18c), (18d), an error 𝒆 ∶=

(

𝑒1, 𝑒2
) T with

1 = 𝑧1 − 𝑥21 (23a)

2 = 𝑧2 − 𝑥31 (23b)

s a function of (𝐱, 𝐳) is introduced. Algebraically requiring 𝒆 = 𝟎, we re-
over identically the algebraic recast (18). For the differential quadratic
ecast, we instead set up globally asymptotically stable error dynamics

̇ = −𝑘𝒆 , (24)

nspired by the Baumgarte stabilization approach for the numerical
ntegration of DAEs [49]. The linear ODE (24) is decoupled from the
ystem dynamics and its unique stationary solution is 𝒆 ≡ 𝟎. Expressing
and �̇� again in (𝐱, 𝐳) using (23), we arrive at the equivalent dynamical

ystem

�̇�1 = 𝑥2 (25a)

�̇�2 = −𝑥1 − 𝜀𝑥2 − 𝛼𝑧1𝑧2 + 𝐹 cos𝜔𝑡 (25b)

�̇�1 = �̇�1 + 2𝑥1�̇�1 = 2𝑥1𝑥2 − 𝑘(𝑧1 − 𝑥21) (25c)

�̇�2 = �̇�2 + 3𝑥21�̇�1 = 3𝑥21𝑥2 − 𝑘(𝑧2 − 𝑥31) . (25d)

ystem (25) is an ODE with states (𝐱T, 𝐳T)T, of which any solution
onverges asymptotically to the manifold 𝑧1 = 𝑥21, 𝑧2 = 𝑥31 due to (24),
ndependent of its initial condition. Stationary solutions of (25) are
herefore equivalent to stationary solutions of (17). Still, (25) is not

dynamical system in quadratic form as cubic nonlinearities remain
n the auxiliary equations. However, on the periodic solution of (25),
1 ≡ 0 and thus 𝑧1 ≡ 𝑥21 holds. Intuitively, this allows to also substitute
2
1 by 𝑧1 in (25d), retaining the identical periodic solution and yielding
he modified 𝑧2 dynamics

̇ 2 = 3𝑧1𝑥2 − 𝑘(𝑧2 − 𝑥1𝑧1) . (26)

he differential quadratic recast (25a)–(25c) with (26) indeed only
dmits quadratic nonlinearities. Observe that the linear declaration rule
s still fulfilled: The linearization matrix 𝜕�̇�

𝜕𝐳 is a lower triangular matrix
with −𝑘 on the diagonal.

The choice of 𝑘 > 0 is arbitrary and only weak practical restrictions
apply. For 𝑘 = ∞, the differential quadratic recast becomes equivalent
o the algebraic quadratic recast, but an excessively large choice of 𝑘 re-
ults in a numerically stiff ODE. In contrast, a very small magnitude of 𝑘
esults in a weak attraction to the manifold. Fig. 3(a) depicts frequency
esponse curves (FRC) for the quintic Duffing oscillator determined
sing the MANLAB toolbox with the differential recast (25a)–(25c)
ith (26) or the algebraic recast (18), with harmonic truncation order
= 20 and varying choices of 𝑘 in the differential recast. For values of
≥ 0.002, the approximation of the FRC is virtually identical between
ifferential and algebraic recast. For a very small value 𝑘 = 0.001, how-
ver, the FRC curve obtained by the differential recast is inaccurate.
his inaccuracy is reflected in the discrepancy between the auxiliary
ariable 𝑧2 and the nonlinear function 𝑥31 that it approximates, visible
n Fig. 3(b), making this discrepancy a suitable error measure that
ould be monitored during the ANM computations. Fig. 3(c) shows the
loquet multipliers at 𝜔 = 1.35 obtained from the different recasts.
he Floquet multipliers of the original problem are represented well
y all recasts except for 𝑘 = 0.001. Additionally, all differential recasts
dmit Floquet multipliers at e−𝑘𝑇 , which is close to zero for 𝑘 = 5 and
lose to one for 𝑘 = 0.001 and 𝑘 = 0.002. In practice, 𝑘 should be
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Fig. 3. Quintic Duffing oscillator computed in MANLAB using algebraic or differential recast with 𝛼 = 1, 𝜀 = 0.05, 𝑁 = 20 and various values for 𝑘. (a) Frequency response curves.
nstable branches are depicted by dashed lines, and stable branches by solid lines. (b) Error between auxiliary variable 𝑧2 and approximated value 𝑥31 for the periodic solution at
= 1.35. (c) Floquet multipliers for the periodic solution at 𝜔 = 1.35.
Fig. 4. Quintic Duffing oscillator computed in MANLAB using algebraic and differential recast with 𝛼 = 1, 𝜀 = 0.05, 𝑘 = 5 and various values for 𝑁 . (a) Frequency response curve
or 𝑁 = 3. Unstable branches are depicted by dashed lines, and stable branches by solid lines. (c) Error between auxiliary variable 𝑧2 and approximated value 𝑥31 for the periodic
olution at 𝜔 = 1.35 with 𝑁 = 3. (b) Frequency response curve for 𝑁 = 7. Unstable branches are depicted by dashed lines, and stable branches by solid lines. (d) Error between
uxiliary variable 𝑧2 and approximated value 𝑥31 for the periodic solution at 𝜔 = 1.35 with 𝑁 = 7.
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hosen depending on the period time 𝑇 such that the resulting Floquet
ultiplier is not close to 1, but 𝑘 should also not be chosen exorbitantly

arge to avoid additional stiffness being introduced into the system.
elow, we fix the value 𝑘 = 5, which is appropriate in this sense.

In Fig. 4, the properties of the differential and algebraic recast are
ompared for various truncation orders 𝑁 . For a very small truncation
rder (𝑁 = 3) shown in Fig. 4(a), both FRCs determined using the
ifferential and the algebraic quadratic recast, respectively, show the
ardening behavior of the Duffing oscillator but are inaccurate. While
he algebraic recast finds the turning point of the main branch at ap-
roximately the right frequency with slightly increased amplitude, the
urning point found by the differential recast is earlier at 𝜔 ≈ 4.5. With
he symmetry-based sorting approach [9] for stability determination,
oth recasting approaches find a spurious Neimark–Sacker bifurcation
 b

7 
t 𝜔 ≈ 2.35 and 𝜔 ≈ 2.7, respectively, which falsely classifies a large
art of the main branch as unstable. This is not due to the recast, but
ather due to the insufficient approximation order in the HBM. Both
pproaches do find symmetry-breaking bifurcations around 𝜔 = 1 and
llow to track asymmetric branches, however both the differential and
he algebraic recast with 𝑁 = 3 show significant discrepancies with the
eference solution 𝑁 = 20. The error between the auxiliary variable 𝑧2
nd its expected value 𝑥31, shown in Fig. 4(c) is of the order 10−1 for
oth approaches, reflecting the insufficient accuracy.

In contrast, with truncation order 𝑁 = 7, both approaches trace
he main branch perfectly as shown in Fig. 4(b), with correct stability
ssertions. The asymmetric branches at 𝜔 ≈ 1 are not tracked per-
ectly at this truncation order by any of the two approaches, but the
ranches determined by the two approaches overlap almost completely.
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This shows that both recasting approaches are not mathematically
equivalent, but have very similar convergence behavior.

3.2. General polynomial recast

In the above example, the introduction of auxiliary variables with
globally asymptotically stable error dynamics allowed to reduce the
degree of the polynomial nonlinearity, yielding a quadratic ODE. This
idea can be generalized to arbitrary polynomial nonlinearities.

Below, we use multi-indices 𝜷 ∈ N𝑛𝑏 with a norm |𝜷| ∶=
∑𝑛𝑏

𝑖=1 𝛽𝑖,
llowing to concisely write scalar monomials 𝐱𝜷 ∶=

∏𝑛𝑏
𝑖=1 𝑥

𝛽𝑖
𝑖 of degree

𝜷|. The monomial 𝐱𝜷 is scalar, while both its operands 𝐱, 𝜷 are
vector-valued quantities. The 𝑖th unit vector 𝐞𝑖 can be regarded as a
multi-index with norm 1 and 𝐱𝐞𝑖 = 𝑥𝑖.

