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A B S T R A C T
Recent advancements in Physics-Informed Neural Networks (PINNs) offer promising opportu-
nities for the identification of parameters of physical models based on ODEs and PDEs. This
work revisits two representative PINN-based approaches for inverse problems, and apply them
to fluid dynamics simulations. The first approach, here referred to as Fully-Parameterized PINN,
develops a parameter-differentiable surrogate model through an offline training phase, followed
by a rapid online parameter identification phase. This method treats physical parameters as
Neural Network (NN) inputs, making it prone to the curse of dimensionality. Conversely, the
second approach, termed Semi-Parameterized PINN (SP-PINN), integrates physical parameters
as NN parameters, allowing for efficient inference regardless of dimension using automatic
differentiation. The performance of these two methods is first assessed through numerical
experiments using an ODE-based model (the Backwater Equation). Then, the SP-PINN is tested
in a more representative scenario for identifying a (103)-dimensional spatial friction parameter
in a 2D Shallow-Water Equations model. Comparisons with the well-established and precision-
validated Variational Data Assimilation (VDA) method are performed. The latter, even based
on the adjoint technique, remains computationally expensive for high-dimensional parameter
identification and can be complex to implement. This work highlights the attractiveness of SP-
PINN in terms of simplicity and efficiency, thus establishing this strategy as a complementary
approach or even a compelling alternative in parameter identification of real-world flow models.

1. Introduction
In recent years, the volume of data available for scientific research and engineering has grown tremendously.

As a consequence, a considerable amount of research is currently devoted to combining these data with existing
physical priors and mathematical models. This trend is particularly evident in environmental sciences such as weather
forecasting (see, e.g., [1, 2]), river hydraulics (see, e.g., [3, 4]), and others, where the integration of observational data
with complex models is crucial for understanding and predicting natural phenomena. From a methodological point
of view, Data Assimilation (DA) has emerged as a powerful framework to achieve such a data-model coupling, in
order, for instance, to update the state of a dynamical system or to estimate model parameters (see, e.g., Asch et al.
[5], Bocquet [6], Monnier [7] and references therein). Specifically, DA consists in solving the inverse problem of
adjusting input parameters of a model so that its output aligns with observed data. DA techniques are generally divided
into two major categories: filter methods (see, e.g., [8, 9]) and variational methods (see, e.g., [10, 11]), which are now
combined for complex situations such as weather predictions for example.

In this work, we are interested in model parameter identification, especially when the parameter to be inferred is
high-dimensional. In terms of application, we consider hydraulics modeling based on the Shallow-Water Equations
(SWE, see, e.g., [12, 13]). In this context, the parameters of interest can be spatially-distributed fields, such as friction
or bathymetry fields, which are often inherently high-dimensional. For such problems, the conventional approach
that has been developed over the years is Variational Data Assimilation (VDA, see [5, 6, 7, 11, 14] to name a few).
VDA aims to reconcile observations and model outputs by minimizing a properly defined data-model discrepancy
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functional using gradient descent. In high dimension, computing the gradient of the functional is tractable thanks to
the introduction of the adjoint model technique, which requires solving only one additional direct model per iteration
to obtain all the gradient components. However, the computational cost of solving an inverse problem using VDA is
approximately (102) times that of the direct model, which can be expensive for real-world applications. Nowadays,
given the rapid advancements in the broad field of Artificial Intelligence, bringing Machine Learning techniques and
VDA closer together may offer opportunities for faster computations, especially for high-dimensional parameters. This
is what we propose to investigate in this paper by focusing on Physics-Informed Neural Networks (PINNs) methods to
solve DA inverse problems.

To put it in a nutshell, PINNs enable the incorporation of physical constraints into the training of NNs in a weak
sense, by adding a penalty term to the loss function. They were initially introduced by Psichogios and Ungar [15] and
Lagaris et al. [16], and were later further developed and formalized using differentiable programming by Raissi et al.
[17]. Recently, several libraries have been developed to facilitate their implementation (see, e.g., [18, 19]). Historically,
and still predominantly today, PINNs are rather used to solve direct problems (see, e.g., [20, 21, 22]), yet they also
appear well-suited for addressing inverse problems. For example, PINNs have been used to reconstruct dynamical
states (see, e.g., [23, 24, 25]), as well as to estimate physical model parameters from observational data (see, e.g.,
[26, 27]). In the recently published review by Tanyu et al. [28], numerous NN-based methods for solving parameter
identification problems are detailed and compared, particularly physics-informed methods. The latter work emphasizes
two important approaches for parameter identification: the first one consists in approximating the parameter-to-state
operator, while the second one focuses on approximating directly the state function. In addition to this investigation,
a comparative analysis of the capacity of these two approaches to meticulously handle high-dimensional parameter
identification problems would be of interest, as well as a comparison with more established and proven DA methods.

Therefore, the aim of the present work is to evaluate the capabilities of the two approaches described above
for handling high-dimensional parameter identification problems and to compare their performance to the well-
established VDA. Here, the approach consisting in the approximation of the parameter-to-state operator is naturally
called Fully-Parameterized (FP), while the one focusing on the approximation of the state function is referred to as
Semi-Parameterized (SP). More precisely, the first approach will be illustrated with the proposed Fully-Parameterized
PINN (FP-PINN), which involves creating a NN-based parameter-differentiable surrogate model through a costly
offline training phase to approximate the parameter-to-state operator, as in, e.g., [29, 30], and then using this surrogate
model in an online rapid parameter identification phase. The second approach, illustrated with what we call the
Semi-Parameterized PINN (SP-PINN), consists in learning the physics and performing the parameter identification
simultaneously by directly approximating the state function with the NN, as in, e.g., Raissi et al. [17]. The FP-PINN
introduced in the present work corresponds to the PI-DeepONet (see Wang et al. [30]), but with a simplified NN
architecture, whereas the SP-PINN is related to the classical PINN introduced in Raissi et al. [17]. Furthermore, since
in both of these approaches the NN training can be challenging, several best practices (Fourier features, pre-training,
alternating minimization) that are crucial in the process are provided in this work.

Finally, further exploration is needed to better understand how these PINN-based methods perform relative
to established techniques, particularly in high-dimensional parameter identification for real-world applications.
Consequently, in this work, we also propose a comparison of the SP-PINN approach, which proves to be the most
attractive among the two alternatives for high-dimensional parameter identification, with the well-established and
accurate VDA method in a challenging fluid dynamics inverse problem scenario: a 2D SWE model applied to river
flow, with a (103)-dimensional spatial friction parameter to identify.

The paper is organized as follows. After this introduction, Section 2 introduces the general direct model, the inverse
problem to be solved, and the flow models considered as applications. Section 3 presents, in a general manner, the
studied PINN-based parameter identification approaches. It outlines the formalism and the differences between the
two considered methods, as well as the algorithmic cares used to enable the training of such NNs. Then, Section 4
starts by presenting the numerical experiments conducted to evaluate the capacity of the two PINN-based methods
to handle high-dimensional inverse problems using a simplified flow model. Thereafter, one of the two methods is
tested on a more representative, high-dimensional inverse problem based on a 2D SWE model, and is compared with
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conventional VDA. Eventually, Section 5 offers a brief summary of the key findings and main contributions of this
study, and motivates future research based on these findings.

2. Problems and models setup
This section begins by introducing, in a general manner, the direct model and the inverse problem to be solved.

Subsequently, the specific models used for application purposes are presented, consisting more precisely of the
Backwater Equation and the SWE flow models. In each case, the Manning-Strickler friction coefficient is considered
as the spatially-distributed parameter to be identified.
2.1. The direct model

Let us define a function 𝒌 on a spatial domain Ω ⊂ ℝ𝑑 representing a spatially-distributed, potentially high-
dimensional, parameter of the model, 𝒌∶ 𝑥 ↦ 𝒌(𝑥), 𝑥 = (𝑥1,… , 𝑥𝑑) ∈ Ω. In the sequel, we will seek to infer this
parameter given some observations. Given a final time instant 𝑇 , the general time-dependent model reads as:

𝜕𝑡𝑦(𝑥, 𝑡) + 𝐴(𝒌; 𝑦)(𝑥, 𝑡) = 𝐿(𝒌)(𝑥, 𝑡), ∀(𝑥, 𝑡) ∈ Ω× ]0, 𝑇 ]. (1)
Eq. (1) is accompanied by adequate Boundary Conditions (BC) on 𝜕Ω× ]0, 𝑇 ] and Initial Conditions (IC) on Ω. The
unknown function 𝑦(𝑥, 𝑡) represents the state of the modeled system, 𝐴 is a differential operator parameterized by 𝒌,
and 𝐿 is a forcing term that may also be parameterized by 𝒌. Typical particular cases of Eq. (1) are:

• Ordinary Differential Equations (ODE) in variable 𝑡 (𝑥 is frozen) such as the Backwater Equation presented in
Section 2.3.1.

• Partial Differential Equations (PDE), such as the Viscous Burgers’ equation, 𝐴(𝒌; 𝑦)(𝑥, 𝑡) = −𝒌𝜕2𝑥𝑥𝑦(𝑥, 𝑡) +
𝑦𝜕𝑥𝑦(𝑥, 𝑡), or the 2D SWE presented in Section 2.3.2.

Let  and  be Banach spaces, representing the input parameter space and the model solution space, respectively.
We introduce the parameter-to-state operator  as:

∶ 𝒌 ↦ 𝑦𝑘, ∀𝒌 ∈ , (2)
with 𝑦𝑘 ∈  the (unique) solution of Eq. (1) for a given parameter function 𝒌.

2.2. The inverse problem
The inverse problem here consists in identifying the input parameter 𝒌 from given observations (dataset) 𝑜𝑏𝑠,

𝑜𝑏𝑠 = {𝑧(𝑖)𝑜𝑏𝑠, (𝑥, 𝑡)
(𝑖)
𝑜𝑏𝑠}𝑖=1,… ,𝑁𝑜𝑏𝑠

of the physical system, given on a grid 𝑜𝑏𝑠 = {(𝑥, 𝑡)(𝑖)𝑜𝑏𝑠}𝑖=1,… ,𝑁𝑜𝑏𝑠
defined over

Ω× ]0, 𝑇 ]. As classically done in DA problems, we introduce the observation operator 𝑍 which maps from the physical
states space  onto the observations space, where the finite-dimensional vector 𝑧𝑜𝑏𝑠 resides. This enables to compare
model outputs with the given data. Following the VDA approach (see e.g., [6, 7]), one identifies 𝒌 by minimizing a
cost functional 𝑗(𝒌) = 𝐽𝑜𝑏𝑠(𝑦𝑘), with:

𝐽𝑜𝑏𝑠(𝑦) =
1

𝑁𝑜𝑏𝑠
‖𝑍(𝑦) − 𝑧𝑜𝑏𝑠‖

2
𝑅−1 , (3)

with 𝑅 an error covariance matrix. The estimation is obtained by solving:
𝒌∗ = 𝑎𝑟𝑔𝑚𝑖𝑛

𝒌∈
(𝑗(𝒌)) , (4)

using a numerical optimization method.
2.3. The considered flow models

As mentioned in the introduction, our interest in this work, in terms of application, lies in hydraulics models. We
investigate two flow models:
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1. the Backwater Equation, which is a fundamental 1D non-linear model in hydraulics,
2. the 2D SWE system as it is operationally employed, e.g. in complex flood dynamics (see, e.g., [12, 13, 31]).

