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Introduction 

 Characterization of marine environments from optical remote sensing 

 Open ocean :  

 Characterization of water turbidity (phytoplancton pigments, colored dissolved organic 

matter and suspended matter). 

 Ok with multispectral imagery using a few well-positioned spectral bands in the VIS, 

e.g., O’Reilly et al. 1998; Lee et al. 2002; Werdell et al., 2013… 

 Coastal areas : 

 Characterization of water turbidity + depth + bottom cover,  

 Decoupling these effects more accurate with hyperspectral imagery, i.e., using more (a 

few dozen) and narrower spectral bands in the VIS (Hochberg & Atkinson, 2003; Kutser et al, 

2003; Hedley et al., 2012; Botha et al., 2013), 

 Hyperspectral remote sensing of shallow waters mostly done using : 

 A semi-analytical (SA) model of subsurface remote-sensing reflectance (Lee et al, 

1998, 1999; Albert & Mobley, 2003):  𝒓 𝑟𝑠 = 𝒓 𝑟𝑠(Θ) where Θ = targeted parameters, 

 An inversion method that solves 
 

Θ = argmin
Θ

𝑓(𝒓𝑟𝑠, 𝒓 𝑟𝑠(Θ)) 

Cost function 

Measured 

reflectance 

SA Model (or 

exact RTM 

simulations) 

Iterative optimization, e.g., Lee et al. (1999, 

2001); Brando et al. (2009); Dekker et al. (2011); 

Giardino et al. (2012); Garcia et al (2014); Mc 

Kinna et al. (2015); Jay & Guillaume (2016)… 

Look-Up Tables (LUT), e.g., Mobley et 

al., (2005); Hedley et al., (2009, 2012)… 
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Introduction 

 About the cost function… 

 Mostly the Least-Square (LS) criterion (or Euclidean distance): 

𝑓 𝒓𝑟𝑠, 𝒓 𝑟𝑠 Θ = 𝒓𝑟𝑠 − 𝒓 𝑟𝑠 Θ
𝑡 𝒓𝑟𝑠 − 𝒓 𝑟𝑠 Θ =  𝑟𝑟𝑠 λ − 𝑟 𝑟𝑠 λ;Θ

2

λ

 

 But, LS optimal if… 

 Noise variance (e.g., NE∆𝑟𝐸
2) = wavelength-independent 

 Some solutions :  

(1) remove the noisiest bands, e.g., Mobley et al (2005), or  

(2) weight each waveband by the inverse of NE∆𝑟𝐸
2 (Brando  

et al., 2009; Botha et al., 2013). 

 

 Wavebands uncorrelated 

 

 Accounting for the full  

spectral covariance matrix 𝜞 ? 

 

(Brando et al, 2009) 

« As homogeneous as possible » 

optically-deep water 

Spectral covariance matrix = 

spectrally-correlated version of NE∆𝑟𝐸
2 
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Introduction 

 Maximum likelihood (ML) estimation, some first attempts… 

 𝒓𝑟𝑠 ∼  𝒩 𝝁 Θ ;𝜞 Θ     where  (1) 𝝁 Θ = 𝒓 𝑟𝑠 Θ = SA model 

      (2) 𝜞 Θ  estimated on a local neighborhood, within   

      which Θ is assumed to be constant (Jay et Guillaume., 2012)  

      or to vary linearly (Jay & Guillaume, 2014). 