Consider an arbitrary dynamical system in polynomial form

�̇� = 𝐟 (𝐱, 𝑡) = 𝐀𝐱 +
∑

2≤|𝜷|≤𝑚
𝐡𝜷𝐱𝜷 + 𝐠(𝑡) (27)

with state 𝐱 ∈ R𝑛𝑏 , possibly time-dependent (or constant) 𝑇 -periodic
omponents 𝐠(𝑡), a linearization matrix 𝐀 and coefficients 𝐡𝜷 for poly-
omial nonlinearities up to degree 𝑚. In the spirit of (23), we introduce
or every considered monomial 𝐱𝜷 of degree 2 or more the auxiliary
tate 𝑧𝜷 and the corresponding error 𝑒𝜷 by

𝜷 ∶= 𝑧𝜷 − 𝐱𝜷 2 ≤ |𝜷| ≤ 𝑚 . (28)

The vectors 𝒆, 𝐳 collect these auxiliary states and errors and are ordered
via 𝒆T =

(

𝑒𝜷(1) ,… , 𝑒𝜷(𝑛𝑎 )
)

T in ascending order of |𝜷|. The vector
f error coordinates 𝒆 must not be confused with a unit vector 𝐞𝑖.
onstructed in this fashion, 𝒆 and 𝐳 have a potentially very large

ength 𝑛𝑎 ∶=
(𝑚+𝑛𝑏

𝑛𝑏

)

− (𝑛𝑏 + 1), however, Section 3.3 details a procedure
to reduce the number of auxiliary equations for many practical cases.
For each auxiliary state, we set up identical error dynamics �̇�𝜷 = −𝑘𝑒𝜷 ,
𝑘 > 0, which, substituted into (28), yields the dynamics

̇ 𝜷 = d
d𝑡

(

𝑒𝜷 + 𝐱𝜷
)

= −𝑘(𝑧𝜷 − 𝐱𝜷 ) +
𝑛𝑏
∑

𝑗=1
𝛽𝑗𝐱𝜷−𝐞𝑗𝑓𝑗 (𝐱, 𝑡), 2 ≤ |𝜷| ≤ 𝑚 . (29)

Solutions of the coupled dynamics (27), (29) converge asymptotically
towards 𝑒𝜷 = 0 or, equivalently, 𝑧𝜷 = 𝐱𝜷 for all considered 𝜷. The
manifold 𝒆 ≡ 𝟎, or, equivalently, 𝑧𝜷 = 𝐱𝜷 for all 𝜷, is invariant and
globally asymptotically stable.

To arrive at a quadratic differential equation, higher-degree mono-
mials of 𝐱 in (27) and (29) are replaced by their corresponding auxiliary
state 𝑧𝜷 . The auxiliary dynamics (29) contains products of the form
𝐱𝜷−𝐞𝑗𝑓𝑗 (𝐱, 𝑡) which can only be put in quadratic form if both factors
are linear. Linearity of the first factor is immediately given through
substitution of 𝐱𝜷−𝐞𝑗 with 𝑧𝜷−𝐞𝑗 . To ensure linearity of the second factor,
i.e., the original dynamics, each monomial term of the form 𝐱𝜷 in (27)
is replaced by its corresponding auxiliary state 𝑧𝜷 .

The only other potentially higher-degree monomial term that occurs
in (29) is 𝐱𝜷 . For |𝜷| = 2, this is a quadratic term and no substitutions
are needed. For |𝜷| > 2, the monomial can be split into the product
𝐱𝜷 = 𝑥𝑙 𝐱𝜷−𝐞𝑙 for 𝑙 ∈

{

1,… , 𝑛𝑏
}

such that 𝜷 − 𝐞𝑙 is a multi-index of norm
|𝜷|−1. The chosen index 𝑙 does not influence approximation behavior.
Then, 𝐱𝜷−𝐞𝑙 can be substituted by the corresponding auxiliary variable
𝑧𝜷−𝐞𝑙 . In summary, the substitution of all higher-degree monomials by
their corresponding auxiliary variables yields

�̇� = 𝐟 (𝐱, 𝐳, 𝑡) ∶= 𝐀𝐱 +
∑

2≤|𝜷|≤𝑚
𝐡𝜷𝑧𝜷 + 𝐠(𝑡) (30a)

̇ 𝜷 = −𝑘(𝑧𝜷 − 𝐱𝜷 ) +
𝑛𝑏
∑

𝑗=1
𝛽𝑗𝐱𝜷−𝐞𝑗𝑓𝑗 (𝐱, 𝐳, 𝑡), |𝜷| = 2 (30b)

̇ 𝜷 = −𝑘(𝑧𝜷 − 𝑥𝑙𝑧𝜷−𝐞𝑙 ) +
𝑛𝑏
∑

𝛽𝑗𝑧𝜷−𝐞𝑗𝑓𝑗 (𝐱, 𝐳, 𝑡), 3 ≤ |𝜷| ≤ 𝑚. (30c)

𝑗=1
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All summands of (30) are at most quadratic in (𝐱, 𝐳), making this
a quadratic ordinary differential equation that can be treated using
ANM. The transient dynamics of the original system (27) and the
DAE (19) resulting from an algebraic recast are equivalent [14]. Due
to the substitutions, this is not true for the transient dynamics of
the differential recast (30), which will generally differ while the error
dynamically converges to zero. However, as the manifold characterized
by 𝐳𝜷 = 𝐱𝜷 for all 𝜷 is invariant, and the error is asymptotically
autonomous, stationary solutions of (30) always coincide with those
of (27). Intuitively, this is due to the lower triangular structure of (30c),
which ensures that the error dynamics of each monomial degree decou-
ples from higher degrees and has zero as its only stationary solution. All
auxiliary Eqs. (30b), (30c) hence produce additional Floquet exponents
at −𝑘. A full proof of these statements is detailed in Appendix A.

Using the error 𝒆 to stabilize the dynamics off the physically mean-
ingful manifold is an approach that was also recently proposed in [48].
While the construction of [48] does not require the original dynamics to
be linear in the auxiliary variables, leading to fewer auxiliary equations
than the approach presented here, it requires an iterative procedure
that involves checking the stability of the complete extended system
at each iteration to come up with a stability-preserving quadratization.
This makes the approach of [48] unsuitable for the application inside
the ANM–HBM framework, where this stability computation is already
the bottleneck and further stability computation steps would lead to an
excessive amount of computational effort.

3.3. Reduction of auxiliary variables

The differential recast procedure of Section 3.2 yields a system
of quadratic ordinary differential equations for arbitrary polynomial
dynamics. However, this recast in its general form (30) relies on intro-
ducing auxiliary variables for every monomial between degree 2 and
the maximum polynomial degree 𝑚 of the original dynamics. The max-
imum number of auxiliary variables in the most general form is 𝑛𝑎 =
(𝑚+𝑛𝑏

𝑛𝑏

)

−(𝑛𝑏+1), which increases with 𝑚! and is therefore prohibitive to
the applicability of the approach for polynomial nonlinearities of large
degree.

Usually in practice, not all states are nonlinearly coupled to each
other, so many of the factors 𝐡𝜷 vanish. To reduce the number of
auxiliary states, it is only necessary to construct 𝑧𝜷 for such 𝜷 where 𝐡𝜷
does not vanish. Additionally, to guarantee that (30c) is well-defined,
auxiliary states 𝑧𝜷−𝐞𝑗 must be kept as long as 𝜷 − 𝐞𝑗 is a multi-index of
norm 2 or higher to be able to evaluate the sum expression in (30c).

Further reduction is possible for mechanical systems of the form

�̇� = 𝐮 (31a)

𝐌�̇� + 𝐃𝐮 +𝐊𝐪 +
∑

|𝜸|=2
𝐧𝜸𝐮𝜸 +

∑

2≤|𝜷|≤𝑚
𝐡𝜷𝐪𝜷 = 𝐠(𝑡) , (31b)

where 𝐪 ∈ R
𝑛𝑏
2 is a set of minimal position-level coordinates and 𝐮

the corresponding minimal velocities and 𝐌,𝐃,𝐊 are constant matri-
ces. Nonlinearities on the velocity level appear at most quadratically,
and nonlinearities on position level can be polynomial of arbitrary
degree. This system class allows to study many problems of interest
in structural dynamics, such as vibrations of geometrically nonlinear
elastic structures, for which the stiffness nonlinearities are polynomials
at most cubic, or reduced dynamics of those structures using invariant
manifolds, for which the nonlinearities are polynomial at an arbitrary
order [42,50,51]. The quintic Duffing oscillator of Section 3.1 is also
of this system class.

The nonlinearities in 𝐮 are already quadratic, so auxiliary variables
are only needed for monomials on position level 𝐪. In (30c), products
of auxiliary variables 𝑧𝜷−𝐞𝑗 with the corresponding state dynamics 𝑓𝑗
occur, necessitating the linearity of (30a) to ensure that the resulting
product is at most quadratic. As the kinematic equation (31a) is linear
already before the recast, (30c) will be at most quadratic for any
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𝑧𝜷 approximating position-dependent terms only, irrespective of the
nonlinearities in the kinetic Eqs. (31b). This alleviates the necessity to
bring (31b) into linear form; a quadratic form is sufficient.

The differential quadratic recast then admits the form

�̇� = 𝐮 (32a)

�̇� = −𝐃𝐮 −𝐊𝐪 −
∑

|𝜸|=2
𝐧𝜸𝐮𝜸 −

∑

2≤|𝜷|≤
⌈

𝑚
2 ⌉

2≤|𝝃|≤
⌊

𝑚
2 ⌋

𝐡(𝜷+𝝃) 𝑧𝜷𝑧𝝃 + 𝐠(𝑡) (32b)

�̇�𝜷 = −𝑘(𝑧𝜷 − 𝐪𝜷 ) +

𝑛𝑏
2
∑

𝑗=1
𝛽𝑗𝑢𝑗𝐪𝜷−𝐞𝑗 , |𝜷| = 2 (32c)

�̇�𝜷 = −𝑘(𝑧𝜷 − 𝑞𝑙𝑧𝜷−𝐞𝑙 ) +

𝑛𝑏
2
∑

𝑗=1
𝛽𝑗𝑢𝑗𝑧𝜷−𝐞𝑗 , 3 ≤ |𝜷| ≤

⌈𝑚
2

⌉

. (32d)

s above, 𝑙 is chosen for every considered 𝜷 such that 𝜷 − 𝐞𝑙 is a multi-
ndex of degree 2 or more. In particular, the auxiliary variables only
ncode monomials up to degree

⌈

𝑚
2

⌉

. Due to the nonlinear increase
f monomials per degree, this greatly reduces the number of auxiliary
ariables. In many low-degree cases, such as cubic and quartic mono-
ials or monomials of only one variable up to degree 7, this differential

ecast admits the same number of auxiliary variables as needed for
he algebraic recast. This is in particular also the case for the slender
eometrically nonlinear beam examples of Section 5.