2.3.1. The Backwater Equation (1D ODE)
The general form of a 𝒌-parameterized ODE may read as: 𝑦′(𝑥) = 𝐹 (𝒌; 𝑦)(𝑥). In the present case, the physical state

𝑦 corresponds to the water height ℎ in𝑚, and 𝑥 ∈ Ω ⊂ ℝ is the space variable in𝑚. The parameter function 𝒌 represents
the spatially-distributed Strickler friction coefficient 𝑲𝒔, in 𝑚1∕3∕𝑠. This parameter is utilized in the Manning-Strickler
formula, which embeds the forcing effect of the riverbed friction on flow dynamics (see, e.g., [12, 13, 31]).

As a consequence, the considered ODE more specifically reads:
𝑦′(𝑥) = 𝐹 (𝑲𝒔; 𝑦)(𝑥), ∀𝑥 ∈ Ω,

where 𝐹 (𝑲𝒔; 𝑦)(𝑥) = −
𝑧′𝑏(𝑥) + 𝑆𝑓 (𝑲𝒔; 𝑦)(𝑥)

1 − 𝐹𝑟2(𝑦(𝑥))
, with 𝑆𝑓 (𝑲𝒔; 𝑦)(𝑥) =

𝑞2

𝑲𝒔
2(𝑥)𝑦10∕3(𝑥)

and 𝐹𝑟2(𝑦(𝑥)) =
𝑞2

𝑔𝑦(𝑥)3
.

(5)
In the above equation, 𝑧′𝑏 represents the bathymetry variation, 𝑆𝑓 the friction term while 𝐹𝑟 stands for the

dimensionless Froude number. Additionally, the IC is expressed as 𝑦(𝑥𝐼𝐶 ) = 𝑦𝐼𝐶 , where 𝑥𝐼𝐶 depends on the flow
regime. For further insights, interested readers are encouraged to refer to [12, 13].
2.3.2. The Shallow-Water Equations (2D hyperbolic PDE system)

For the 2D SWE, the general form of Eq. (1) needs to be considered, with the physical state 𝑦 corresponding to
the vector (ℎ, 𝑞)𝑇 and 𝑥 = (𝑥1, 𝑥2)𝑇 ∈ Ω ⊂ ℝ2. Again, ℎ represents the water height in 𝑚. Then, 𝑞 = (𝑞1, 𝑞2)𝑇 stands
for the flow rate per unit width in 𝑚3∕𝑠∕𝑚 along 𝑥1 and 𝑥2, respectively. As in Section 2.3.1, the parameter function 𝒌
represents the spatially-distributed Strickler friction coefficient 𝑲𝒔, in 𝑚1∕3∕𝑠. For application of state-of-the-art VDA
methods for identifying high-dimensional parameters on this hydraulics model, see, e.g., [32, 33, 34].

In its conservative form, the 2D SWE reads as (see, e.g., [12, 13, 35]):
𝜕𝑡𝑦 + 𝜕𝑥1𝑭 (𝑦) + 𝜕𝑥2𝑮(𝑦) = 𝑺𝑔(𝑦) + 𝑺𝑓 (𝑲𝒔; 𝑦), in Ω× ]0, 𝑇 ],

where the physical state reads 𝑦 =
⎛

⎜

⎜

⎝

ℎ
𝑞1
𝑞2

⎞

⎟

⎟

⎠

and the fluxes 𝑭 (𝑦) =

⎛

⎜

⎜

⎜

⎝

𝑞1
𝑞21
ℎ + 𝑔ℎ2

2
𝑞1𝑞2
ℎ

⎞

⎟

⎟

⎟

⎠

and 𝑮(𝑦) =

⎛

⎜

⎜

⎜

⎝

𝑞2
𝑞1𝑞2
ℎ

𝑞22
ℎ + 𝑔ℎ2

2

⎞

⎟

⎟

⎟

⎠

.

The source terms are given by 𝑺𝑔(𝑦) =

⎛

⎜

⎜

⎜

⎝

0
−𝑔ℎ𝜕𝑥1𝑧𝑏
−𝑔ℎ𝜕𝑥2𝑧𝑏

⎞

⎟

⎟

⎟

⎠

for gravity and 𝑺𝑓 (𝑲𝒔; 𝑦) =

⎛

⎜

⎜

⎜

⎜

⎝

0

−𝑔 ‖𝒒‖
𝑲𝒔

2ℎ7∕3
𝑞1

−𝑔 ‖|𝒒‖
𝑲𝒔

2ℎ7∕3
𝑞2

⎞

⎟

⎟

⎟

⎟

⎠

for friction.

(6)

The BC and IC are prescribed, respectively, on 𝜕Ω× ]0, 𝑇 ] (with 𝜕Ω = Γ𝑖𝑛 ∪ Γ𝑤𝑎𝑙𝑙 ∪ Γ𝑜𝑢𝑡), and on Ω. For real-world
applications, the BC have to be mixed. In the context of this work, they are as follows. At the inflow boundary Γ𝑖𝑛, a
discharge (flow rate) time series is prescribed: 𝒒(𝑥, 𝑡) = 𝑄𝑖𝑛(𝑡) on Γ𝑖𝑛 × ]0, 𝑇 ], where 𝑄𝑖𝑛(𝑡) represents the imposed
discharge over time. At the outflow boundary Γ𝑜𝑢𝑡, a constant water height is enforced: ℎ(𝑥, 𝑡) = ℎ𝑜𝑢𝑡 on Γ𝑜𝑢𝑡 × ]0, 𝑇 ],
see, e.g., Couderc et al. [35] for further details. At the remaining boundaries denoted here as Γ𝑤𝑎𝑙𝑙, standard "wall
conditions" are applied, see [36] for details.

3. Physics-Informed Neural Networks methods for parameter identification
In this section, the two PINN-based approaches investigated for parameter identification are described within a DA

framework, with particular emphasis on their capacity to handle high-dimensional parameters. This section begins with
a general and concise overview of the methods before delving into the detailed mathematical formalism. Next, the two
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PINN approaches (Fully-Parameterized and Semi-Parameterized, respectively) are described in detail, highlighting the
differences in how they account for the parameter to be inferred. Finally, algorithmic cares that enable the training of
such NNs are presented.
3.1. The PINN-based approaches in a nutshell

We start here by presenting the key components of the aforementioned approaches. All over the section, we refer
to Figs. 1 and 2 for an overview of the methods, and to Figs. 3 and 4 for detailed perspectives. From a global point of
view, three tasks are necessary to derive the methods:

1. Definition of a loss function 𝐽𝑟𝑒𝑠 based on the model residual 𝑅(𝒌; 𝑦) = 𝜕𝑡𝑦 +𝐴(𝒌; 𝑦) − 𝐿(𝒌) (see Eq. (1)), and
connection with 𝐽𝑜𝑏𝑠 measuring the discrepancy with the observations dataset 𝑜𝑏𝑠 (see Section 2.2).

2. Setting up a NN denoted by  ,  ∶ 𝐼 ↦ 𝑂, with 𝐼 its input and 𝑂 its output. The expressions of 𝐼 and 𝑂
depend on the choice of PINN approach:

• The first approach corresponds to the FP-PINN, see Figs. 1 and 3. In this alternative, the primary objective
is to build, in an offline phase, a 𝒌-differentiable surrogate model that approximates the model output. This
involves approximating the operator 𝐹𝑃 ∶ (𝒌; (𝑥, 𝑡)) ↦ 𝑦𝑘(𝑥, 𝑡) for a given set of parameter functions
𝒌, with 𝑦𝑘 the model solution defined in Eq. (2). Thus, 𝐼 = (𝒌; (𝑥, 𝑡)) and 𝑂 = �̃�(𝒌; (𝑥, 𝑡)) with �̃�(𝒌; ⋅)
approximating 𝑦𝑘 for a given set of 𝒌.

• The second approach corresponds to the SP-PINN, see Figs. 2 and 4. Here, the aim is to learn the
model behavior and identify the parameter function 𝒌 all at once during the NN training. This involves
approximating the operator 𝑆𝑃 ∶ (𝑥, 𝑡) ↦ 𝑦𝑘(𝑥, 𝑡) for a given parameter function 𝒌 that is learned during
the NN training. Thus, 𝐼 = (𝑥, 𝑡) and 𝑂 = �̃�𝑘(𝑥, 𝑡) with �̃�𝑘 approximating the model solution 𝑦𝑘 for a given
learned parameter function 𝒌. Note that here, 𝒌 is not an input of  , contrary to the FP-PINN case.

3. Training of the NN, which also depends on the choice of PINN approach:
• For the FP-PINN, the training is split into two phases. First, the NN is trained in a costly offline phase

to build a 𝒌-differentiable surrogate model that approximates the model output, by minimizing 𝐽𝑟𝑒𝑠 for
a set of parameter function 𝒌. Then, a cheap online inference phase can be carried out, which consists
in minimizing 𝐽𝑜𝑏𝑠 by gradient descent using the 𝒌-differentiable surrogate model built in the offline
phase. After the online phase, an approximation of the parameter function explaining at best the given
observations, 𝒌∗ ≈ 𝒌𝑡𝑟𝑢𝑒, is found.

• On the contrary, for the SP-PINN, only one training phase is required. There is therefore no longer a notion
of offline and online phases. Here, 𝒌∗ and its corresponding solution �̃�𝒌∗ ≈ 𝑦𝒌𝑡𝑟𝑢𝑒 are obtained on the fly
during the NN training, which consists in minimizing 𝐽𝑟𝑒𝑠 and 𝐽𝑜𝑏𝑠 all at once.