 Θ 𝑀𝐿 = argmax
Θ

  
1

(2𝜋)𝐿 𝜞
𝑒−0,5 𝒓𝑟𝑠,𝑖−𝒓 𝑟𝑠 Θ

𝑡
𝜞−1 𝒓𝑟𝑠,𝑖−𝒓 𝑟𝑠 Θ

i  

 ++ (1) Account for spectral and spatial correlations, (2) Accuracy ↗ if assumptions are fully met 

 -- (1) Loss in spatial resolution, (2) Accuracy ↘ if assumptions are not fully met… 

 A pixelwise ML method ? 
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Outlines 

 Methods 

 Proposed ML methods, 

 Comparison methods, 

 Implementation, 

 Data 

 Results 
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Proposed ML methods 

 Assumption:  𝒓𝑟𝑠 ∼  𝒩 𝝁 Θ ;𝜞 Θ    ⇔    𝒓𝑟𝑠 = 𝝁 Θ + 𝒏    where 𝒏 ∼ 𝒩 𝟎; 𝜞 Θ  

 Goal: parameterize 𝝁 Θ  and 𝜞 Θ  as a function of water column parameters 

 Mean vector parameterized by a SA model (Lee et al, 1998; 1999) 

 𝜇 λ;Θ = 𝑟 𝑟𝑠 λ;Θ = 𝑟𝑟𝑠,∞ λ 1 − 𝑒
− 𝑘𝑑 λ +𝑘𝑢

𝑐 λ 𝐻 + 1 𝜋 𝐵1𝜌𝑏,1 λ + 𝐵2𝜌𝑏,2 λ 𝑒
− 𝑘𝑑 λ +𝑘𝑢

𝑏 λ 𝐻  

 Or in matrix notation 𝝁 Θ = 𝒓 𝑟𝑠 Θ = 𝑰 − 𝑲𝑐 𝒓𝑟𝑠,∞ +
1
𝜋 𝑲𝑏 𝐵1𝝆𝑏,1 + 𝐵2𝝆𝑏,2  

 Θ=(H, P, G, X, 𝐵1, 𝐵2)  

 Importantly, two options for bottom parameterization: 

  𝐵𝑖𝑖 = 1  (Klonowski et al, 2007; Goodman & Ustin, 2007; Brando et al, 2009; Hedley et al, 2009; 2012) 

 ++ : only one parameter 𝐵 = 𝐵1 = 1 − 𝐵2 (= fractional cover of substratum 1) 

 -- : bottom within-class variability is poorly accounted for. 

  𝐵𝑖𝑖 ≠ 1 (Fearns et al, 2011; Garcia et al, 2014) 

 ++ : the bottom within-class variability is accounted for through a brightness factor. 

 -- : two parameters 𝐵1 and 𝐵2 (= fractional cover + within-class variability) 
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Proposed ML methods 

 Parameterization of covariance matrix 

 Case 1: No bottom within-class variability (if sum-to-one) / bottom within-class variabilities 

perfectly described by brightness factors (if no sum-to-one) 

 𝒓𝑟𝑠 = 𝑰 − 𝑲𝑐 𝒓𝑟𝑠,∞ +
1
𝜋 𝑲𝑏 𝐵1𝝆𝑏,1 + 𝐵2𝝆𝑏,2

deterministic

 + 𝒏𝒔 
random

 

 𝒏 = 𝒏𝒔 ∼ 𝒩 𝟎;𝜞𝑠  , where 𝜞𝑠 is a spectrally-correlated version of the environmental noise NE∆rE
2 and is 

estimated over an « as homogeneous as possible » area of optically-deep water. 

 𝒏𝒔 describes the sensor noise and scene-specific above-water variabilities (residuals from imperfect ATM, 

air-water interface and sun glint corrections, effects related to the rough water surface, etc) (Brando & 

Dekker, 2003; Wettle et al, 2004) 



 Parameterization of covariance matrix 

 Case 2: bottom within-class variabilities not perfectly represented using brightness factors 

 Two Gaussian distributions with covariances 𝜞𝑏,1 and 𝜞𝑏,2 are used to describe within-class 

variabilities, 

 A single factor 𝐵 is used to describe the fractional cover of substratum 1 (𝐵 ≤ 1) 