. The Hill matrix for real-valued Fourier series

Both real-valued and complex-valued Fourier series may be em-
loyed in the HBM and yield complex and real representations of the
ill matrix, respectively. The classical Hill determinant interpretation
f Section 2.2 as an eigenvalue problem for the Floquet form (10) with
omplex-valued Fourier series is well-known [6,10,11,18,22]. Also,
he Koopman–Hill projection method (cf. Section 2.3) has until now
nly been developed and proven for this Hill matrix in complex form.
owever, for practical reasons, the harmonic balance method is of-

en implemented in its real-valued form, as it is for example also in
he MANLAB framework. Therefore, one either needs to re-derive all
requency-based stability methods for the real-valued case (for instance,
n expression for a real-valued Hill matrix was given in [11]), or use
ransformations between the real- and complex-valued representations.

The first option, re-deriving the theory, has (partially) been done [9,
1] for the Hill matrix, but the necessary algebraic calculation steps as
ell as the resulting matrix are significantly more involved and error-
rone than in the classical complex-valued case due to cumbersome
rigonometric identities. Additionally, the more complicated matrix
tructure in the real-valued case limits the interpretability of the results.
n explicit variant of the Koopman–Hill projection algorithm with a
eal-valued lift has not yet been addressed in the literature.

In this work, we will take the other path and re-derive a general-
zed view of the Hill matrix as the derivative of the HBM equations,
ndependent of the chosen Fourier basis. This view is well-known in
he literature [9,40], but the specific generalized proof below is novel
o the knowledge of the authors. This generalized view immediately
rovides linear transformations between equivalent Hill matrices for
ifferent Fourier bases, allowing to switch easily, quickly, and robustly
etween real and complex basis formulations. We will then use this
nified view to generalize the Koopman–Hill projection approach to
rbitrary real-valued Hill matrix formulations in Section 4.3, making it
mmediately available in real-valued HBM settings.

.1. The Hill matrix as Jacobian of the HBM

In this section we will introduce a generalization of the classical
rocedure [10,11,18] to arrive at Hill’s eigenvalue problem, assum-

ng as little structure of the Fourier basis functions as possible. As 𝐔
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introduced in Section 2.1, we consider a matrix 𝐔(𝑡) = 𝐮(𝑡) ⊗ 𝐈𝑛×𝑛 ∈
𝑛(2𝑁+1)×𝑛 where 𝐮 is a column vector of length 2𝑁 + 1 that collects a

et of orthonormal Fourier basis functions up to order 𝑁 , e.g. functions
f the form e𝑖𝑘𝜔𝑡 or cos 𝑘𝜔𝑡. Two exemplary choices for 𝐔 are given
n Appendix B. The Kronecker product ensures that 𝐔 provides the
orresponding Fourier basis for 𝑛-dimensional space such that for a
eriodic signal 𝐱(𝑡) ∈ R𝑛 of finite bandwidth 𝑁 with Fourier coefficients
∈ C𝑛(2𝑁+1), the Fourier synthesis equation

(𝑡) =
∑

𝑘
𝑢𝑘(𝑡)𝐗𝑘 = 𝐔(𝑡)T𝐗 (33)

olds. The Fourier analysis equation, i.e., the equation to determine
he Fourier coefficients given a function 𝐱(𝑡), is classically expressed in
erms of an inner product involving the complex conjugate. However,
or this work it is imperative to express the Fourier analysis explicitly
s the integral

= 𝑁 (𝐱) ∶= 1
𝑇 ∫

𝑇

0
𝐔∗(𝑡)𝐱(𝑡)d𝑡 (34)

here 𝐔∗ ∈ C𝑛(2𝑁+1)×𝑛 with 1
𝑇 ∫ 𝑇

0 𝐔∗(𝑡)𝐔(𝑡)Td𝑡 = 𝐈 is chosen such
hat it reflects this conjugation process [52]. The Fourier analysis
quation (34) is not restricted to vector-valued functions 𝐱(𝑡) ∈ C𝑛. It
ay also be applied to matrix-valued functions in C𝑛×𝑚 for arbitrary 𝑚.
ppendix B lists explicit formulations of 𝐔 and 𝐔∗ in common complex
nd real cases. By definition, the matrix 𝐔 is 𝑇 -periodic with 𝑇 = 2𝜋

𝜔
and has a derivative
d𝐔(𝑡)T
d𝑡

= 𝐔(𝑡)T 𝜔𝐃 , (35)

here 𝐃 is a sparse, constant, and not necessarily symmetric matrix
hat is known a priori and only depends on the choice of 𝐔. Examples
or 𝐃 are also given in Appendix B.

As introduced in Section 2.1, the HBM equations are defined by
he Fourier coefficients up to order 𝑁 of the dynamic residual of (1).
xpressing 𝐱(𝑡) = 𝐔(𝑡)T𝐗 and �̇�(𝑡) = d

d𝑡

(

𝐔(𝑡)T𝐗
)

= 𝐔(𝑡)T𝜔𝐃𝐗, we can
rite this residual as

(𝐗) = 𝑁 (𝐟 (𝐱, 𝑡) − �̇�)

= 1
𝑇 ∫

𝑇

0
𝐔∗ (𝐟 (𝐔T𝐗, 𝑡) − 𝐔T𝜔𝐃𝐗

)

d𝑡 (36)

where dependencies on 𝑡 were omitted for the sake of brevity. Con-
sequently, the Jacobian of the HBM equations is given by the partial
derivative of (36)

𝐇 ∶= 𝜕𝐑
𝜕𝐗

= − 1
𝑇∫

𝑇

0
𝐔∗𝐔Td𝑡 𝜔𝐃 + 1

𝑇∫

𝑇

0
𝐔∗ 𝜕𝐟

𝜕𝐱
|

|

|

|𝐔T𝐗
𝐔Td𝑡

= −𝜔𝐃 + 𝑁 (𝐉(𝑡)𝐔T) (37)

ith 𝐉(𝑡) = 𝜕𝐟 (𝐱,𝑡)
𝜕𝐱

|

|

|𝐔T𝐗
, cf. (6). The partial derivative (37) will be called

preemptively as we will show below that it is indeed the expected
ill matrix.

We will now proceed analogously to [10] in this generalized form
o show that the matrix 𝐇 is indeed the finite truncation of the infinite
ill eigenvalue problem. Consider a Floquet form solution (10) with
loquet exponent 𝛼. Its periodic component has a truncated Fourier
eries representation 𝐩(𝑡) = 𝐔(𝑡)T𝐏 with 𝐏 ∈ C𝑛(2𝑁+1) being the vector of
ts Fourier coefficients. We can express the Floquet form solution and
ts derivative by

(𝑡) = 𝐔(𝑡)T𝐏e𝛼𝑡 (38)

̇ (𝑡) = 𝐔(𝑡)T (𝜔𝐃 + 𝛼𝐈)𝐏e𝛼𝑡 . (39)

he approximation due to truncation already happens at this step. With
hese ingredients, the perturbation equation (6) can be expressed in
erms of the truncated Fourier coefficients

T 𝛼𝑡 T 𝛼𝑡
(𝑡) (𝜔𝐃 + 𝛼𝐈)𝐏e = 𝐉(𝑡)𝐔(𝑡) 𝐏e . (40)
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The classical truncated Hill matrix equates the 2𝑁 + 1 most centered
ourier coefficients of the periodic components of (40), which gives

1
𝑇 ∫

𝑇

0
𝐔∗𝐔T (𝜔𝐃 + 𝛼𝐈)𝐏 d𝑡 = 1

𝑇 ∫

𝑇

0
𝐔∗𝐉(𝑡)𝐔T𝐏 d𝑡 (41)

or, after elimination of identity matrices and shifting 𝜔𝐃 to the other
side of the equation,

𝛼𝐏 =
(

−𝜔𝐃 +  (𝐉(𝑡)𝐔T)
)

𝐏 = 𝐇𝐏 . (42)

This is an eigenvalue problem for 𝛼,𝐏,𝐇. In the limit 𝑁 → ∞, we
recognize the classical eigenvalue problem of the Floquet forms of
Section 2.2. This proves that the Jacobian matrix of the HBM equations
𝐇 indeed results from the classical Hill determinant procedure after
truncation, justifying the name and symbol choice for 𝐇.