3.2. Formalism
We now detail the mathematical formalism behind these methods. To do so, we first introduce the used NN and

then define the various physics-informed loss functions that complement the data-driven one.
3.2.1. Fully-connected Neural Networks

Let us consider a fully-connected, dense NN composed of 𝑑 hidden layers {𝑓𝑖}𝑖=1,… ,𝑑 with 𝜎𝑖 the corresponding
activation function and 𝑓𝑑+1 the output layer. Let us denote by 𝜽 = (𝑊 , 𝑏) ∈ ℝ𝑁𝜃 the set of its parameters (weights,
biases), such that 𝑊 = {𝑊𝑖}𝑖=1,… ,𝑑 and 𝑏 = {𝑏𝑖}𝑖=1,… ,𝑑 . This NN parameterized by 𝜽 is denoted by 𝜃 and defined
by:

𝜃 ∶ 𝐼 ↦ 𝑂 = (𝑓𝑑+1◦𝑓𝑑◦… ◦𝑓1)(𝜽)(𝐼)

= 𝑊𝑑+1 ⋅ 𝜎𝑑(𝑊𝑑 ⋅… ⋅

output of hidden layer 𝑓1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜎1(𝑊1 ⋅ 𝐼 + 𝑏1) +… + 𝑏𝑑)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
output of hidden layer 𝑓𝑑

.
(7)

Note that for this simple architecture, hidden layers simply consist of affine transformations composed with an
activation function. Additionally, the output layer is just a linear mapping without any bias nor activation function,
H. Boulenc, R. Bouclier, P.-A. Garambois, J. Monnier: Preprint submitted to Elsevier Page 5 of 27
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Offline phase:

(𝑥, 𝑡)

𝒌for a set of

Inputs



Neural Network

Model residual

Neural Network training

Online phase:

(𝑥, 𝑡)

𝒌

Inputs



Trained
Neural Network

Observations discrepancy

𝑜𝑏𝑠

Observations

Parameter identification

Figure 1: Offline and online phases for the here investigated FP-PINN. The offline phase consists in building a surrogate
model by minimizing the model residual 𝐽𝑟𝑒𝑠 for a set of parameter functions 𝒌. The online phase then consists in using this
surrogate to perform the parameter identification, by minimizing the observations discrepancy 𝐽𝑜𝑏𝑠. Here, 𝒌 is considered
as an input of  .

(𝑥, 𝑡)

Inputs



Neural Network

Observations discrepancy

𝑜𝑏𝑠

Model residual

𝒌

+

Neural Network training

Parameter
identification

Figure 2: Training of the here investigated SP-PINN. The parameter identification is performed on the fly during the NN
training, which consists in minimizing the model residual 𝐽𝑟𝑒𝑠 and the observations discrepancy 𝐽𝑜𝑏𝑠 all at once. Here, 𝒌 is
considered as a parameter of  .

as this last step represents a linear regression in the latent space generated by the penultimate hidden layer (see, e.g.,
[37]).
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3.2.2. Residual computation
The residual of the direct model defined in Eq. (1) reads as:

𝑅(𝒌; 𝑦)(𝑥, 𝑡) = 𝜕𝑡𝑦(𝑥, 𝑡) + 𝐴(𝒌; 𝑦)(𝑥, 𝑡) − 𝐿(𝒌)(𝑥, 𝑡), ∀(𝑥, 𝑡) ∈ Ω× ]0, 𝑇 ]. (8)
Then, the domain of interest is sampled through a grid of collocation points 𝑐𝑜𝑙 = {𝐼 (𝑖)𝑐𝑜𝑙}𝑖=1,… ,𝑁𝑐𝑜𝑙

, and the above
residual is minimized on the latter. At this stage, a discretization strategy has to be chosen for the parameter function
𝒌 ∈ . This discretization step is necessary to approximate the parameter function 𝒌 as a function depending on a
set of parameters gathered in a finite-dimensional vector, the latter being utilized as an input for the FP-PINN or as a
NN parameter for the SP-PINN, see Figs. 3 and 4. Let ℎ be the space of finite-dimensional vectors containing the
aforementioned finite set of parameters and 𝑑𝑖𝑚(ℎ) = 𝑁𝑘. Its elements, denoted by 𝒌ℎ, consist of 𝑁𝑘 components
and are referred to as discretized parameter functions. With this in hand, we can define the collocation points 𝑐𝑜𝑙depending on the PINN approach as follows:

• For the FP-PINN (see Fig. 3), the discretized parameter function 𝒌ℎ is considered as an input of the NN, just
like the physical variables (𝑥, 𝑡), therefore 𝑐𝑜𝑙 = 𝑐𝑜𝑙 × 𝑐𝑜𝑙. Here, 𝑐𝑜𝑙 = {(𝑥, 𝑡)(𝑖)𝑐𝑜𝑙}𝑖=1,… ,𝑁 (𝑥,𝑡)

𝑐𝑜𝑙
is constituted

of values of (𝑥, 𝑡) sampled regularly or not over Ω×]0, 𝑇 ]. Similarly, 𝑐𝑜𝑙 = {𝒌(𝑖)ℎ,𝑐𝑜𝑙}𝑖=1,… ,𝑁𝑘
𝑐𝑜𝑙

is constituted of
values of 𝒌ℎ sampled regularly or not over ℎ,

• For the SP-PINN (see Fig. 4), the discretized parameter function 𝒌ℎ is considered as a parameter of the NN, just
like 𝜽, therefore 𝑐𝑜𝑙 = 𝑐𝑜𝑙.

We denote by ‖ ⋅ ‖𝑐𝑜𝑙 the Euclidean norm evaluated on the grid 𝑐𝑜𝑙. To embed the model knowledge (see Eq. (8))
into the training of the NN, the following residual loss function 𝐽𝑟𝑒𝑠 is minimized:

𝐽𝑟𝑒𝑠(𝒌; 𝑦) =
1

𝑁𝑐𝑜𝑙
‖𝑅(𝒌; 𝑦)‖2𝑐𝑜𝑙 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑁𝑘

𝑐𝑜𝑙𝑁
(𝑥,𝑡)
𝑐𝑜𝑙

∑

𝒌ℎ∈𝑐𝑜𝑙

∑

(𝑥,𝑡)∈𝑐𝑜𝑙

𝑅(𝒌ℎ; 𝑦)(𝑥, 𝑡) for the FP-PINN,
1

𝑁 (𝑥,𝑡)
𝑐𝑜𝑙

∑

(𝑥,𝑡)∈𝑐𝑜𝑙

𝑅(𝒌ℎ; 𝑦)(𝑥, 𝑡) for the SP-PINN.
(9)

Remark. It is worth emphasizing here that the evaluation of the 𝐽𝑟𝑒𝑠 loss function involves computing partial
derivatives of the NN output �̃� with respect to the NN inputs (𝑥, 𝑡) (through the term 𝜕𝑡𝑦(𝑥, 𝑡) and the operator
𝐴(𝒌; 𝑦)(𝑥, 𝑡)). Given the structure of a NN, that is composition (of a large number) of simple functions, this can be
performed very efficiently by benefiting from automatic differentiation tools (see, e.g., Baydin et al. [38], and Raissi
et al. [17] for its application to PINNs). However, it is crucial to ensure that the activation functions {𝜎𝑖}𝑖=1,…,𝑑 are
chosen to be sufficiently smooth to support multiple differentiations, ruling out the standard ReLU activation function.
In this study, the hyperbolic tangent activation function is selected for its differentiability.

Remark. In the case of the SWE (see Eq. (6)), to minimize the number of backward passes during an evaluation of
the functional 𝐽𝑟𝑒𝑠, the equations are reformulated in non-conservative form. To do so, the fluxes conservation term
(𝜕𝑥1𝑭 (𝑦) + 𝜕𝑥2𝑮(𝑦)) is expressed in terms of ⃖⃖⃗∇ℎ, ⃖⃖⃗∇𝑞1 and ⃖⃖⃗∇𝑞2 as:

𝜕𝑥1𝑭 (𝑦) + 𝜕𝑥2𝑮(𝑦) =

⎛

⎜

⎜

⎜

⎝

0 0

𝑔ℎ −
𝑞21
ℎ2

𝑞1𝑞2
ℎ2

𝑞1𝑞2
ℎ2 𝑔ℎ −

𝑞22
ℎ2

⎞

⎟

⎟

⎟

⎠

⋅ ⃖⃖⃗∇ℎ +

⎛

⎜

⎜

⎜

⎝

1 0
2 𝑞1

ℎ
𝑞2
ℎ

𝑞2
ℎ 0

⎞

⎟

⎟

⎟

⎠

⋅ ⃖⃖⃗∇𝑞1 +

⎛

⎜

⎜

⎜

⎝

0 1
0 𝑞1

ℎ
𝑞1
ℎ 2 𝑞2

ℎ

⎞

⎟

⎟

⎟

⎠

⋅ ⃖⃖⃗∇𝑞2. (10)

This way, only three backward passes are needed for each evaluation of 𝐽𝑟𝑒𝑠, whereas seven backward passes would be
required for the same evaluation with the conservative form of Eq. (6). This kind of reformulation could be useful for
any conservative systems, since conservative forms generally require to compute the divergence of numerous terms.

3.2.3. Boundary and Initial Conditions
The boundary conditions and the initial conditions are sampled in a standard way, following e.g. Raissi et al. [17],

as:
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• 𝐵𝐶 = {(𝑧(𝑖)𝐵𝐶 , 𝐼
(𝑖)
𝐵𝐶 )}𝑖=1,… ,𝑁𝐵𝐶

, sampled regularly or not over  × 𝜕Ω× ]0, 𝑇 ] for the FP-PINN, and only over
𝜕Ω× ]0, 𝑇 ] for the SP-PINN,

• 𝐼𝐶 = {(𝑧(𝑖)𝐼𝐶 , 𝐼
(𝑖)
𝐼𝐶 )}𝑖=1,… ,𝑁𝐼𝐶

, sampled regularly or not over  × Ω for the FP-PINN, and only over Ω for the
SP-PINN.

The following loss functions can then be minimized to ensure that the solution satisfies the boundary and initial
conditions:

𝐽𝐵𝐶 (𝑦) =
1

𝑁𝐵𝐶
‖𝑍𝐵𝐶 (𝑦) − 𝑧𝐵𝐶‖

2
2,

𝐽𝐼𝐶 (𝑦) =
1

𝑁𝐼𝐶
‖𝑍𝐼𝐶 (𝑦) − 𝑧𝐼𝐶‖

2
2,

(11)

with 𝑍𝐵𝐶 and 𝑍𝐼𝐶 the operators mapping from the states space  to the sampled boundary conditions space and to
the sampled initial conditions space, respectively,.

3.2.4. Total loss function
To encapsulate both model constraints and observations discrepancy, the following total loss function can

eventually be defined, where we recycle 𝐽𝑜𝑏𝑠 from Section 2.2:
𝐽 (𝒌; 𝑦) = 𝜆𝑟𝑒𝑠𝐽𝑟𝑒𝑠(𝒌; 𝑦) + 𝜆𝐵𝐶𝐽𝐵𝐶 (𝑦) + 𝜆𝐼𝐶𝐽𝐼𝐶 (𝑦) + 𝜆𝑜𝑏𝑠𝐽𝑜𝑏𝑠(𝑦)

=
𝜆𝑟𝑒𝑠
𝑁𝑐𝑜𝑙

‖𝜕𝑡𝑦 + 𝐴(𝒌; 𝑦) − 𝐿(𝒌)‖2𝑐𝑜𝑙 +
𝜆𝐵𝐶
𝑁𝐵𝐶

‖𝑍𝐵𝐶 (𝑦) − 𝑧𝐵𝐶‖
2
2 +

𝜆𝐼𝐶
𝑁𝐼𝐶

‖𝑍𝐼𝐶 (𝑦) − 𝑧𝐼𝐶‖
2
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
physics-informed

+
𝜆𝑜𝑏𝑠
𝑁𝑜𝑏𝑠

‖𝑍(𝑦) − 𝑧𝑜𝑏𝑠‖
2
𝑅−1 .