 𝒓𝑟𝑠 = 𝑰 − 𝑲𝑐 𝒓𝑟𝑠,∞ + 𝑲𝑏
1
𝜋 𝐵 𝝆𝑏,1 + 𝒏𝑏,1 + 1 − 𝐵 𝝆𝑏,2 + 𝒏𝑏,2  + 𝒏𝒔 

 𝒓𝑟𝑠 = 𝒓𝑟𝑠,∞ 𝑰 − 𝑲𝑐 +
1
𝜋 𝐵𝝆𝑏,1 + 1 − 𝐵 𝝆𝑏,2 𝑲𝑏
deterministic

 + 𝑲𝑏 𝐵𝒏𝑏,1 + 1 − 𝐵 𝒏𝑏,2 + 𝒏𝒔
random

 

 In this case, it can be shown that 
 

   𝜞 = 𝑲𝑏 𝐵
2𝜞𝑏,1 + (1 − 𝐵)

2𝜞𝑏,2 𝑲𝑏
bottom variability = 𝒇(Θ)

  + 𝜞𝑠 
above−water variability ≠ 𝒇(Θ)

 

 

 Decoupling of the influences of within-class variabilities and fractional covers ! 

 Only one parameter to estimate for bottom parameterization (= fractional cover), AND 

 Bottom within-class variability is accounted for (but not estimated). 

Proposed ML methods 
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Sand spectra 

normalized at 550 nm 

Seagrass spectra 

normalized at 550 nm    Actual seagrass spectra

  

Seagrass covariance matrix  

   Simulated seagrass spectra

  



Proposed ML methods / 

Comparison methods 
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 ML 1:  𝝁 Θ = 𝒓 𝑟𝑠 Θ  ,  𝜞 = 𝜞𝑠  and  Θ=(H, P, G, X, 𝐵1, 𝐵2)  

 Θ 𝑀𝐿1 = argmax
Θ

1

(2𝜋)𝐿 𝜞𝑠
𝑒−0,5 𝒓𝑟𝑠−𝒓 𝑟𝑠 Θ

𝑡
𝜞𝑠
−1 𝒓𝑟𝑠−𝒓 𝑟𝑠 Θ = argmin

Θ
𝒓𝑟𝑠 − 𝒓 𝑟𝑠 Θ

𝑡𝜞𝑠
−1 𝒓𝑟𝑠 − 𝒓 𝑟𝑠 Θ  

 

 ML 2:  𝝁 Θ = 𝒓 𝑟𝑠 Θ  ,  𝜞 = 𝜞𝑠 +𝑲𝑏 𝐵
2𝜞𝑏,1 + (1 − 𝐵)

2𝜞𝑏,2 𝑲𝑏  and  Θ=(H, P, G, X, B)  

 Θ 𝑀𝐿2 = argmax
Θ

1

(2𝜋)𝐿 𝜞
𝑒−0,5 𝒓𝑟𝑠−𝒓 𝑟𝑠 Θ

𝑡
𝜞−1 𝒓𝑟𝑠−𝒓 𝑟𝑠 Θ  

 

 LS ≈  𝝁 Θ = 𝒓 𝑟𝑠 Θ  ,  𝜞 = 𝜎2𝑰  and  Θ=(H, P, G, X, B)  or Θ=(H, P, G, X, 𝐵1, 𝐵2)  

 Θ 𝐿𝑆 = argmin
Θ

𝒓𝑟𝑠 − 𝒓 𝑟𝑠 Θ
𝑡 𝒓𝑟𝑠 − 𝒓 𝑟𝑠 Θ = argmin

Θ
 𝑟𝑟𝑠 λ − 𝑟 𝑟𝑠 λ;Θ

2
λ  



Implementation 
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 Model inversion using iterative optimization (trust-region 

reflective algorithm, Matlab®), 

 Pairwise estimation of the two bottom types, 

 Initialization 

 Initial guesses derived from reflectance values (Lee et al, 1999), OR 

 Latin Hypercube Sampling (Garcia et al, 2014) 

  Generation of LUTs of 100,000 spectra/parameters. 