4.2. Transformation between formulations

As the Hill matrices determined from different Fourier series or-
derings all have the same spectrum 𝛼1,… , 𝛼𝑛, they must be related by
similarity transform. Consider two matrices of Fourier basis functions
𝐔(𝑡), �̃�(𝑡) related by a constant transformation matrix �̃�(𝑡) = 𝐓 T 𝐔(𝑡).
The transformation matrix is introduced in a transposed form as 𝐔(𝑡)T is
considered in the relevant applications. For example, 𝐔(𝑡) could be the
set of complex-valued Fourier basis functions and �̃� a set of real-valued
ones. For this case, all matrices are given explicitly in Appendix B.3.
With

𝐱(𝑡) = 𝐔(𝑡)T𝐗 =
(

𝐓−T�̃�(𝑡)
) T𝐗

= �̃�(𝑡)T
(

𝐓−1𝐗
)

= �̃�(𝑡)T�̃� (43)

we can infer the inverse transposed relationship for the Fourier coeffi-
cients �̃� = 𝐓−1𝐗. Although not generally true, the matrix 𝐓 may in prac-
tice often be orthogonal. In this case, the relationships for Fourier basis
and Fourier coefficients coincide. The relationship between Fourier
coefficients also holds for the HBM residual

�̃�(�̃�) = 𝐓−1𝐑(𝐓�̃�) . (44)

Assuming that the Hill matrix 𝐇 = 𝜕𝐑(𝐗)
𝜕𝐗 in one Fourier basis is known,

the Hill matrix in the other Fourier basis can then be calculated using
the chain rule

�̃� =
𝜕�̃�(�̃�)
𝜕�̃�

= 𝐓−1 𝜕𝐑
𝜕𝐗

𝐓 = 𝐓−1𝐇𝐓 , (45)

onfirming the similarity relationships between the Hill matrices for
ifferent Fourier series representations and providing the transforma-
ion matrix explicitly.

.3. Koopman–Hill projection for the real-valued Hill matrix

With the results of the previous section, the Koopman–Hill projec-
ion stability method extends easily to other Fourier series represen-
ations without needing to repeat the proof of [12] as the similar-
ty transform (45) relates any generalized Hill matrix directly to the
omplex-valued Hill matrix. Denote by 𝐇cplx the classical Hill matrix
btained from the complex-valued Fourier series representation. An
pproximation of the monodromy matrix is given by 𝐂e𝐇cplx𝑇𝐖, as
ntroduced in Section 2.3. Any Hill matrix �̃� of a different Fourier series
epresentation is related to 𝐇cplx by similarity 𝐇cplx = 𝐓�̃�𝐓−1, where 𝐓
nly depends on the relationships between the Fourier bases, so 𝐓 and
−1 can be determined once-and-for-all. This similarity transform can
e substituted into the matrix exponential of the monodromy matrix
stimate (14) to yield

𝑇 ≈ 𝐂𝐓e�̃�𝑇𝐓−1𝐖 . (46)

he matrices �̃� ∶= 𝐂𝐓 and �̃� ∶= 𝐓−1𝐖 are problem-independent and
an also be determined once-and-for-all at the start of computations.
10 
or instance, if the Fourier coefficients are sorted as in Appendix B, the
rojection matrices become

�̃� = 𝐂𝐓 =
(

𝐈 𝟎 … 𝟎
)

(47a)
̃ =

(

𝐈 2𝐈 … 2𝐈 𝟎 … 𝟎
)

(47b)

ith �̃� being constructed from 𝑁 repeating blocks each reading 2𝐈
nd 𝟎, respectively. This makes the Koopman–Hill projection approach
asily applicable to Hill matrices for any Fourier basis with the same
tructural properties as for the classical complex matrix. Numerically,
he cost of evaluating the matrix exponential of a real-valued matrix is
enerally less than a complex-valued one of the same dimension, so the
eal-valued formulation (46), (47a) is more efficient than the classical
omplex-valued form in application.

. Examples

In this section, the computational performance of the Koopman–
ill projection stability method together with the differential quadratic

ecast is illustrated using a reduced-order model (ROM) of a nonlinear
ending beam with hinged-hinged and clamped-clamped boundary
onditions.

We consider two benchmark examples of a nonlinear von Kármán
ending beam that is periodically forced. The beam has a length 𝐿, a
ross-section of constant area 𝐴 and second moment of area 𝐼 , and is
ade of a homogeneous isotropic material with density 𝜌, and Young’s
odulus 𝐸. An Euler–Bernoulli kinematics is considered, the axial

nd rotatory inertia are neglected and the nonlinear strain is modeled
sing the usual von Kármán assumptions [53]. The two situations
ketched in Fig. 5 are considered: a hinged-hinged beam with two point
orces in phase opposition with frequency close to the one of the first
ending resonance, as considered in [9,53,54], and a clamped-clamped
eam with a single point harmonic force in the vicinity of the second
ending resonance, considered in [51,55,56]. Fig. 5 also shows the
orresponding linear mode shapes.

By denoting the transverse displacement field of the beam by 𝑤(𝑥, 𝑡)
t time 𝑡 and location 𝑥 on the middle line, the partial differential
quations of motion read

𝐴𝑤,𝑡𝑡 + 𝐸𝐼𝑤,𝑥𝑥𝑥𝑥 −𝑁𝑤,𝑥𝑥 = 𝑝 , (48a)

= 𝐸𝐴
2𝐿 ∫

𝐿

0
𝑤2

,𝑥 d𝑥 , (48b)

here 𝑁(𝑡) is the axial force independent of 𝑥 that is nonlinearly
reated by the large transverse displacement due to the immovable ends
n the axial direction at 𝑥 = 0 and 𝑥 = 𝐿, and 𝑝(𝑥, 𝑡) is an external force
er unit length.

Considering ℎ to be the thickness of the cross-section and using the
ollowing dimensionless quantities, denoted by an overbar,

̄ = 𝑥
𝐿
, �̄� = 𝑤

ℎ
, 𝑡 = 1

𝐿2

√

𝐸𝐼
𝜌𝐴

𝑡,

�̄� = 𝐿2

ℎ2𝐸𝐴
𝑁, �̄� = 𝐿4

ℎ𝐸𝐼
𝑝 (49)

ields the dimensionless von Kármán PDE

̄ ,𝑡𝑡 + �̄�,�̄��̄��̄��̄� − 𝜖�̄��̄�,�̄��̄� = �̄� , (50a)

̄ = 1
2 ∫

1

0
�̄�2

,�̄� d�̄� , (50b)

with the factor 𝜖 = ℎ2𝐴∕𝐼 that depends only on the geometry of the
cross-section. In the case of a rectangular shape, considered in the
following, 𝜖 = 12. It is convenient to define the radius of gyration of the
cross section 𝑟 =

√

𝐼∕𝐴, which is 𝑟 = ℎ∕
√

12 in the case of a rectangular
cross-section.

Using the modal expansion

�̄�(�̄�, 𝑡) =
𝐾
∑

𝑞𝑗 (𝑡)𝜙𝑗 (�̄�) , (51)

𝑗=1
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Fig. 5. Illustration of beam configurations and their linear modes.
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where 𝜙𝑗 is the 𝑗th eigenmode shape of the beam, normalized such that
∫ 1
0 𝜙2

𝑗 (�̄�) d�̄� = 1 ∀𝑗, the nonlinear PDE (50) can be approximated by the
problem [54,56]

𝑞𝑗 + 2𝜉𝑗𝜔𝑗 �̇�𝑗 + 𝜔2
𝑗 𝑞𝑗 + 𝜖�̄�

𝐾
∑

𝑖=1
ℎ𝑖𝑗 𝑞𝑖 = 𝑄𝑗 , 𝑗 = 1,… , 𝐾 (52a)

�̄� = 1
2

𝐾
∑

𝑖=1

𝐾
∑

𝑗=1
ℎ𝑖𝑗 𝑞𝑖𝑞𝑗 , (52b)

here a linear modal viscous damping term with damping factor 𝜉𝑗 has
een introduced. The factors ℎ𝑖𝑗 and the modal forcing 𝑄𝑗 (𝑡) are given
y

𝑖𝑗 = ∫

1

0
𝜙′
𝑖(�̄�)𝜙

′
𝑗 (�̄�)d�̄�, 𝑄𝑗 (𝑡) = ∫

1

0
𝜙𝑗 (�̄�)�̄�(�̄�, 𝑡)d�̄� (53)

fter projection onto the modal expansion.

.1. Hinged-hinged von Kármán beam

For the hinged-hinged boundary conditions, the 𝑗th dimensionless
igenfrequency, normalized eigenmode shape and nonlinear coefficient
𝑖𝑗 are given in closed form by

𝑗 = 𝜋2𝑗2, 𝜙𝑗 (𝑥) =
√

2 sin(𝑗𝜋𝑥) (54a)

𝑗𝑗 = 𝜔𝑗 , ℎ𝑖𝑗 = 0, ∀𝑖 ≠ 𝑗. (54b)

The system (52) is already in the form of a DAE with algebraic
uadratic nonlinearities and is also in the form (31), which permits an
fficient differential quadratic recast with auxiliary variable 𝑧 = 2�̄� .
he beam is driven by two harmonic point forces 𝑃1(𝑡) and 𝑃2(𝑡) in
hase opposition, applied at �̄�1 = 0.25 and �̄�2 = 0.75, respectively. This
eads to

�̄�(�̄�, 𝑡) = 𝑃1(𝑡)𝛿(�̄� − �̄�1) + 𝑃2(𝑡)𝛿(�̄� − �̄�2) , (55)

uch that 𝑄𝑗 (𝑡) = 𝑃1(𝑡)𝜙𝑗 (�̄�1) + 𝑃2(𝑡)𝜙𝑗 (�̄�2), where 𝑃1, 𝑃2 are the dimen-
ionless forces.