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
data-driven

(12)

with the weight factors set 𝜆 = (𝜆𝑟𝑒𝑠, 𝜆𝐵𝐶 , 𝜆𝐼𝐶 , 𝜆𝑜𝑏𝑠) ∈ (ℝ+)4 given. In practice, we introduce the loss function 𝐽𝑝ℎ𝑦as:
𝜆𝑝ℎ𝑦𝐽𝑝ℎ𝑦(𝒌; 𝑦) = 𝜆𝑟𝑒𝑠𝐽𝑟𝑒𝑠(𝒌; 𝑦) + 𝜆𝐵𝐶𝐽𝐵𝐶 (𝑦) + 𝜆𝐼𝐶𝐽𝐼𝐶 (𝑦), (13)

with 𝜆𝑝ℎ𝑦 ∈ ℝ+. The total loss function then becomes:
𝐽 (𝒌; 𝑦) = 𝜆𝑝ℎ𝑦𝐽𝑝ℎ𝑦(𝒌; 𝑦) + 𝜆𝑜𝑏𝑠𝐽𝑜𝑏𝑠(𝑦). (14)

The value of 𝜆 has a lot of influence on the training and is difficult to fix. In this work, its value is set by trial
and error such that the loss functions defined earlier, after being normalized by their first iterate, have comparable
magnitude during training.
3.3. Detailed methods

All the necessary ingredients have been detailed above, let us now detail the two PINN approaches: the FP-PINN
and the SP-PINN.
3.3.1. Fully-Parameterized PINN

For the FP-PINN (Fig. 3), we recall that the primary objective is to train the NN in order to build a surrogate model
associated to Eq. (1). Thus, 𝜃 is expressed as follows:

𝜃 ∶ (𝒌ℎ; (𝑥, 𝑡)) ↦ �̃�𝜃(𝒌ℎ; (𝑥, 𝑡)), (𝒌ℎ; (𝑥, 𝑡)) ∈ 𝑐𝑜𝑙 × 𝑐𝑜𝑙. (15)
The training phase consisting in the approximation of operator 𝐹𝑃 ∶ (𝒌; (𝑥, 𝑡)) ↦ 𝑦𝑘(𝑥, 𝑡) for a given set of 𝒌 is
called the offline phase (Fig. 3) because it can be performed once and reused for multiple parameter identifications.
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This phase involves solving the following optimization problem:
offline: 𝜽∗ = 𝑎𝑟𝑔𝑚𝑖𝑛

𝜽∈ℝ𝑁𝜃

(

𝐽𝑝ℎ𝑦(𝒌ℎ; �̃�𝜃(𝒌ℎ; ⋅))
)

, 𝒌ℎ ∈ 𝑐𝑜𝑙. (16)

Once the offline training phase is completed, the 𝐽𝑜𝑏𝑠 loss function can be minimized using 𝜽∗ as a simple 𝒌ℎ-
differentiable surrogate model for operator 𝐹𝑃 , as long as 𝒌ℎ remains within the range values of 𝑐𝑜𝑙 to ensure
that the surrogate model is reliable. By doing this, the discretized parameter function 𝒌𝑡𝑟𝑢𝑒ℎ that best explains the given
observations 𝑜𝑏𝑠 can be approximated by 𝒌∗ℎ at a low computational cost:

𝑜𝑏𝑠 ↦ 𝒌∗ℎ ≈ 𝒌𝑡𝑟𝑢𝑒ℎ . (17)
This phase is called the online phase (Fig. 3) and involves solving the following optimization problem, with 𝒌𝑚𝑖𝑛ℎ =
𝑖𝑛𝑓 (𝑐𝑜𝑙) and 𝒌𝑚𝑎𝑥ℎ = 𝑠𝑢𝑝(𝑐𝑜𝑙):

online: 𝒌∗ℎ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒌ℎ∈[𝒌𝑚𝑖𝑛ℎ ;𝒌𝑚𝑎𝑥ℎ ]

(

𝐽𝑜𝑏𝑠(�̃�𝜃∗ (𝒌ℎ; ⋅))
)

, for a given dataset 𝑜𝑏𝑠. (18)

It should be noted that the output �̃�𝜃(𝒌ℎ; ⋅) has a double dependency on 𝒌ℎ, a direct one through its inputs and
an indirect one through the minimization of 𝐽𝑝ℎ𝑦. Hence, the natural name Fully-Parameterized PINN proposed in
this work. Additionally, let us stress that the offline/online strategy is possible here because 𝒌ℎ is an input of the NN.
Thus, the loss function 𝐽𝑜𝑏𝑠 depends directly on 𝒌ℎ through �̃�𝜃 , which makes the use of the derivative 𝜕𝐽𝑜𝑏𝑠

𝜕𝒌ℎ
possible to

minimize 𝐽𝑜𝑏𝑠.
From a practical point of view, it is observed that minimizing 𝐽𝑝ℎ𝑦 alone, as required in the offline training phase,

can be a difficult task. First, this loss function appears to be highly non-convex, and therefore very sensitive to the
initialization of 𝜃 . Then and more importantly, the space 𝑐𝑜𝑙 × 𝑐𝑜𝑙 can become huge as the dimension of 𝒌ℎ(denoted 𝑁𝑘, see Section 3.2.2) increases, making the FP-PINN very prone to the curse of dimensionality. Indeed, the
offline training phase of the FP-PINN entails sampling a hypercube of dimension ((𝑑 + 1) + 𝑁𝑘), with 𝑑 the spatial
dimension of the problem, which quickly becomes intractable for large values of 𝑁𝑘. However, if these two issues are
addressed, the result is a differentiable surrogate model that can be efficiently utilized for as many online phases as
needed.
Remark. The here investigated FP-PINN is connected to the so-called DeepONet (Deep Operator Network) (see Lu
et al. [39] for the origin and [28] and references therein for applications in different fields). The DeepONet architecture
is a NN architecture developed to approximate continuous non-linear operators. The concept has also been generalized
to neural operators in [40]. This architecture is used by Wang et al. [30] to elaborate the Physics-Informed DeepONet
(PI-DeepONet), see, e.g., [28] and references therein for applications. The goal of the PI-DeepONet is substantially
the same as the offline phase of the FP-PINN proposed here (see Eq. (16)).

The difference between PI-DeepONet and the offline phase of the FP-PINN lies in the architecture of the NN. Where
the FP-PINN is a classical fully-connected NN (also known as a multi-layer perceptron), the DeepONet architecture,
elaborated from the universal approximation theorem for operators (see Chen and Chen [41]), expresses its output as
the dot product of the outputs of two NNs: the branch and the trunk.

Given these differences and similarities, the offline phase of the FP-PINN introduced in this work appears as a brute
force version of the PI-DeepONet. However, as both architectures consider the discretized parameter function as an
input, they share the same advantages and disadvantages in terms of capacity to handle high-dimensional parameter
in a DA context.

3.3.2. Semi-Parameterized PINN
Conversely, in the case of the SP-PINN (Fig. 4), let us remind that the objective is to learn the physics and the data

at once during the training, thus approximating the operator 𝑆𝑃 ∶ (𝑥, 𝑡) ↦ 𝑦𝑘(𝑥, 𝑡) for a given value of 𝒌 which is
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Offline phase:

(𝑥, 𝑡)

𝒌1
ℎ

⋅⋅
⋅

𝒌𝑁𝑘
ℎ

𝒌ℎ ∈ 𝑐𝑜𝑙

(𝑥, 𝑡) ∈ 𝑐𝑜𝑙

𝜎1

𝜎1

⋅
⋅
⋅

𝜽

…

…

Fully-connected Neural Network 𝜃

𝜎𝑑

𝜎𝑑
⋅
⋅
⋅

�̃�𝜃(𝒌ℎ; (𝑥, 𝑡))

𝜕⋅
𝜕𝑥

𝜕⋅
𝜕𝑡

𝐼𝑑

Automatic
differentiation

𝐽𝑝ℎ𝑦(𝒌ℎ; �̃�𝜃(𝒌ℎ; ⋅))

Model res.
(𝒌ℎ ∈ 𝑐𝑜𝑙)

𝜕⋅
𝜕𝜽

Gradient Descent
on 𝜽

Online phase:

(𝑥, 𝑡)

𝒌1
ℎ

⋅⋅
⋅

𝒌𝑁𝑘
ℎ

(𝑥, 𝑡) ∈ 𝑜𝑏𝑠

𝜃∗

Trained
Neural Network

(𝜽∗ is fixed)

�̃�𝜃∗ (𝒌ℎ; (𝑥, 𝑡)) 𝐽𝑜𝑏𝑠(�̃�𝜃∗ (𝒌ℎ; ⋅))

Obs. discrepancy

𝑜𝑏𝑠

𝜕⋅
𝜕𝒌ℎ

Automatic
differentiation

Gradient Descent
on 𝒌ℎ

Figure 3: Offline and online phases for the here investigated FP-PINN. The offline phase consists in building a surrogate
model for a set of discretized parameter function 𝒌ℎ ∈ 𝑐𝑜𝑙. It can be seen as a brute force counterpart of the PI-DeepONet
(see Wang et al. [30], and, e.g., [28] and references therein for applications). The online phase then consists in using this
surrogate to find the 𝒌ℎ explaining at best the observations 𝑜𝑏𝑠.

learned on the fly. In order to do so, the NN is now also parameterized by 𝒌ℎ and therefore denoted by 𝑘ℎ,𝜃:
𝑘ℎ,𝜃 ∶ (𝑥, 𝑡) ↦ �̃�𝑘ℎ,𝜃(𝑥, 𝑡), for a given value of 𝒌ℎ ∈ 𝑐𝑜𝑙. (19)
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The training of the NN consists in solving the following optimization problem:

(𝒌∗ℎ, 𝜽
∗) = 𝑎𝑟𝑔𝑚𝑖𝑛

(𝒌ℎ,𝜽) ∈ℝ𝑁𝑘+𝑁𝜃

(

𝜆𝑝ℎ𝑦𝐽𝑝ℎ𝑦(𝒌ℎ; �̃�𝑘ℎ,𝜃) + 𝜆𝑜𝑏𝑠𝐽𝑜𝑏𝑠(�̃�𝑘ℎ,𝜃)
)

, for a given dataset 𝑜𝑏𝑠. (20)

Here, the discretized parameter function 𝒌ℎ is directly considered as a parameter during the optimization, just like
𝜽. Therefore, its value changes during the training such that after the optimization, 𝒌∗ℎ is expected to be a good
approximation of 𝒌𝑡𝑟𝑢𝑒ℎ .

(𝑥, 𝑡)

(𝑥
,𝑡
)∈


𝑐𝑜
𝑙
∪


𝑜𝑏
𝑠
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⋅
⋅
⋅

…

…

Fully-connected Neural Network 𝑘ℎ ,𝜃

𝜽
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Figure 4: Training of the here investigated SP-PINN, which is equivalent to the original PINN for inverse problems
introduced in Raissi et al. [17] and now widely used in different contexts (see, e.g., [28] and references therein). Here, the
model and the observations are learned jointly and the parameter identification is conducted at once with the NN training,
on the fly.