  Initial guesses corresponding to the closest spectrum in the LUT. 



Data 
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 Real data set 

 Airborne Hyspex image collected over the 

Quiberon Peninsula, France (Actimar, HypLitt 

2012), 

 Spatial resolution = 0.50 m, 

 36 spectral bands between 400 et 800 nm 

(spectral sampling interval ≈ 11 nm), 

 1 m < H < 5 m, 

 Four bottom types: sand, oyster bags, 

seagrass, brown algae, 

 Estimation of bottom reflectance spectra and 

covariance matrices from spectral data. 

 + 14 additionnal Hyspex images 

of other areas of the Peninsula  

to validate bathymetry retrieval 

(0.44 m < H < 12 m) 

Bottom 

reflectance 

spectra 

True color 

composite 

image 

(deglinted, 

subsurface) 



Data 
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 Simulations 

 Statistical modeling #1 

 𝒓𝑟𝑠 = 𝑰 − 𝑲𝑐 𝒓𝑟𝑠,∞ +
1
𝜋 𝑲𝑏 𝐵1𝝆𝑏,1 + 𝐵2𝝆𝑏,2

deterministic

 + 𝒏𝒔 
random

 

 Statistical modeling #2 

 𝒓𝑟𝑠 = 𝒓𝑟𝑠,∞ 𝑰 − 𝑲𝑐 +
1
𝜋 𝐵𝝆𝑏,1 + 1 − 𝐵 𝝆𝑏,2 𝑲𝑏
deterministic

 + 𝑲𝑏 𝐵𝒏𝑏,1 + 1 − 𝐵 𝒏𝑏,2 + 𝒏𝒔
random

 

 H = 1; 5; 10; 15 m 

 Intermediate water turbidity (Garcia et al, 2015) : P = 0.05 m-1; G = 0.1 m-1; X = 0.01 m-1  

 4 pure bottom spectra + 6 mixtures of two bottom spectra (50%-50%)  

 10 bottom spectra in total 

 For each statistical modeling, 2,000 simulations for each depth. 



Results – Simulations –  

Statistical modeling #1 
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Reflectance-

derived  

initialization 

 

Bias of H estimation 

  

 Bias of P estimation 

LHS sampling 

based 

initialization 

Bias of X estimation 
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Reflectance-

derived  

initialization 

 

 

 

 

 

 

 

 

 

LHS sampling 

based 

initialization 

Bias of H estimation   Bias of P estimation    Bias of X estimation 

Results – Simulations –  

Statistical modeling #2 



Results – Real data –  

Bathymetry estimation 
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Results – Real data – 

Bathymetry estimation 
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Sum-to-one               No sum-to-one 



Results – Real data – 

Bottom cover estimation 
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Sum-to-one               No sum-to-one 

SAND 



Results – Real data – 

Bottom cover estimation 
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Sum-to-one               No sum-to-one 

OYSTER 

BAGS 



Results – Real data – 

Bottom cover estimation 
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Sum-to-one               No sum-to-one 

SEAGRASS 



Results – Real data – 

Bottom cover estimation 
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Sum-to-one               No sum-to-one 

BROWN 

ALGAE 



Conclusions & Future works… 
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 Most inversion methods do not account for spectral covariance, 

 We propose two alternative methods (ML1 and ML2) based on Maximum Likelihood 

estimation to invert a SA model, 

 Importance of initialization, especially for ML1, 

 ML2 allows accounting for (potentially complex) bottom within-class variability while 

limiting the ill-posedness of the inversion problem, 

 Estimation accuracy generally increases compared with LS methods, 

 ML2 requires estimating bottom covariance matrices beforehand (ground-based 

measurements ?), 

 

 Future works include 

 Investigating how accurate the estimation of bottom covariance matrices should be ? 

Is it possible to use standard matrices ? 

 Testing LUT-based inversion to avoid local minima ? 

 ... 
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