To obtain the differential recast, we introduce an error 𝑒 = 𝑧 −
𝐾
𝑗=1 𝜔𝑗𝑞2𝑖 for the corresponding equation (52b). With the postulated

rror dynamics �̇� = −𝑘𝑒, 𝑘 > 0, and with the value of ℎ𝑖𝑗 of Eq. (54b),
he differential quadratic recast becomes

�̇�𝑗 = 𝑢𝑗 , 𝑗 = 1,… , 𝐾 (56a)

̇ 𝑗 = −2𝜉𝑗𝜔𝑗𝑢𝑗 − 𝜔2
𝑗 𝑞𝑗 − 6𝜔𝑗𝑧𝑞𝑗 +𝑄𝑗 , 𝑗 = 1,… , 𝐾 (56b)

�̇� = −𝑘

(

𝑧 −
𝐾
∑

𝑗=1
𝜔𝑗𝑞

2
𝑗

)

+ 2
𝐾
∑

𝑗=1
𝜔𝑗𝑞𝑗𝑢𝑗 . (56c)

This system of 𝑛 = 2𝐾 + 1 quadratic ordinary differential equations is
used for the investigations below. With respect to stability, we expect
one additional Floquet exponent at −𝑘 due to the differential recast. A
value of 𝑘 = 50 is chosen in the computations below. The parameters
 v

11 
Fig. 6. Frequency response curve (maximal amplitude of 𝑤(𝑥,𝜏)
𝑟

at 𝑥 = 0.75𝐿) of the
hinged-hinged beam around its first bending resonance computed with 𝐾 = 10, 𝑁 = 16.
Solid lines denote stable, and dashed lines denote unstable branches. Bifurcation points
are labeled 𝐹1,… , 𝐹8.

Table 1
Parameters for the two beam benchmarks of Section 5.
𝜉𝑗 𝑃1(𝑡) 𝑃2(𝑡) 𝑃3(𝑡)

0.005 𝜔1

𝜔𝑗
−13.63 cos𝛺𝑡 9.62 cos𝛺𝑡 18 cos𝛺𝑡

used in this work are given in Table 1, where 𝑃1,2,3(𝑡) are already given
in normalized units.

The frequency response of the hinged-hinged beam with the given
parameters is known to exhibit a 1:3 internal resonance on the first
mode [54,56]. The frequency response diagram obtained using the
differential recast with 𝐾 = 10, 𝐻 = 16 given in Fig. 6 clearly shows
this resonance, agreeing well with the literature results [9,53,54].
Fig. 6 displays the transverse displacement normalized by the radius
of gyration 𝑟 =

√

𝐼
𝑏ℎ instead of the height ℎ to conform in scaling to

the examples in literature.
According to Fig. 6, the frequency response curve experiences fold

bifurcations at 𝐹1, 𝐹2, 𝐹5, 𝐹6, 𝐹7, 𝐹8 and Neimark–Sacker bifurcations
t 𝐹3, 𝐹4. This leads to bistable and even tristable regions.

Fig. 7 compares the computational effort and accuracy for the
tability computation for the parameters of Fig. 6, but with different
ill matrix truncation orders and stability approaches. As the FRC of
ig. 6 folds on itself, every point on the branch is uniquely addressed by
ts arclength value instead of its frequency 𝛺 in Fig. 7. The arclengths
f the bifurcation points 𝐹1,… , 𝐹8 are given as reference.

For every sample point on the FRC branch, Fig. 7(a) shows the
inimal root mean square error (RMSE) between Floquet multipliers

FMs) computed from the Hill matrix using the Koopman projection
ethod of Section 2.3 (‘‘koop’’) or the symmetry-based eigenvalue

orting method [9] (‘‘sym’’) that is implemented by default in MANLAB,

ersion 4.1.7 [44], and reference FMs that were computed in the time
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Fig. 7. RMS error of Floquet multipliers and computation time along the arclength of
the branch for different approaches and different truncation orders.

domain using a variable-step single pass method based on the fixed-step
method reported in [6, Section 3.1.3], but using Matlab’s ode45 solver.
The chosen absolute and relative tolerances provide the FMs with accu-
racy of approximately 10−8. Fig. 7(b) shows the computation time that
was needed exclusively for stability computation, i.e., to produce these
Floquet multipliers from the Hill matrix using the respective methods
and truncation orders. Fig. 7(c) shows the overall computation time
that was needed to compute a given section of the branch, constituted
by the time to solve the HBM problem via ANM and two stability
determinations at the start and end of the section, respectively. Around
bifurcation points, additional stability computations are executed to
find the exact bifurcation point. For all approaches, the computation
time of the HBM problem is insignificant compared to the computation
time of the stability determination.
 r

12 
The RMSE of all methods at all truncation orders is highest around
the bifurcation points 𝐹1 and 𝐹7 corresponding to the 1:3 internal res-
onance. This is expected as, at these points, the frequency contribution
of higher frequencies is strong, amplifying errors due to truncation. For
the symmetry-based method, a satisfactory accuracy where stability is
always asserted correctly is achieved at a truncation order 𝑁 = 10 of
the Hill matrix. There is one outlier between bifurcations 𝐹7 and 𝐹8,

here the symmetry-based sorting criterion does not correctly identify
ll Floquet exponents, selecting two Floquet exponents of the same
roup and missing another group completely.

The Koopman projection method as is known to be less accurate
han the symmetry-based method for fixed truncation order [12]. This
s reflected in Fig. 7(a) as (roughly) the same RMSE is only achieved
t 𝑁 = 16. However, due to the superior computational efficiency, the
omputation time for the Koopman projection method for 𝑁 = 16 with
ess than 0.5 s on average is still lower than that of the symmetry-
ased method at 𝑁 = 10. This also means that, with similar overall
omputation time, the branch can be tracked by a more exact HBM of
igher truncation order if Koopman–Hill projection is employed. If a
igher accuracy of Floquet multipliers is desired, the truncation order
ust be increased. A truncation order of 𝑁 = 16 for the symmetry-

ased method and of 𝑁 = 28 for the Koopman projection method yield
comparable accuracy of approximately 10−6 at the bifurcation points
1, 𝐹7. Again, the computation time of the symmetry-based method
ith 𝑁 = 16 is approximately 50% higher per step than that of the
oopman projection method with 𝑁 = 28.

.2. Clamped-clamped beam

In this section, the PDE (50) is considered with clamped-clamped
oundary conditions, where the eigenmodes cannot be given in fully
losed form. The linear eigenfrequencies 𝜔𝑘 = 𝛽2𝑘 fulfill the transcen-
ental equation cos 𝛽𝑘 cosh 𝛽𝑘 = 1, with 𝛽𝑘 ≈ (2𝑘 + 1)∕𝜋 for 𝑘 > 3 [57]
nd the corresponding eigenmodes are given before normalization by

𝑘(𝑥) =
(

sin 𝛽𝑘 − sinh 𝛽𝑘
) (

cos 𝛽𝑘𝑥 − cosh 𝛽𝑘𝑥
)

−
(

cos 𝛽𝑘 − cosh 𝛽𝑘
) (

sin 𝛽𝑘𝑥 − sinh 𝛽𝑘𝑥
)

. (57)

he first three eigenmodes are visualized in Fig. 5(b). Substitution of
his modal decomposition into (48) yields the modal expansion (52),
n which the factors ℎ𝑖𝑗 must be determined numerically using equa-
ion (53)a. In the benchmark considered here, the beam is driven by
harmonic point force 𝑃3(𝑡) applied at �̄�3 = 0.275, leading to 𝑄𝑗 (𝑡) =
𝑗 (�̄�3)𝑃3(𝑡).

In contrast to the hinged-hinged case, the non-vanishing factors
𝑖𝑗 cause more coupling between states, leading to a more densely
opulated Jacobian matrix of the linearization. The FRF curve of Fig. 8
hows that the first resonance has a bistable region and admits two fold
ifurcations 𝐹1, 𝐹2. One can notice that the particular rounded top of
he resonance curve is due to a 1:3 internal resonance between bending
ode 2 and 4 of the beam [51].

In Fig. 9, the computation time for the Floquet multipliers with
ifferent methods as well as their RMSE against a reference solution
sing a single pass method of accuracy 10−8 are given. Compared
o the hinged-hinged case, higher truncation orders are needed to
rrive at the same RMSE of Floquet multipliers for all approaches. This
an be attributed to the more coupled structure of the equations. As
n the hinged-hinged case, the Koopman projection method requires
igher truncation orders than the symmetry-based method to arrive at
pproximately the same RMSE values. Even more significantly than in
he hinged-hinged case, however, the Koopman projection method is

oughly 30% − 50% faster despite the increased truncation order.
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Fig. 8. Frequency response curve (maximal amplitude of 𝑤(𝑥,𝜏)
ℎ

at 𝑥 = 0.75𝐿) of the
clamped-clamped beam around its second bending resonance computed with 𝐾 =
5, 𝑁 = 20. Solid lines denote stable, dashed lines denote unstable branches. Bifurcation
points are labeled by 𝐹1, 𝐹2.