Contrary to the FP-PINN, the output �̃�𝑘ℎ,𝜃 has only one indirect dependency on 𝒌ℎ, through the minimization of
𝐽𝑝ℎ𝑦. Hence, the name Semi-Parameterized PINN proposed in this work. This method is equivalent to the original PINN
method for inverse problems introduced by Raissi et al. [17], and widely applied since (see, e.g., [28] and references
therein).

In practice, since the training of the SP-PINN involves learning the physics for only one discretized parameter
function instead of an entire set as in the FP-PINN case, this method is much less prone to the curse of dimensionality.
Indeed, increasing the dimension of 𝒌ℎ increases the dimension of the parameter space for the SP-PINN training, which
then becomes (𝑁𝑘+𝑁𝜃), but it does not change the dimension of the hypercube for the training, which remains (𝑑+1)
(compared to ((𝑑 + 1+𝑁𝑘) for the FP-PINN). Increasing the number of parameters 𝑁𝑘 is likely not problematic from
a computational cost perspective, because 𝑁𝑘 will a priori be low compared to 𝑁𝜃 that is usually very large (several
thousands at least) and because NN technology is well-suited for handling large numbers of parameters. Another
advantage of the SP-PINN over the FP-PINN is that the presence of observations during training can actually aid in
minimizing 𝐽𝑝ℎ𝑦 (see, e.g., Gopakumar et al. [42]). However, it should be noted that we do not obtain a surrogate model
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with the SP-PINN approach; the resulting NN after training reflects the physics for 𝒌∗ℎ only.

3.4. Algorithmic cares
This sections emphasizes the algorithmic cares used in this work to make FP-PINN and SP-PINN training possible.

Without these best practices, it has been numerically observed that training can often diverge or result in very poor
parameter identification.

Training a NN essentially involves the minimization of a non-convex loss function in a high-dimensional parameter
space using a (stochastic or deterministic) gradient descent method. Therefore, the initialization point chosen in the
parameter space, i.e. the first parameter value 𝜽0, is important in determining the value of 𝜽∗. The so-called Xavier
initialization [43] is known to produce good results for training NNs using the hyperbolic tangent activation function.
We therefore use this initialization method in this work.
Even with the latter, it is numerically observed that the minimization of 𝐽𝑟𝑒𝑠 can get stuck in bad local minima, resulting
in poor learning of the model. To mitigate this issue, a pre-training phase is implemented, both for the FP-PINN and
the SP-PINN, with different forms depending on the choice of method. These procedures are detailed hereafter. This
ensures that the optimization of 𝐽𝑟𝑒𝑠 starts at a 𝜽 value, called 𝜽𝑝𝑟𝑒, that corresponds to a NN output closer to the solution
than after the initialization, making the minimization of 𝐽𝑟𝑒𝑠 less prone to bad local minima. Without this pre-training
phase, the non-convexity of 𝐽𝑟𝑒𝑠 with respect to 𝜽 can make the optimization very sensitive to 𝜽0, necessitating multiple
training restarts before achieving proper minimization.
3.4.1. Fully-Parameterized PINN

For the pre-training phase of the FP-PINN, the idea is to set up a "good" first value of the state 𝑦, denoted by
𝑦1𝑠𝑡 , and to perform a supervised training phase to make the output of the NN fit 𝑦1𝑠𝑡 for all collocation points in
𝑐𝑜𝑙 ×𝑐𝑜𝑙. In this work, 𝑦1𝑠𝑡 is set to equal BC values. During the offline and online phases, no special method is used
other than classical training with a gradient descent method (e.g. L-BFGS or Adam). The entire training procedure for
the FP-PINN is outlined in Algorithm 1:

Initialization
𝜽0 obtained by Glorot and Bengio [43] method.
𝒌ℎ,0 chosen by the user.

Pre-training
Data: 𝑐𝑜𝑙; 𝑐𝑜𝑙; 𝜽0; 𝑦1𝑠𝑡 ,
𝜽𝑝𝑟𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝜽∈ℝ𝑁𝜃

(

‖�̃�𝜃 − 𝑦1𝑠𝑡‖2𝑐𝑜𝑙 ×𝑐𝑜𝑙

)

.

Offline phase
Data: 𝑐𝑜𝑙; 𝑐𝑜𝑙; 𝐵𝐶 ; 𝐼𝐶 ; 𝜽0 = 𝜽𝑝𝑟𝑒; 𝝀,
𝜽∗ = 𝑎𝑟𝑔𝑚𝑖𝑛

𝜽∈ℝ𝑁𝜃

(

𝐽𝑝ℎ𝑦(𝒌ℎ; �̃�𝜃(𝒌ℎ; ⋅))
)

, 𝒌ℎ ∈ 𝑐𝑜𝑙.

Online phase
Data: �̃�𝜽∗ ; 𝑜𝑏𝑠; 𝒌ℎ,0; 𝒌𝑚𝑖𝑛ℎ ; 𝒌𝑚𝑎𝑥ℎ ,
𝒌∗ℎ = 𝑎𝑟𝑔𝑚𝑖𝑛

𝒌ℎ ∈ [𝒌𝑚𝑖𝑛ℎ ;𝒌𝑚𝑎𝑥ℎ ]

(

𝐽𝑜𝑏𝑠(�̃�𝜽∗ (𝒌ℎ; ⋅))
)

, for a given dataset 𝑜𝑏𝑠 .
Algorithm 1: Initialization and training of the FP-PINN. The pre-training allows for a better minimization of 𝐽𝑟𝑒𝑠as the offline phase will start with an output �̃�𝜃𝑝𝑟𝑒 (𝒌ℎ; ⋅) closer to the solution 𝑦𝑘. The online phase then uses the
surrogate model calibrated in the offline phase to perform parameter identification at a low computational cost.
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3.4.2. Semi-Parameterized PINN
With the SP-PINN, the observations dataset 𝑜𝑏𝑠 can actually be used for the pre-training. Indeed, as the

observations are expected to be close to the model solution, a simple supervised learning phase on 𝐽𝑜𝑏𝑠 allows to
start the minimization of 𝐽𝑟𝑒𝑠 with values of 𝜽 corresponding to an output close to the model solution, which shows
better optimization of the residual. In simple cases, the functionals 𝐽𝐵𝐶 and 𝐽𝐼𝐶 can also be used during the pre-training
phase, similarly to 𝐽𝑜𝑏𝑠.

For the test cases studied in this article, and certainly in most cases, it is numerically observed that the training
phase can be disrupted because the norm of the gradient of 𝐽 with respect to 𝒌ℎ is negligible compared to the norm of
the gradient of 𝐽 compared to 𝜽: ‖ 𝜕𝐽𝑟𝑒𝑠

𝜕𝒌ℎ
‖ << ‖

𝜕𝐽
𝜕𝜽‖. This leads to almost no updates on 𝒌ℎ during gradient descent. To

counter this effect, an alternating minimization strategy (fixed point algorithm) is used to alternate between minimizing
𝐽 with respect to 𝜽 and with respect to 𝒌ℎ. During each alternating minimization step, a classical gradient descent
method (e.g., L-BFGS or Adam) is employed. The entire procedure for the SP-PINN training is outlined in Algorithm 2:

Initialization
𝜽0 obtained by Glorot and Bengio [43] method.
𝒌ℎ,0 chosen by the user.

Pre-training
Data: 𝑜𝑏𝑠; 𝐵𝐶 ; 𝐼𝐶 ; 𝜽0; 𝝀,
𝜽𝑝𝑟𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝜽∈ℝ𝑁𝜃

(

𝜆𝑜𝑏𝑠𝐽𝑜𝑏𝑠(�̃�𝒌ℎ,0,𝜽) + 𝜆𝐵𝐶𝐽𝐵𝐶 (�̃�𝒌ℎ,0,𝜽) + 𝜆𝐼𝐶𝐽𝐼𝐶 (�̃�𝒌ℎ,0,𝜽)
)

, for a given dataset 𝑜𝑏𝑠.

Alternating minimization
Data: 𝑐𝑜𝑙; 𝑜𝑏𝑠; 𝐵𝐶 ; 𝐼𝐶 ; 𝜽(0) = 𝜽𝑝𝑟𝑒; 𝒌(0)ℎ = 𝒌ℎ,0; 𝑁𝑎𝑙𝑡𝑒𝑟; 𝝀,
for 𝑖 = 1,… , 𝑁𝑎𝑙𝑡𝑒𝑟 do

𝒌(𝑖)ℎ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒌ℎ ∈ℝ𝑁𝑘

(

𝐽𝑟𝑒𝑠(𝒌ℎ; �̃�𝒌ℎ,𝜽(𝑖−1) )
)

,

𝜽(𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜽∈ℝ𝑁𝜃

(

𝐽 (𝒌(𝑖)ℎ ; �̃�𝒌(𝑖)ℎ ,𝜽)
)

, for a given dataset 𝑜𝑏𝑠.

end
Algorithm 2: Initialization and training of the SP-PINN. The pre-training allows for a better minimization of the
𝐽𝑟𝑒𝑠 loss function as the alternating minimization will start with an output �̃�𝜃𝑝𝑟𝑒 (𝒌ℎ; ⋅) closer to the solution 𝑦𝑘.
To counteract the difference of influence on 𝐽 between 𝒌ℎ and 𝜽, an alternating minimization strategy is used to
minimize 𝐽 with respect to each parameter independently.

3.4.3. Fourier features
For the SP-PINN on the SWE test case, a learnable Fourier features embedding (see, e.g., [20, 44, 45]) is used to

help the SP-PINN approximate the physical solution at all scales. More specifically, before the input 𝑣 = (𝑥1, 𝑥2, 𝑡)𝑇is fed into the SP-PINN, an embedding of the following form:
𝛾(𝑣) =

(

𝑣, 𝑠𝑖𝑛(2𝜋 𝜉1 ⊙ 𝑣), 𝑐𝑜𝑠(2𝜋 𝜉1 ⊙ 𝑣), … , 𝑠𝑖𝑛(2𝜋 𝜉𝑚 ⊙ 𝑣), 𝑐𝑜𝑠(2𝜋 𝜉𝑚 ⊙ 𝑣)
)𝑇

is applied, where ⊙ denotes the element-wise product and 𝜉𝑖 =
(

𝜉𝑥1𝑖 , 𝜉𝑥2𝑖 , 𝜉𝑡𝑖
)𝑇 ∈ ℝ3 is the frequency vector for the 𝑖-th

Fourier feature. In this work, initial values are given for the frequencies 𝜉 = (𝜉1,… , 𝜉𝑚), but once the training begins
they are considered as parameters of the NN. As here 𝜽 = (𝑊 , 𝑏, 𝜉), the frequencies are then optimized during the NN
training along with weights and biases.
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4. Numerical experiments: inverse problems in hydraulics
In the section below, two test cases based on the flow models introduced in Section 2.3 are presented and discussed.

In Section 4.1, the two PINN approaches detailed in Section 3.3 are compared on the simple Backwater Equation model
introduced in Section 2.3.1. Despite the model’s simplicity, its complexity is sufficient to analyze the capacities of the
different approaches to handle high-dimensional parameters. Based on these results, the SP-PINN method is then
chosen in Section 4.2 to illustrate high-dimensional parameter identification on a model based on the 2D SWE.

