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With a “Working Memory” and a fixed context
length, we can compute each step in O(1)
(constant time) instead of O(n  ) (quadratic time)
and still access information beyond context
length thanks to recurrent connections.
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The shorter the context length is, the faster the
computations. It’s better to have a lot of units
with a very small context length, than a few
units with a very large context length.

For example, one unit of with context length of
100 takes more time than 20 units of with
context length of 5 :

100    >   20*52 2

Working Memory and Context
Length

Trainable Parameters and
Learning

We use Truncated BackPropagaton Throught
Time with the length of the context.

The number of parameters trained in the
network follows that formula :

P = 11D U + UDO + 8DU + O2

where
P = Number of Trained Parameters
D = Attention Units’ Dimension
U = Number of Attention Units
O = Output Dimensions

Only Attention Weight (W  , W  , W  ), Unit’s
Feed-Forward (FF   , FF    ) and the Readout are
learned.
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Number of Attention Units 

Japanese Vowels : Accuracy

This model is a middle ground between
Transformers and Reservoir Computing.

Number of units 

Number of
units’ dimensions Reservoir like

Transformers like

How to understand the results ?

We get closer to Transformers when the
number of units is low compared to units’
dimension.

We get closer to Reservoir Computing when
number of units is high compared to units’
dimension.

Cross Situationnal Learning : Accuracy

Number of Attention Units 
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Input Example
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Sliding Window
moving forward at

each time step
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Recurrent Attention Network
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“Working Memory”

Readout

Hidden State
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Input
Connection

Recurrent
Connection

Each input and recurrent dimensions are
mapped to only one input dimension of one unit.

Every connections are sparse and topographic /
identity connections. 

(nr. units * att. units’ dimension)

Random Connections
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Step 1
Compute
Queries, Keys
and Values

Step 2
Apply Attention
Formula
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Context

Input connections brings new
and fresh information of
time t, while Recurrent
connections brings a mix of
old informations computed
some steps before.

Thus, we can apply
attention on
spatial & temporal
informations.

Inside an Attention Unit

It might extract some diverse patterns and
learn to work with it in the same way
Reservoir Computing [4] does. 

As we observe in some experiences [3], in
doing so, training could converge faster. 

Step 3
Pass throught
the Unit’s Feed
Forward layers
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Unit
Output

We could decompose those Units into two
different ones : 

Attention Only (step 1-2)
Memory Only (step 3)

According to [2], this step retrieves and
combines memories.

Thus, some memories could be shared
between different Units of Attention Only.

And, we will be able to tune the model in
function of the task’s needs : more or less
attention or memory units.

Feed Forward

H
id

de
n 

St
at

e
(n

r.
 u

ni
ts

 *
 a

tt
. u

ni
ts

’ d
im

en
si

on
)

Output Dimension

What about the results ?

Inputt
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Learned !
Learned !

Learned !

Learned ! Learned !

Let’s dive into it !

Show me how !
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PERSPECTIVES

PERSPECTIVES

Attention Unit are inspired from Attention Head in [1].
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We could use fixed and random W  and W  to
compute our Queries and Keys.
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Inspired by Transformers, we’re trying to

make Reservoir Computing scalable, by using

more complex units.