Fig. 9. RMS error of Floquet multipliers and computation time along the arclength of
the branch for different approaches and different truncation orders.

5.3. An observation for a lift with subharmonic frequencies

The choice of how to go back from lifted coordinates 𝐳 ∈ C𝑛(2𝑁+1)

to original coordinates 𝐲 ∈ R𝑛 is not unique. Instead of using only the
middle entry 𝐳0, other linear combinations of the 𝐳𝑘 in (13) given by

𝐂(𝑡)𝐳(𝑡) ∶=
𝑁
∑

𝑘=−𝑁
𝑐𝑘ei𝑘𝜔𝑡𝐳𝑘(𝑡) ≈

𝑁
∑

𝑘=−𝑁
𝑐𝑘𝐲(𝑡) (58)

also yield 𝐲 as an approximate result if the sum of all 𝑐𝑘 is one and
the columns of 𝐂(𝑡) are additionally adjusted by terms of the form
ei𝑘𝜔𝑡. An optimization approach involving a quadratic program was
 m

13 
proposed in [12] to systematically find values for the 𝑐𝑘 that ensure
high accuracy of the monodromy matrix. For the hinged-hinged and
the clamped-clamped beam as considered in the previous sections, the
optimal solution is indeed very close to the naive projection presented
in Section 2.3 that only returns 𝐳0 and discards contributions of all other
elements. Further numerical studies by the authors suggest that this is
generally the case for most system formulations, independent of the
type of nonlinearity.

However, if the Hill matrix is constructed in the subharmonic
fashion described below, the optimal solution for the coefficients 𝑐𝑘
differs. If 𝐉 is periodic with period 𝑇 , then it is periodic with period
2𝑇 as well, meaning that it can also be expressed by the Fourier series

𝐉(𝑡) =
∞
∑

𝑘=−∞
𝐉 𝑘

2
ei

𝑘
2 𝜔𝑡 (59)

of base frequency 𝜔
2 , where 𝐉 𝑘

2
is zero if 𝑘

2 ∉ Z. Considering the
requency 𝜔

2 allows to construct a subharmonic Hill matrix of twice the
size as the classical Hill matrix, where every second block entry is zero
and which still contains the same Fourier coefficients 𝐉−2𝑁 ,… , 𝐉2𝑁 .
As the subharmonic Hill matrix is in C𝑛(4𝑁+1)×𝑛(4𝑁+1), the correspond-
ing state 𝐳 ∈ C𝑛(4𝑁+1) of the Koopman lift (13) is partitioned as
𝐳T = (𝐳−𝑁T, 𝐳 −2𝑁+1

2

T,… , 𝐳𝑁T).
For this subharmonic Hill matrix and the hinged-hinged beam ex-

ample, the optimization procedure of [12] yields instead of the naive
projection 𝐲(𝑡) = 𝐳0(𝑡) the more sophisticated projection

(𝑡) ≈ 𝐂subh(𝑡)𝐳(𝑡) =
2𝑁
∑

𝑘=−2𝑁
(−1)𝑘ei

𝑘
2 𝜔𝑡𝐳 𝑘

2
(𝑡) . (60)

This is consistent with the results of [12], where the Mathieu-equation-
based examples were incidentally constructed in such a subharmonic
fashion. Evaluated after one (original) period of the system, the expo-
nential terms exactly cancel the alternating factors and this yields for
the monodromy matrix the expression

𝜱𝑇 ≈ 𝐂subh(𝑇 )e𝐇subh𝑇𝐖subh (61)

with

𝐂subh(𝑇 ) = 𝐖subh
T = (𝐈,… , 𝐈) . (62)

Essentially, the subharmonics-based approximation encodes the naive
approximation (14) as above, with an additive ‘‘correction’’ term due
to the lifted states 𝐳 𝑘

2
.

Due to the many zeros in the subharmonic Hill matrix of size
𝑛(4𝑁 + 1), a re-ordering of rows and columns brings it into a block-
diagonal form with two blocks of sizes 𝑛(2𝑁 + 1) and 2𝑛𝑁 . This
allows to evaluate two matrix exponentials of the two decoupled sub-
matrices of (at most) the size of the original Hill matrix instead of
one matrix exponential of twice the size. For fixed 𝑁 , computing the
monodromy matrix from the subharmonic Hill matrix by subharmonic
projection is thus twice as costly as naive projection. As the decoupled
structure persists also for a real-valued subharmonic Fourier series, this
subharmonic approach can be constructed both in the complex-valued
and in the real-valued case.

Fig. 10 shows the computation times and the RMSE of the Floquet
multipliers of the hinged-hinged beam example with 𝐾 = 10 and
𝑁 = 16 for the standard Koopman projection and the symmetry-based
igenvalue sorting method (cf. Fig. 7), and additionally for the Koop-
an projection using the subharmonic Hill matrix and the heuristically
etermined projection (61), evaluated using two matrix exponentials
er step. As expected, the computation time for the Koopman projection
ith the subharmonics-based modification is almost exactly twice as
igh as for the Koopman projection approach as two matrix expo-
entials need to be evaluated instead of one. The accuracy, however,
s significantly improved by the use of the subharmonic structure.
t is even better than that of the symmetry-based eigenvalue sorting
ethod, which is much slower to compute.
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Fig. 10. RMS error of Floquet multipliers and computation time along the arclength
of the branch for different approaches with truncation order 𝑁 = 16.

. Conclusion

In this work, we showed that the truncated Hill matrix can be
nterpreted in three ways, independent of the choice of real or complex-
alued Fourier series: firstly, as the truncation of the infinite Hill
eterminant problem; secondly, as the Jacobian of the HBM problem;
nd finally, as the constant system matrix of a higher-dimensional lifted
inear system. For quadratic ODEs obtained by the differential recast
roposed in this work, the combination of these three properties allows
o extract and use the Hill matrix for stability determination immedi-
tely during an ANM continuation procedure, without any additional
ondensation steps.

As a novel result applicable to any HBM continuation framework,
e generalized the sparsity-exploiting Koopman projection stability
pproach to real-valued Hill matrix formulations. In conjunction with
NM, we showed that it reduces the computation time for stability
etermination of the HBM solution compared to classical Hill meth-
ds, which rely on finding the complete eigendecomposition of the
ill matrix. In its standard variant, this projection approach requires
igher truncation orders for the same Floquet multiplier accuracy, still
etaining lower overall computation time per step regardless.

We also observed in this work that the accuracy of the Koopman
rojection stability method can be improved by a special, subharmonic
hoice of projection matrix. Numerical studies for other systems in-
icate that this subharmonic method universally improves accuracy.
owever, further research is needed to provide guarantees for arbitrary
lasses of systems.

With broader applications in mind, the differential recast approach
ould be extended to other cases of nonlinearities that the ANM and
anlab are in principle able to deal with, to bring the immediate avail-

bility of the Hill matrix to other types of systems such as multibody
14 
systems or large finite element geometrically exact beam models that
include unitary quaternions. In addition, thorough numerical studies
that compare the performance of the Koopman–Hill method to other
stability methods especially at very large system sizes could give impor-
tant insight for practical applications. The particular case of marginally
stable periodic solutions encountered in the computation of the back-
bone curves of nonlinear modes is a straightforward application of the
present work, whose exemplification is also left for further studies.
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ppendix A. Convergence proof for the differential recast

.1. Periodic solutions of differential recast

In this section, we will prove that any periodic solutions of the
ifferential quadratic recast (30) are of the form 𝑧𝜷 p(𝑡) = 𝐱p(𝑡)𝜷 , where
p(𝑡) is a periodic solution of the original polynomial dynamics (27).
e denote the 𝑗th entry of 𝐟 by 𝑓𝑗 and of 𝐡𝜷 by ℎ𝜷,𝑗 . To prove the an-

icipated stability properties, we transform the differential recast (30)
rom auxiliary coordinates (𝐱, 𝐳) into error coordinates (𝐱, 𝐞) using the
elation (28). With the chain rule, differentiation of (28) yields

̇𝜷 = �̇�𝜷 −
𝑛
∑

𝑗=1
𝛽𝑗𝐱𝜷−𝐞𝑗 �̇�𝑗 . (63)

Subsequently, every occurrence of 𝑧𝜷 in (�̇�, �̇�) is substituted by 𝑧𝜷 =
𝑒𝜷 + 𝐱𝜷 to yield the error dynamics

�̇�𝑗 = 𝑓𝑗 (𝐱, 𝑡) +
∑

2≤|𝜷|≤𝑚
ℎ𝜷,𝑗 𝑒𝜷 , 1 ≤ 𝑗 ≤ 𝑛𝑏 (64a)

̇𝜷 = −𝑘𝑒𝜷 , |𝜷| = 2 (64b)

̇𝜷 = −𝑘
(

𝑒𝜷 − 𝑥𝑙𝑒𝜷−𝐞𝑙
)

+
𝑛
∑

𝑗=1
𝛽𝑗

(

𝑓𝑗 (𝐱, 𝑡) +
∑

2≤|𝜸|≤𝑚
ℎ𝜸,𝑗 𝑒𝜸

)

𝑒𝜷−𝐞𝑗 , 3 ≤ |𝜷| ≤ 𝑚. (64c)

Eqs. (64a) and (64b) follow directly from substitution. For (64c), the
relation 𝑧𝜷 = 𝑒𝜷 + 𝐱𝜷 has been used to eliminate 𝑧𝜷 , re-identifying
𝑓𝑗 (𝐱, 𝑡) in 𝑓𝑗 (𝐱, 𝐱𝜷

(1) + 𝑒𝜷(1) ,… , 𝐱𝜷(𝑀) + 𝑒𝜷(𝑀) , 𝑡). The error dynamics of
order |𝜷| = 2 in (64b) consists of 𝑛𝑏 decoupled scalar linear differential
equations with a globally asymptotically stable equilibrium at 𝑒𝜷 = 0.
This means that all stationary solutions of (64) must fulfill 𝑒𝜷 ≡ 0 for
|𝜷| = 2.