In all the experiments below, the NNs are optimized using a L-BFGS optimizer (with Wolfe conditions for the
linear search). The activation function is the hyperbolic tangent 𝑡𝑎𝑛ℎ() and 𝜽 is initialized using the so-called Xavier
initialization [43]. The parameter 𝑲𝒔ℎ is initialized with a constant value of 40 𝑚1∕3∕𝑠 throughout the domain. All
observations are considered noise-free and the error covariance matrix for 𝐽𝑜𝑏𝑠 is set to 𝑅 = 𝐼𝑑. The loss functions are
normalized by their first iterate 𝐽 (0)

□ . It should be noted that no training or test sets are used for collocation points, as
the goal is to satisfy the model as much as possible. As the latter is considered perfect, the concept of overfitting does
not apply here. Similarly, as the observations are considered noise-free, no training or test sets are used for observation
points either. Numerical tests were conducted with test sets for both collocation points and observation points, and in
each case, the inference was worse than without them.

Unless specified otherwise, all PINNs calculations are performed on a single NVIDIA RTX A3000 Laptop GPU
with 6 GB memory and 4096 CUDA cores. The algorithms presented below are implemented using the Pytorch library
[46] and are available on the following GitHub repository: DassHydro repository.

4.1. Backwater Equation
The aim of this subsection is to compare the two PINN approaches presented in Section 3.3 in terms of identification

performance and capacity to handle high-dimensional parameter (here the Strickler friction coefficient 𝑲𝒔). First, the
results of both approaches are illustrated for the same test case to highlight the methodological differences.

4.1.1. Setup
The illustration test case, shown in Fig. 5, consists of a 1D spatial domain Ω representing a 1000 𝑚-long reach.

The bathymetry is a scaled so-called Mac Donald’s type bathymetry (see, e.g., Delestre et al. [47]) and the discretized
parameter function 𝑲𝒔ℎ is defined on 3 constant-value patches (𝑁𝑘 = 3 with a piecewise constant interpolation in
Ω). The observations consist of 20 points (𝑁𝑜𝑏𝑠 = 20) with a known water height, sampled randomly with a uniform
distribution in the domain Ω. The reference solution from which the observations are drawn is obtained with a RK4
finite-difference scheme, obtained with friction values 𝑲𝒔

𝑡𝑟𝑢𝑒
ℎ = (40, 30, 50) 𝑚1∕3∕𝑠. Since the flow is in subcritical

regime, the BC is fixed downstream, at ℎ𝑜𝑢𝑡 = 0.8 𝑚 and the constant flow rate is set at 𝑞 = 1 𝑚3∕𝑠∕𝑚.
The results are presented below for the FP-PINN and the SP-PINN. Then, a comparison between the two approaches

on inference accuracy and computation time when the dimension of 𝑲𝒔ℎ increases is proposed.

4.1.2. Results for the Fully-Parameterized PINN
For the FP-PINN, a fully-connected NN of the shape [4, 60, 60, 60, 1] (𝑁𝜃 = 7680) is used. This architecture,

relatively wide and shallow, and other ones in the article have been determined through successive numerical
experiments with the aim to maximize the physical consistency of the PINN compared to the reference flow while
maintaining a reasonable NN size. The collocation points 𝑐𝑜𝑙 are sampled on a regular 1D grid with 100 vertices
(𝑁𝑥

𝑐𝑜𝑙 = 100) and those in the parameter domain 𝑐𝑜𝑙 are sampled using a regular 3D grid with 10 vertices in each
dimension, so 𝑁𝑘

𝑐𝑜𝑙 = 1000 and 𝑁𝑐𝑜𝑙 = 105. The value of 𝜆 is set to 𝜆𝑟𝑒𝑠 = 103 and to 1 for all other components. Then,
a pre-training consisting of 100 L-BFGS iterations and an offline phase of 2000 L-BFGS iterations are performed. The
representative value of the state 𝑦1𝑠𝑡 used in the pre-training corresponds here to ℎ𝑜𝑢𝑡 = 0.8 𝑚. Once the offline phase
is complete, parameter identification is carried out during the online phase, with a stopping criterion on the stability
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Figure 5: Backwater Equation test case to compare SP-PINN and FP-PINN. The bathymetry is shown in green, the
reference flow line in blue and the reference spatially-distributed friction function parameter 𝑲𝒔 in grey. Observations
points are represented by the blue dots and the subdomains where 𝑲𝒔 is discretized correspond to the vertical black
dashes.

of the 𝐽𝑜𝑏𝑠 loss function.
The results of the offline training phase are presented in Fig. 6. The graphs show the minimization of the loss

functions during pre-training and offline phase, as well as a projection of the trained surrogate model onto a subspace.
The loss function represented in the left-hand graph, whose dominant term is the residual 𝐽𝑟𝑒𝑠, reaches a plateau after
1500 iterations, corresponding to a satisfactory training. The calibrated NN produces pertinent physical modeling
compared to the reference solution, as shown in the graph on the right by the response surfaces represented in terms of
longitudinal flow depth profiles ℎ̃𝜃(𝑲𝒔ℎ, 𝑥1) and ℎ𝑅𝐾4(𝑲𝒔ℎ, 𝑥1) for different friction parameter patterns. These very
similar response surfaces for a fairly wide range of friction parameters show that this surrogate is physically relevant.

Next, the calibrated FP-PINN is used to perform parameter identification from flow observations in the online
phase, during which a calibrated flow model is also obtained. The results presented in the left-hand graph of Fig. 7
show that the calibrated flow model (black dashed line) fits well the flow observations (blue dots) from the reference
flow line (blue line). Note that the simulated flow is fluvial (𝐹𝑟 < 1), as shown by the flow line above critical depth
(red line, we refer the reader to [12, 13, 31] for the basic concepts in hydraulics). The normal depth (yellow dashed
line), which corresponds to a local equilibrium between gravity and friction effects towards which the model would
tend on long uniform reaches, shows the sharp friction variations. The spatial pattern and values of friction are well
retrieved by resolution of the inverse problem using the FP-PINN as surrogate model. Note that the graph on the right
shows the rapid convergence of the friction parameter identification during the online phase. Note also that a longer
offline phase leads to a more accurate surrogate hence more accurate inversions in the tested configurations.

This highlighted the ability of the FP-PINN to identify a spatially-distributed friction parameter, by first building
a surrogate of the parameter-to-state operator defined in Eq. (2), which is then used to perform the identification.
4.1.3. Results for the Semi-Parameterized PINN

For the SP-PINN, a fully-connected NN of the form [1, 60, 60, 60, 1] (𝑁𝜃 = 7500) is used. Collocation points
𝑐𝑜𝑙 are sampled on a regular 1D grid with 100 vertices (𝑁𝑐𝑜𝑙 = 100). The value of 𝜆 is set to 𝜆𝑟𝑒𝑠 = 103 and to 1 for
all other components. Then, a pre-training consisting of 100 L-BFGS iterations and 4 alternating minimization steps
of 50 L-BFGS iterations each (40 iterations on 𝜽 and 10 iterations on the parameter of interest 𝑲𝒔ℎ), representing 200
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Figure 6: Results of the FP-PINN offline phase training (Backwater Equation). Left: loss functions minimization during
pre-training and offline phase. Right: comparison between reference solution and trained model prediction projected on a
subspace showing the dependency of the water height ℎ on 𝑥1 and on the first component of the parameter of interest
𝑲𝒔

1
ℎ. For this projection, all other components of 𝑲𝒔ℎ are set to 40 𝑚1∕3∕𝑠.

Figure 7: Results of the FP-PINN online phase training (Backwater Equation). Left: calibrated model after online phase,
showing the inferred value of the parameter 𝑲𝒔

∗
ℎ and the corresponding model solution ℎ̃𝜽∗ (𝑲𝒔

∗
ℎ; 𝑥1). Right: inference of

𝑲𝒔ℎ components values during online phase, compared with 𝑲𝒔
𝑡𝑟𝑢𝑒
ℎ components values.

L-BFGS iterations in total, are performed.
The training results are presented in Fig. 8. The graphs show the minimization of the loss functions during pre-

training and alternating minimization phases, as well as the minimization of the relative RMSE. The loss function
represented in the left-hand plot, whose dominant term is the observations discrepancy 𝐽𝑜𝑏𝑠, reaches a plateau after
150 iterations, corresponding to a satisfactory training. The same plateau can be observed on the relative RMSE both
on the model solution ℎ and on the parameter 𝑲𝒔ℎ, indicating that the training has led to satisfactory results.

The results represented in the left-hand graph of Fig. 9 show that the calibrated flow model (black dashed line)
fits well to the flow observations (blue points) from reference flow line (blue line). Since the test case discussed here
is identical to that of the previously presented FP-PINN, hydraulic quantities such as critical depth and normal depth
exhibit the same behavior as described above. The spatial pattern and values of friction are well retrieved by resolution
of the inverse problem during the SP-PINN training. Note that the graph on the right shows the rapid convergence
of the friction parameter 𝑲𝒔ℎ identification, where a plateau is reached almost right after the start of the alternating
minimization phase.
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Figure 8: Results of the SP-PINN training (Backwater Equation). Left: loss functions minimization during pre-training
and alternating minimization. Right: Relative RMSE minimization on ℎ and on 𝑲𝒔ℎ during pre-training and alternating
minimization phases.

Figure 9: Results of the parameter identification with the SP-PINN (Backwater Equation). Left: calibrated model after
training, showing the inferred value of the parameter 𝑲𝒔

∗
ℎ and the corresponding model solution ℎ̃𝑲𝒔

∗
ℎ ,𝜽

∗ (𝑥1). Right: inference
of 𝑲𝒔ℎ components values during pre-training and alternating minimization, compared with 𝑲𝒔

𝑡𝑟𝑢𝑒
ℎ components values.

This showcased the capacity of the SP-PINN to perform an identification of a spatially-distributed friction
parameter, by simultaneously learning the physics (represented by the model) and fitting to the observations during
the NN training.
4.1.4. Methods comparison

The capacities of the two PINN approaches to handle a high-dimensional parameter of interest 𝑲𝒔ℎ is studied
below. The test case is the same as the illustration test case presented above, but with increasing parameter dimension
𝑁𝑘. For each dimension, the relative RMSE on the inferred value of 𝑲𝒔

∗
ℎ and the computation time are monitored (for

the FP-PINN, the offline and online computation times are specified). The friction is always distributed regularly in
the domain, on 𝑁𝑘 constant patches, similar to the illustration test case but with varying number of patches. Results
of this comparison are presented in Table 1. The components values of 𝑲𝒔

𝑡𝑟𝑢𝑒
ℎ used are:

• 𝑁𝑘 = 1∶ 𝑲𝒔
𝑡𝑟𝑢𝑒
ℎ = 40 𝑚1∕3∕𝑠

• 𝑁𝑘 = 2∶ 𝑲𝒔
𝑡𝑟𝑢𝑒
ℎ = (40, 30) 𝑚1∕3∕𝑠

• 𝑁𝑘 = 3∶ 𝑲𝒔
𝑡𝑟𝑢𝑒
ℎ = (40, 30, 50) 𝑚1∕3∕𝑠

• 𝑁𝑘 = 4∶ 𝑲𝒔
𝑡𝑟𝑢𝑒
ℎ = (40, 30, 35, 50) 𝑚1∕3∕𝑠
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Table 1
Comparison of the SP-PINN and the FP-PINN performances on Backwater Equation with test cases of increasing parameter
dimension. For the FP-PINN, the computation time is detailed under the form (offline computation time + online
computation time) s.

SP-PINN (Semi-Parameterized) FP-PINN (Fully-Parameterized)

𝑁
𝑘
=
1 Relative RMSE on 𝑲𝒔

∗
ℎ 1.44 × 10−3 4.69 × 10−3

Computation time 9.21 s (40.68 + 0.011) s

𝑁
𝑘
=
2 Relative RMSE on 𝑲𝒔

∗
ℎ 3.61 × 10−3 8.94 × 10−3

Computation time 8.50 s (32.84 + 0.031) s

𝑁
𝑘
=
3 Relative RMSE on 𝑲𝒔

∗
ℎ 1.94 × 10−2 4.80 × 10−2

Computation time 8.42 s (88.01 + 0.027) s

𝑁
𝑘
=
4

Relative RMSE on 𝑲𝒔
∗
ℎ 3.82 × 10−2 1.26 × 10−1

Computation time 4.55 s
(646.30 + 0.034) s

GPU memory exceeded, mini-batch descent (Adam)

This showcased the capacity of the SP-PINN to perform parameter identification without being affected by the
dimension of the inverse problem (namely the value of 𝑁𝑘). Indeed, for the SP-PINN, the discretized parameter is
used as a parameter of the NN, therefore increasing its size increases the dimension of the parameter space, but the NN
already has on the order of ∼ 104 parameters (𝑑𝑖𝑚(𝜽) = (104)). Therefore, adding a few parameters by increasing
the dimension of 𝑲𝒔ℎ does not make much of a difference to the training, as one still has 𝑁𝑘 << 𝑁𝜃 . Note that
the slight variations observed in computation time arise from the L-BFGS optimizer conducting additional function
evaluations during gradient descent. Here, computation times for the SP-PINN remain consistently within the same
order of magnitude, irrespective of the parameter dimension 𝑁𝑘.

On the other hand, the FP-PINN takes the parameter 𝑲𝒔ℎ as an input, therefore increasing its dimension drastically
increases the complexity of the inverse problem because of the curse of dimensionality. It should be noted that
the FP-PINN can handle low-dimensional parameter identification with reasonable computation time thanks to the
parallelization capabilities of NNs. This is why the computation times for 𝑁𝑘 = 1, 2, 3 remain within the same order
of magnitude. Unfortunately, as soon as the cost of a gradient descent step (dominated by the cost of the numerous
forward calls) exceeds the memory capacity of the GPU, the parallelization no longer applies. Then, the collocation
points have to be divided into mini-batches and a stochastic gradient descent method (Adam) has to be used to perform
the training (keeping the same number of iterations as before, i.e. 100 epochs for pre-training and 2000 epochs for the
offline training). Then, the curse of dimensionality becomes very influential on the computation time, this is why for
𝑁𝑘 = 4 the computation time grows by a factor of ∼ 10. This value corresponds to the 10 mini-batches that were used
to perform the training in this configuration. Indeed, since the parameter domain 𝑐𝑜𝑙 has been sampled using a grid
with 10 vertices in each dimension, going from 𝑁𝑘 = 3 to 𝑁𝑘 = 4 multiplied by 10 the number of collocation points,
thus requiring to divide the dataset into 10 mini-batches to perform the training on the same GPU as before.
For high-dimensional inverse problems, this method is out of reach, as the offline training phase requires to sample a
hypercube of dimension ((𝑑+1)+𝑁𝑘) in order to train 𝜃 . While 𝑑 remains relatively small for most cases (𝑑 ∼ 1−3),
𝑁𝑘 can easily become huge, making the FP-PINN very prone to the curse of dimensionality.

H. Boulenc, R. Bouclier, P.-A. Garambois, J. Monnier: Preprint submitted to Elsevier Page 18 of 27



Spatially-Distributed Parameter Identification by PINNs illustrated on the Shallow-Water Equations

4.2. Shallow-Water Equations
The objective here is to illustrate the capacity of the PINN-based approaches to perform identification of high-

dimensional spatially-distributed parameter on a dynamic flow model, namely the non-linear hyperbolic system 2D
SWE. As shown in Section 4.1, the FP-PINN is very prone to the curse of dimensionnality and is therefore not a
good candidate for identifying high-dimensional parameter on a more complex model, such as SWE. Thus, only the
SP-PINN is used for inferring the spatially-distributed friction coefficient function (𝑥1, 𝑥2) ↦ 𝑲𝒔(𝑥1, 𝑥2).Moreover, we compare the performance of the SP-PINN with that of the well-established VDA method to better un-
derstand the advantages and disadvantages of each for solving high-dimensional inverse problems. Such identifiability
problems in estimating parameters of a SWE flow model by VDA have been studied for example in [32, 48, 49, 50].

4.2.1. Setup
Initially, a test case is created in a 2D spatial domain Ω consisting in a 1000 𝑚-long and 100 𝑚-wide reach. The

time domain is set to [0 𝑠 ; 21600 𝑠] with 7 homogeneously distributed discrete time steps, one every 3600 𝑠. The
time interval [0 𝑠 ; 7200 𝑠], here called the warm-up, is used to bring the flow at equilibrium. For the SP-PINN, the
initial condition is set at 7200 𝑠, therefore the time domain is set to [7200 𝑠 ; 21600 𝑠] with 5 discrete time steps. The
bathymetry is a scaled so-called Mac Donald’s type bathymetry (see, e.g., Delestre et al. [47]) along 𝑥1 and a convex
quadratic with 3 sinusoidal bumps along 𝑥2. The flow is in subcritical regime, therefore the downstream boundary
condition Γ𝑜𝑢𝑡 is set to ℎ𝑜𝑢𝑡 = 0.7435 𝑚 ∀(𝑥, 𝑡) ∈ Γ𝑜𝑢𝑡 × [0 𝑠 ; 21600 𝑠]. The time-dependant flow rate 𝑄𝑖𝑛(𝑡) at the
input boundary Γ𝑖𝑛, shown in Fig. 10 is set to 100 𝑚3∕𝑠∕𝑚 between 𝑡 = 0 𝑠 and 𝑡 = 7200 𝑠 to set up the physical
equilibrium, then to a ramp going linearly from 𝑄𝑖𝑛(𝑡 = 7200 𝑠) = 100 𝑚3∕𝑠∕𝑚 to 𝑄𝑖𝑛(𝑡 = 21600 𝑠) = 130 𝑚3∕𝑠∕𝑚:

Figure 10: SWE test case. Left: bathymetry with boundary conditions, consisting in an imposed hydrograph at the input
Γ𝑖𝑛, an imposed constant water height at the output Γ𝑜𝑢𝑡 and wall conditions on the borders Γ𝑤𝑎𝑙𝑙. Right: Hydrograph 𝑄𝑖𝑛(𝑡)
used at Γ𝑖𝑛.

The discretized parameter function 𝑲𝒔ℎ is defined on 1152 constant-value patches (𝑁𝑘 = 1152 with a piecewise
constant interpolation in the domain Ω), on a (48 × 24) grid. The observations consist of water height values ℎ𝑜𝑏𝑠at 4608 points (𝑁𝑜𝑏𝑠 = 4608), sampled on an uniform grid in the space-time domain (one observation per friction
patch × 4 time steps, not counting the SP-PINN initial condition at 𝑡 = 7200𝑠). Consequently, these observations do
not provide direct information on the discharge 𝑞, making the inverse problem challenging since relying on partially
observed state values only.

The reference solution from which observations are drawn is obtained using finite volumes method with a first-order
Godunov spatial scheme and an explicit Euler time-stepping scheme (see Pujol et al. [34], Couderc et al. [35]).
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4.2.2. Results
The inference of a friction parameter 𝑲𝒔ℎ of high dimension (𝑁𝑘 = 1152) from water height observations is

studied here using the SP-PINN approach. The architecture consists of a fully-connected NN of shape [3, 60, 60, 60,
3] (𝑁𝜃 = 9192). The number of parameters is higher than one might expect for this architecture due to the presence
of the Fourier features embedding. This embedding increases both the number of weights and biases and also adds
various frequencies to the parameters. The Fourier features embedding is used with 4 features, whose initial values are
set to (1, 2, 3, 4) for all physical variables. The value of 𝜆 is set to 1 for all components. The collocation points 𝑐𝑜𝑙 are
sampled on a regular 3D grid with 50 vertices along 𝑥1, 30 vertices along 𝑥2 and 5 vertices along 𝑡 (𝑁𝑐𝑜𝑙 = 7500).
Then, a pre-training consisting of 1000 L-BFGS iterations for the pre-training and 10 alternating minimization steps
of 50 L-BFGS iterations each (40 iterations on 𝜽 and 10 on the parameter 𝑲𝒔ℎ), representing 500 L-BFGS iterations
in total, are performed. The loss functions are re-normalized after the pre-training.

Figure 11: Results of the SP-PINN training (SWE) and high-dimensional parameter identification. Left: loss functions
minimization during the pre-training and alternating minimization phases. Right: Relative RMSE minimization on ℎ, 𝑞1
and the spatially-distributed parameter 𝑲𝒔ℎ during the pre-training and alternating minimization phases. Results are not
shown for 𝑞2 for clarity sake.

Results for the loss minimization, during the pre-training and alternating minimization phases, as well as the
relative RMSE minimization are presented in Fig. 11. The loss function shown in the graph on the left reaches a
plateau after 1100 iterations, corresponding to a satisfying training. The same plateau can be observed on the relative
RMSE both on the physical components of the solution ℎ and 𝑞1, as well as on the parameter 𝑲𝒔ℎ. This indicates
that the training has led to satisfying results on both optimization objectives, i.e. in term of physical quality of the
surrogate flow model and in term of high-dimensional friction parameter identification. For 𝑞2, the relative RMSE is
higher, which was expectable because of the smaller transversal flux 𝑞2 with slight signature in the water surface, hence
lower identifiability than 𝑞1 on this mainly 1D velocity pattern. Therefore, results are not shown to avoid squeezing the
vertical scale, but the same minimization pattern as 𝑞1 is observed.