The error dynamics for higher orders is given by (64c). Except for
a proportional term −𝑘𝑒𝜷 , every summand of (64c) is multiplied by
an error coordinate of lower order than |𝜷|. As 𝑒𝜷 with |𝜷| = 2 must
vanish for any stationary solution, (64c) for |𝜷| = 3 on the stationary

solution becomes again decoupled with a globally asymptotically stable
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equilibrium at the origin being the only stationary solution. This induc-
tion process can be completed order by order to yield 𝑒𝜷 ≡ 0 on any
stationary solution for all 𝜷 with |𝜷| ≥ 2. Equivalently, the differential
quadratic recast must fulfill 𝑧𝜷 = 𝐱𝜷 on any stationary solution. If 𝑒𝜷 ≡
𝟎, then (64a) reduces to the original dynamics. Therefore, stationary
solutions of the differential recast and the original system coincide.

A.2. Floquet exponents of differential recast

The lower triangular structure of the error dynamics (64) which
decouples at a stationary solution with 𝑒𝜷 ≡ 0 suggests that every row
f the error dynamics adds an additional Floquet exponent at −𝑘. In
his section, we show that this is indeed the case.

To analyze the Floquet quantities, we construct the principal funda-
ental solution matrix in semi-closed form. As shown in Appendix A.1,

tationary and, in particular, periodic solutions (𝐱p(𝑡), 𝒆p(𝑡)) of (64)
lways fulfill 𝒆p ≡ 𝟎, hence 𝐱p must be a stationary solution of the
riginal dynamics (27). Evaluating the Jacobian (6) of (64) around a
eriodic solution of this structure, the perturbation equation is given
y

𝛥�̇�
𝛥�̇�

)

=

(

𝜕𝐟
𝜕𝐱
|

|

|𝐱p(𝑡)

(

𝐡𝜷(1) ,… ,𝐡𝜷(𝑀)

)

𝟎 𝐊(𝑡)

)

(

𝛥𝐱
𝛥𝒆

)

(65)

here 𝐊(𝑡) is a lower triangular matrix with −𝑘 as its diagonal entries
nd terms linear in 𝐱 or of the form 𝑓𝑗 (𝐱p(𝑡), 𝑡) below the diagonal. In

particular, as (65) is evaluated for a periodic solution, 𝐊(𝑡) itself is also
𝑇 -periodic.

It is immediately clear that the dynamics 𝛥�̇� = 𝐊(𝑡)𝛥𝒆 in the
lower blocks is decoupled from the 𝛥𝐱-dynamics. Due to the triangular
structure of 𝐊, we can solve the lower rows in semi-closed form
using induction, finding asymptotically autonomous [58] structure in
the error dynamics. The first row of the lower block, corresponding
to (64b), reads 𝛥�̇�𝜷(1) = −𝑘𝛥𝑒𝜷(1) , which can be immediately solved to

𝛥𝑒𝜷(1) (𝑡) = e−𝑘𝑡 𝛥𝑒𝜷(1) (0) (66)

for arbitrary initial conditions 𝛥𝑒𝜷(1) (0). As induction assumption, we
require that the first 𝑙 − 1 solutions of the lower block are given in
Floquet form

𝛥𝑒𝜷(𝑖) (𝑡) = 𝑝𝑖(𝑡, 𝛥𝒆(0)) e−𝑘𝑡 1 ≤ 𝑖 ≤ 𝑙 − 1 (67)

with 𝑝𝑖(𝑡, 𝛥𝒆) = 𝑝𝑖(𝑡 + 𝑇 , 𝛥𝒆) a 𝑇 -periodic function that depends on the
arbitrary initial condition 𝛥𝒆(0). This is trivially satisfied for 𝑙 = 2
by (66) with 𝑝1(𝑡, 𝛥𝒆) = 𝛥𝑒𝜷(1) (0), independent of 𝑡. We can express the
differential equation for the 𝑙th solution of the lower block in terms of
the solutions with known structure

𝛥�̇�𝜷(𝑙) (𝑡) = −𝑘𝛥𝑒𝜷(𝑙) (𝑡) +
𝑙−1
∑

𝑖=1
𝐾𝑙𝑖(𝑡)𝑝𝑖(𝑡)e−𝑘𝑡 , (68)

which is a scalar linear inhomogeneous differential equation with
homogeneous solution

𝛥𝑒𝜷(𝑙) hom(𝑡) = 𝛥𝑒𝜷(𝑙) (0) e
−𝑘𝑡 (69)

and particular solution

𝛥𝑒𝜷(𝑙) part (𝑡) = e−𝑘𝑡 ∫

𝑡

0

𝑙−1
∑

𝑖=1
𝐾𝑙𝑖(𝜏)𝑝𝑖(𝜏)d𝜏 , (70)

yielding the solution

𝛥𝑒𝜷(𝑙) (𝑡) = e−𝑘𝑡
(

𝛥𝑒𝜷(𝑙) (0) + ∫

𝑡

0

𝑙−1
∑

𝑖=1
𝐾𝑙𝑖(𝜏)𝑝𝑖(𝜏)d𝜏

)

=∶ 𝑝𝑙(𝑡, 𝛥𝒆(0)) e−𝑘𝑡 , (71)

which is of the form (67) and thus completes the induction.
This means that also the lower right block of the fundamental solu-

−𝑘𝑡
tion matrix of (65) is constituted by a Floquet type solution 𝐏𝒆(𝑡) e

15 
as it consists of columns of the form (67) for one specific initial
condition. Conversely, due to the decoupled structure, it holds that
𝛥𝒆 ≡ 𝟎 for all 𝑡 ≥ 0 if 𝛥𝒆(0) = 0, recovering in the upper left block
of the fundamental solution matrix of (64) the fundamental solution
matrix 𝜱nonl(𝑡) = 𝐏𝐱(𝑡) e𝐐𝐱 𝑡 of the periodic solution of the original
onlinear dynamics (27). In summary, the fundamental solution matrix
s constituted by

(𝑡) =
(

𝐏𝐱(𝑡) e𝐐𝐱 𝑡 ∗
𝟎 𝐏𝒆(𝑡) e−𝑘𝑡

)

, (72)

hich can be decoupled due to the block triangular structure into

(𝑡) = 𝐏(𝑡) e𝐐𝑡 (73a)

ith

(𝑡) = 𝐏(𝑡 + 𝑇 ) =
(

𝐏𝐱(𝑡) ∗
𝟎 𝐏𝒆(𝑡)

)

(73b)

𝐐 =
(

𝐐𝐱 ∗
𝟎 −𝑘𝐈

)

constant (73c)

nd ∗ denotes arbitrary terms of no further relevance. The Floquet
xponents of the error dynamics (64) can be read off from (73c)
ue to its block-triangular structure to be the Floquet exponents of
he original nonlinear dynamics (27) collected in 𝐐𝐱, and additional
loquet exponents at −𝑘 for each row of the error dynamics. These
loquet exponents carry over to the differential quadratic recast (30).

ppendix B. Explicit Hill and transformation matrices for various
ourier bases

In Section 4, a linear transformation between representations for the
ill matrix has been derived. We will provide all involved quantities
xplicitly for two of the most commonly used basis choices:

1. the classical complex-valued basis

𝐔cplx(𝑡)T ∶=
(

e−i𝑁𝜔𝑡 … ei𝑁𝜔𝑡)⊗ 𝐈𝑛×𝑛 (74)

such that 𝐱(𝑡) = ∑𝑁
𝑘=−𝑁 𝐱𝑘ei𝑘𝜔𝑡 with the coefficient vector 𝐗cplx

T =
(𝐱−𝑁T, … , 𝐱𝑁T) and

2. a particular real-valued basis

𝐔real(𝑡) ∶=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
cos𝜔𝑡
⋮

cos𝑁𝜔𝑡
sin𝜔𝑡
⋮

sin𝑁𝜔𝑡

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊗ 𝐈𝑛×𝑛 (75)

such that 𝐱(𝑡) =
∑𝑁

𝑘=0 𝐚𝑘 cos 𝑘𝜔𝑡 + 𝐛𝑘 sin 𝑘𝜔𝑡 with 𝐗real
T =

(𝐚0T … 𝐚𝑁T 𝐛1T … 𝐛𝑁T).