The results of water surface simulation and high-dimensional spatially-distributed friction parameter inference
with the SP-PINN approach are presented in Fig. 12. The graph on the left shows that the calibrated flow model (grey
surface) fits well the reference flow (blue surface) at time 𝑡 = 21600 𝑠, as they are indistinguishable from one another.
As there are as many observations points in space as the number of friction patches, they are not shown in the figure for
clarity sake. The graph on the right shows that the spatial pattern and values of friction are well retrieved by resolution
of the inverse problem during the training of the SP-PINN. Note that the low frequency (large scale) patterns of the
friction are identified (medium friction at the beginning of the domain, then high friction and low friction at the end).
Some errors can be observed, where simulated water depth is less sensitive to friction and also in the influence zones
of upstream and downstream boundaries of the domain. The latest is probably due to the fact that boundary conditions
are taken into account in a naive way in the SP-PINN.
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Figure 12: Results of the parameter identification with the SP-PINN (SWE). Left: calibrated model after training, showing
the model solution ℎ̃𝑲𝒔

∗
ℎ ,𝜽

∗ (𝑥1, 𝑥2) and the reference solution ℎ𝑟𝑒𝑓 (𝑥1, 𝑥2) at time 𝑡 = 21600 𝑠, which are indistinguishable
from one another. The collocation points and bathymetry are also shown. Right: inferred spatially-distributed parameter
𝑲𝒔

∗
ℎ patches values after 1500 L-BFGS iterations, compared with 𝑲𝒔

𝑡𝑟𝑢𝑒
ℎ patches values .

The error analysis is presented in Fig. 13. The graphs show the errors between the inferred value of 𝑲𝒔
∗
ℎ and the

true value 𝑲𝒔
𝑡𝑟𝑢𝑒
ℎ by showing the signed error, the absolute error and the relative error. The friction field inference is

satisfying with a global relative RMSE of 5.9 %. This relative RMSE goes to 8.4 % without Fourier features embedding
(not shown for brevity). The error graphs on Fig. 13 highlight the higher inference errors near the boundary conditions,
as explained before.
It is important to note that the SWE can be seen as a low-pass filter of the riverbed properties. More precisely, the
higher frequencies of the friction and bathymetry patterns are filtered by the flow and are not discernable in the free
surface signature (see [51, 52] and references therein). Therefore, as this method only uses water heights to retrieve
the friction pattern, some information is lost because of the filtering properties of the flow.
Sensitivity of the simulated flow to the friction coefficient 𝑲𝒔ℎ. In the context of this test case, it is important to
highlight the sensitivity of the water height ℎ to the friction parameter 𝑲𝒔ℎ. Indeed, a global relative RMSE of about
10 % (upper bound) is observed on the inferred friction coefficient and it is important to understand how such a variation
on the value of 𝑲𝒔ℎ affects the water height ℎ (equivalently the free surface elevation 𝐻), as the observations consist
of ℎ values only. Therefore, the reference water height ℎ of the SWE system (computed by the finite volume solver in
DassFlow software [36]) is projected along 𝑥1 and plotted in Fig. 14, showing for a constant friction coefficient value
of 𝑲𝒔ℎ = 20 𝑚1∕3∕𝑠 and 𝑲𝒔ℎ = 60 𝑚1∕3∕𝑠 how a ± 10 % variation on 𝑲𝒔ℎ affects the free surface. The maximal
deviation measured is 9 𝑐𝑚 for 𝑲𝒔ℎ = 20 ± 10% 𝑚1∕3∕𝑠 and 6 𝑐𝑚 𝑲𝒔ℎ = 60 ± 10% 𝑚1∕3∕𝑠. This corresponds to a
sensitivity to the free surface with the SP-PINN method of 5 % on average in the domain and of 13 % at the maximum,
on the case tested here. This sensitivity depends on flow physics, for example less sensitivity of flow depth to friction
occurs e.g. in a channel with a pool triggering a significant flow deceleration and wetted section increase.
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Figure 13: Error analysis between 𝐾∗
𝑠ℎ and 𝐾 𝑡𝑟𝑢𝑒

𝑠ℎ . Left: Signed error. Middle: Absolute error. Right: Relative error with a
median of 2.8 % and a standard deviation of 3.6 %. The errors near the boundaries are the result of the naive way in which
boundary conditions are taken into account in the SP-PINN.

Figure 14: Free surface sensitivity to a ±10% increase in 𝑲𝒔ℎ at 𝑇 = 21600 𝑠. The maximal deviation for the blue curve is
9 𝑐𝑚 and 6 𝑐𝑚 for the orange one. This corresponds to a sensitivity of the water height ℎ to the friction parameter 𝑲𝒔ℎ of
5 % on average in the domain and a maximum sensitivity of 13 % for this test case.

4.2.3. Comparison with Variational Data Assimilation
The results of the inference of a high-dimensional friction parameter in a SWE-based model with the SP-PINN

method are compared to a state-of-the-art VDA algorithm, which has been demonstrated to be well-suited for the
present inverse problem (see, e.g., [32, 34, 53]). A VDA algorithm implemented in the DassFlow software [36]
and based on accurate cost gradients obtained by solving the adjoint model, is used to tackle the same spatially-
distributed friction parameter identification problem as with the SP-PINN. A quasi Newton L-BFGS algorithm
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(M1QN3 algorithm, see [54]), adapted to high-dimensional inverse problems, is used for the optimization without
any regularization term. The convergence curves and the relative RMSE minimization between the inferred value of
𝑲𝒔ℎ and 𝑲𝒔

𝑡𝑟𝑢𝑒
ℎ are shown in Fig. 15. The present VDA computation is performed on an 11𝑡ℎ Gen Intel Core i9-11950H

CPU, which is more adapted to VDA than the GPU used for training the SP-PINN.

Figure 15: VDA convergence for the reference SWE-based model. Left: loss function and gradient norm minimization.
Right: Relative RMSE between 𝑲𝒔ℎ and 𝑲𝒔

𝑡𝑟𝑢𝑒
ℎ minimization.

A direct comparison between the 𝑲𝒔
∗
ℎ inferred with VDA and the 𝑲𝒔

∗
ℎ inferred with the SP-PINN is shown in

Fig. 16, as well as the differences in Fig. 17. It is important to note that boundary conditions are taken into account
very differently between the SP-PINN method and the VDA method. More specifically, in this work, the wall conditions
for the SP-PINN simply consist in imposing 𝑞2 = 0 on the boundary, which seems very basic compared to what is
done in VDA. This results in significant differences in the inferred parameter near the boundaries.

The global relative RMSE on the 𝐾∗
𝑠ℎ is comparable with both methods: 6.2 % when inferred with VDA and 5.9%

when inferred with the SP-PINN, demonstrating the performance of the latter. Nevertheless, the inference error with
the SP-PINN stems from classical identifiability issues on physical parameters given the available observations but
also depends on the quality of the learnt surrogate. Thus, it makes the interpretation of the SP-PINN inference error
more difficult. It should also be noted that the computation time is very different from one method to the other. As
a first comparison, both calculations have been performed on a single CPU thread and the results are: 30 hours of
computation time for the VDA against 70 seconds for the SP-PINN, which represents a computational time factor of
∼ 1500 between the two methods.
However for a fair comparison, the calculations have also been performed in parallel for the SP-PINN on the GPU
(with 4096 CUDA cores as described earlier) and the computation time drops to 35 seconds. While for the VDA, a
MPI computation on 6 CPU threads (for the 4608 mesh cells) provides about 5 hours of CPU-time computation for
the standard laptop CPU aforementioned, bringing the computational time factor to ∼ 500.

5. Conclusion
This work aimed to evaluate the capabilities of two PINN-based approaches for handling high-dimensional

parameter identification problems and compare their performance to established DA methods. To this end, a common
formalism from the perspective of DA has been introduced, to revisit and compare classical inverse methods and
new Machine Learning algorithms. Then, the two different PINN-based approaches were tested on academic test
cases consisting in inferring a spatially-distributed friction coefficient used in an ODE-based hydraulics model (the
Backwater Equation). Several best practices (Fourier features, pre-training, alternating minimization) that are crucial
for the training of such methods have also been highlighted. The associated findings show that one of the two methods
is capable of solving efficiently high-dimensional inverse problems: the here called Semi-Parameterized PINN (SP-
PINN), actually corresponding to the original method introduced in Raissi et al. [17]. To illustrate its performance,
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Figure 16: Comparison between the 𝐾∗
𝑠ℎ inferred with VDA and with the SP-PINN. Left: 𝐾∗

𝑠ℎ inferred with VDA after
200 M1QN3 iterations (5 ℎ on 6 CPU threads). Middle: 𝐾∗

𝑠ℎ inferred with SP-PINN after 1500 L-BFGS iterations (1000
iterations for the pre-training and 500 iterations for the alternating minimization, 35 𝑠 in total on 1 GPU). Right: 𝐾 𝑡𝑟𝑢𝑒

𝑠ℎ for
comparison.

Figure 17: Difference between the 𝐾∗
𝑠ℎ inferred with VDA and with SP-PINN. Left: Signed difference. Middle: Absolute

difference. Right: Relative difference, with a median of 4.1 % and a standard deviation of 4.8 %. The significant differences
near the boundaries arise from the different ways in which boundary conditions are taken into account in the SP-PINN
and VDA.
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this method was then successfully used to identify a (103)-dimensional spatially-distributed friction parameter on a
SWE-based hydraulics modelling inverse problem. Another important contribution of this work lies in the comparison
of the SP-PINN method with the well-established VDA method (based on the adjoint model technique), where the
direct model is enforced pointwise as a strong constraint in the optimization process, unlike the SP-PINN where the
direct model is enforced through its residual only. In the test case presented in this work, both the SP-PINN and the
more traditional VDA provide comparable inferred parameter accuracy, however the SP-PINN requires(102)−(103)
times less computational time than VDA.

At first glance, Fully-Parameterized PINNs (FP-PINNs) seems to be preferable for parameter identification because
they directly approximate the parameter-to-state operator, allowing the NN to be trained only once, albeit at a significant
cost, and then reused in multiple parameter identification phases. However, in high-dimensional inverse problems
scenarios, this approach becomes impractical since FP-PINNs require feeding the parameters to be inferred as inputs
to the NN. Therefore, the SP-PINN is preferable, where the parameters to be inferred are treated as parameters of the
NN rather than inputs, making it practicable in high-dimensional inverse problems. Nevertheless, SP-PINNs require
retraining each time a new inference is needed, unlike FP-PINNs.

The computational cost of training a SP-PINN is significantly lower than the cost of the well-established VDA
method. However, as already well-known (see, e.g., [55]), PINNs approaches require lots of trial and error to set the
hyperparameters in order to achieve correct identification, such as the size and architecture of the NN, the activation
functions, the number of collocation points and more critically, the weight factors in the loss function defined in
Eq. (12). Indeed, the latter have a considerable impact on the inference accuracy. Therefore, under the assumption
that the hyperparameters can be set efficiently, the very low computational cost and the ease of implementation and
maintenance of the SP-PINN make it a very interesting approach for tackling high-dimensional inverse problems based
on highly non-linear PDE systems.
Even when these methods are challenging to set up, such as in complex real-world scenarios (see, e.g., [34] in the
present river hydraulics context), they can still serve as initializers for conventional DA algorithms or act as surrogates.
For these reasons, PINNs are a very promising method for the future of high-dimensional inverse problems resolution
that deserve to be further investigated to fully leverage their computational cost advantage over conventional methods.
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