.1. Explicit expressions for complex Fourier series

With the well-known Fourier analysis equation [52]

𝑘 = 1
𝑇 ∫

𝑇

0
𝐱(𝑡)e−i𝑘𝜔𝑡d𝑡 , (76)

he complex-valued Fourier analysis matrix 𝐔∗
cplx such that 𝐗cplx =

1
𝑇 ∫ 𝑇

0 𝐔∗
cplx(𝑡)𝐱(𝑡)d𝑡 is the complex conjugate of 𝐔cplx(𝑡)

∗
cplx(𝑡) =

(

ei𝑁𝜔𝑡 … e−i𝑁𝜔𝑡) T ⊗ 𝐈𝑛×𝑛 . (77)

As the derivative d
d𝑡 e

i𝑘𝜔𝑡 = i𝑘𝜔ei𝑘𝜔𝑡 only depends on itself, the derivative
matrix 𝐃cplx is given by a diagonal matrix

�̇�cplx(𝑡)T = 𝐔cplx(𝑡)T𝜔𝐃cplx

= 𝐔cplx(𝑡)T𝜔 i
(

diag{−𝑁,… , 𝑁}⊗ 𝐈𝑛×𝑛
)

. (78)
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To evaluate the complex-valued Hill matrix using (37), the Fourier co-
efficients of 𝐉(𝑡)𝐔(𝑡)T must be determined. The Fourier series expansion
of this matrix product is

𝐉(𝑡)𝐔cplx(𝑡)T =
(
∑∞

𝑘=−∞𝐉𝑘ei(𝑘−𝑁)𝜔𝑡 …
∑∞

𝑘=−∞𝐉𝑘ei(𝑘+𝑁)𝜔𝑡)

=
(
∑∞

𝑘=−∞𝐉𝑘+𝑁 ei𝑘𝜔𝑡 …
∑∞

𝑘=−∞𝐉𝑘−𝑁 ei𝑘𝜔𝑡
)

. (79)

Reading off the Fourier coefficients from (79) and arranging them in
block columns yields the complex-valued Hill matrix

𝐇cplx = −𝜔𝐃cplx + 𝑁 (𝐉(𝑡)𝐔cplx
T)

=

⎛

⎜

⎜

⎜

⎜

⎝

𝐉0 + i𝜔𝑁𝐈 𝐉−1 … 𝐉−2𝑁
𝐉1 𝐉0 + i𝜔(𝑁 − 1)𝐈 … 𝐉−2𝑁+1
⋮ ⋱ ⋮

𝐉2𝑁 𝐉2𝑁−1 … 𝐉0 − i𝜔𝑁𝐈

⎞

⎟

⎟

⎟

⎟

⎠

, (80)

which does indeed coincide with the expected expression (cf. Sec-
tion 2.2, [10,22,28]).

B.2. Explicit expressions for real Fourier series

While there is an overwhelming consensus in the literature that
the complex-valued basis is sorted in ascending order of frequency,
there is no consensus on how to order the real-valued Fourier basis
functions. The ordering presented here (first all cosines, then all sines)
is often used [11,59], but also an alternating variant where cos and
sin terms of the same frequency appear together is common [1,6,8,60–
62]. We use the former variant here because it is also used to give an
explicit construction formula for the real-valued Hill matrix in [11].
The transformation approach of Sections 4.2 and B.3 can be used to
easily switch between orderings.

With 𝐚0 = 1
𝑇 ∫ 𝑇

0 𝐱(𝑡)d𝑡, 𝐚𝑘 = 2
𝑇 ∫ 𝑇

0 𝐱(𝑡) cos 𝑘𝜔𝑡, and 𝐛𝑘 = 2
𝑇 ∫ 𝑇

0 𝐱(𝑡)
sin 𝑘𝜔𝑡, the corresponding Fourier analysis matrix for 𝐔real is

∗
real(𝑡) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
2 cos𝜔𝑡

⋮
2 cos𝑁𝜔𝑡
2 sin𝜔𝑡

⋮
2 sin𝑁𝜔𝑡

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊗ 𝐈𝑛×𝑛 . (81)

he derivative matrix 𝐃real is given by

̇ real(𝑡)T = 𝐔real(𝑡)T𝜔𝐃real (82)

ith

real =
⎛

⎜

⎜

⎝

0 𝟎T 𝟎T
𝟎 𝟎 diag {1,… , 𝑁}
𝟎 −diag {1,… , 𝑁} 𝟎

⎞

⎟

⎟

⎠

⊗ 𝐈𝑛×𝑛. (83)

gain, the real-valued Hill matrix can be determined using (37). How-
ver, computing the Fourier coefficients of 𝐉(𝑡)𝐔real(𝑡) requires the
valuation of trigonometric theorems and is significantly more involved
han in the complex-valued case. After these algebraic calculations, the
eal-valued Hill matrix is

real = −𝜔𝐃real +
⎛

⎜

⎜

⎝

𝐉(0)c
1
2𝐉c

1
2𝐉s

𝐉cT 𝐊c + 𝐓c 𝐊s + 𝐓s
𝐉sT 𝐊s − 𝐓s 𝐓c −𝐊c

⎞

⎟

⎟

⎠

(84)

here we adapted the notation from [11, Appendix 3] for 𝐉(𝑡) ∶=
∞
𝑘=0 𝐉

(𝑘)
c cos 𝑘𝜔𝑡 + 𝐉(𝑘)s sin 𝑘𝜔𝑡:

𝐉c,s =
(

𝐉(1)c,s … 𝐉(𝑁)
c,s

)

(85a)

c,s =
1
2

⎛

⎜

⎜

⎜

⎜

𝐉(2)c,s 𝐉(3)c,s … 𝐉(𝑁+1)
c,s

𝐉(3)c,s 𝐉(4)c,s … 𝐉(𝑁+2)
c,s

⋮ ⋮ ⋱ ⋮
(𝑁+1) (𝑁+2) (2𝑁)

⎞

⎟

⎟

⎟

⎟

(85b)
⎝
𝐉c,s 𝐉c,s … 𝐉c,s ⎠

16 
𝐓c =
1
2

⎛

⎜

⎜

⎜

⎜

⎝

2𝐉(0)c 𝐉(1)c … 𝐉(𝑁−1)
c

𝐉(1)c 2𝐉(0)c … 𝐉(𝑁−2)
c

⋮ ⋮ ⋱ ⋮
𝐉(𝑁−1)
c 𝐉(𝑁−2)

c … 2𝐉(0)c

⎞

⎟

⎟

⎟

⎟

⎠

(85c)

𝐓s =
1
2

⎛

⎜

⎜

⎜

⎜

⎝

0 𝐉(1)s … 𝐉(𝑁−1)
s

−𝐉(1)s 0 … 𝐉(𝑁−2)
s

⋮ ⋮ ⋱ ⋮
−𝐉(𝑁−1)

s −𝐉(𝑁−2)
s … 0

⎞

⎟

⎟

⎟

⎟

⎠

. (85d)

s in [11], the transposition 𝐉c,sT in (84) indicates block-wise transpo-
ition, i.e., the entries of each block 𝐉(𝑘)c,s are not transposed. Compared
o the literature result in [11, Eq. (28)], the sign of 𝐓s is flipped and
he entries of the first row are halved. Numerical studies indicate that
ndeed (84) in conjunction with (85) is correct and does possess the
ame spectrum as 𝐇cplx, while we did not achieve consistent results
sing the formulation of [11, Eq. (28)].

As the explicit calculation of (84) is complicated and error-prone,
t is easier in practice to obtain 𝐇real numerically as partial deriva-
ive of the HBM equations or using the similarity transformation of
ection 4.2. However, the formulation (84) is necessary if the Fourier
oefficients of the Jacobian matrix are sought or structural insight
bout the Hill matrix is needed.

.3. Real to complex transformation matrices

To switch between real- and complex-valued representations, the
ransformation must be derived once and for all. With ei𝜃 = cos 𝜃+i sin 𝜃,
he transformation from real-valued to complex-valued basis functions
s

cplx(𝑡) ∶= 𝐓T𝐔real(𝑡)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −i

⋅⋅
⋅

⋅⋅
⋅

1 −i
1 0

1 i
⋱ ⋱

1 i

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊗ 𝐈𝑛×𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐔real(𝑡) (86)

ith the inverse

real(𝑡) ∶= 𝐓−T𝐔cplx(𝑡)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
1
2

1
2

⋅⋅
⋅ ⋱

1
2

1
2

i
2 0 − i

2

⋅⋅
⋅ ⋱

i
2

i
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊗ 𝐈𝑛×𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐔cplx(𝑡). (87)

From Section 4.2 we know that the real- and complex-valued
ourier coefficients are then related by

𝐗real = 𝐓𝐗cplx (88)

𝐗cplx = 𝐓−1 𝐗real . (89)

Consequently, the Hill matrices are related by

𝐇cplx = 𝐓−1𝐇real𝐓 . (90)

This similarity transformation can also be used to show by straightfor-
ward but tedious algebraic calculations that (84) is indeed the correct

Hill matrix formulation for 𝑁 = 2.
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