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Abstract—The energy consumption of servers has been a
critical research area, drawing significant interest from academic
and industrial sectors. Various models have been developed to
estimate power consumption of computing devices, ranging from
simple linear models to more complex ones. In recent years, as
the cloud paradigm has expanded and allowed applications to
be hosted alongside others in virtual machines, power models
have evolved to distribute energy usage among applications
on a server. These models aim to achieve two primary objec-
tives: monitoring the energy footprint and optimizing energy
consumption. Nonetheless, little attention has been given in
academic literature to evaluate the efficiency and accuracy of the
allocation phase of this models. This paper presents a definition
of power division and a protocol to evaluate models using such
division. The proposed protocol is used to evaluate models on
physical machines with different performance settings, toggling
hyperthreading and turboboost. Before discussing the conceptual
distinctions between power and energy allocation models, our
results show the existence of some limitations in the existing
models. These results provide valuable insight into the missing
information needed to improve the accuracy of power models.

Index Terms—energy consumption, power usage, modeling,
allocation, virtual machines, performances

I. INTRODUCTION

The energy consumption of servers is a research topic
on its own that has attracted increasing interest in both the
academic and industrial worlds in recent years. Many models
have been developed to estimate the energy consumption of
computing devices, ranging from simple linear models to more
complex models. Historically such models were designed to
represent the consumption of the entire computing device,
(e.g. a server in an HPC cluster [1], [2], or a battery-powered
mobile device [3]). In more recent years, due to the increasing
use of the Cloud paradigm, applications are no longer hosted
alone on a server, but are collocated with other applications,
usually running inside virtual machines. To account for this
new reality, power models have been adapted to divide the
estimated consumption among the different applications that
are running on the server [4]–[6]. In this paper, we will refer
to this type of model as a power division model. Such models
use sensors to acquire the energy consumption of the targeted
server (e.g. RAPL), and use system metrics (e.g. performance
counters) to divide this consumption among applications.

The objective generally put forward by the authors of power
division model is to assign an energy consumption to the

various software programs running on a given server, and to
use this information to determine which software program is
the most energy-consuming among the others. This objective
can be analogized to the creation of Life Cycle Assessment
(LCA) [7], [8] for the different piece of software running on a
given infrastructure. Some power division models extend the
system of division of energy among software applications, to
division among virtual machines (VMs). In that context, VMs
may belong to different users, and context of deployment (host
machine, CPU architecture and size, neighbour VMs. . . ) is
invisible within the virtual machines. This energy consumption
may be divided a second time among the applications running
inside the VM. Two different actors that might be interested by
power division models can be identified. a) the Cloud provider,
to divide the consumption among the different VMs running on
their infrastructure, and to allocate these consumptions to their
clients, b) the end users, to assign the energy consumptions of
their VMs to the different applications that are being executed
inside their VMs.

On the other hand, it is claimed [4] that power division
models can be used to optimize the energy consumption of
running applications, and can help developers to understand
their behaviors, in a context where multiple applications are
running concurrently. From this point of view, a leverage is
generally brought forward [7], [8]; modifying a preexisting
source code to optimize its performance in terms of its energy
consumption. It is worth noting that power division models
are intended for use in a shared context where multiple
applications run concurrently (this is the main reason for
division) as well as in a production context. Unlike in HPC
environments, where hosts are configured and optimized to
accommodate specific applications, production platforms are
set up to accommodate a variety of workloads, and end-users
have no control over these settings. The emergence of models
like Kepler [9], which target deployments in Kubernetes,
demonstrate a willingness to utilize these models within a
Cloud context. From our perspective, Cloud represents the
primary use case for these models, and this paper will explore
this context.

However, the literature has given little attention to val-
idating the allocation algorithm utilized by power division
models, claiming that there is no truth value to compare
to, and have limited their investigation to the ability of the



models to recover the global consumption of the machine.
This paper provides a clear definition of power division and
a standardized protocol for evaluating models utilizing such
division. The proposed protocol is used to evaluate models
on physical machines with different performance settings,
toggling hyperthreading and turboboost. Our results reveal
certain limitations in the existing power division models,
which should be addressed to enhance their accuracy.

The paper is structured as follows. Firstly, Section II
introduces the topic of power models and highlights the
limitations of the validation protocols from the literature.
Section III proposes a formal definition of the problem of
power division, and use it to create a protocol to evaluate
power division models. Sections IV presents the experimental
results obtained using the proposed protocol, and highlights
limitations of the state of the art models, and identifies areas
requiring improvement to enhance their efficiency. Section V
outlines the conceptual differences between power and energy
division models. Finally, Section VI concludes the paper with
suggestions for future research work.

II. RELATED WORK

This section summarizes existing methods and interesting
related work on models for measuring and estimating energy
and power consumption.

There are various methods available for measuring the
power consumption of a computing node (or server). One
option is to use an external device, known as a power meter,
which can be connected to the server’s power supply via a
wall socket, as demonstrated in previous studies [10]–[12].
Although this approach has the benefit of providing highly
accurate measurements, it may prove relatively costly as a
power meter would need to be acquired for each individual
computing server. Furthermore, it is important to note that
such a device is unable to isolate consumption of particular
components (e.g. CPU, RAM, disk). An alternative method
frequently utilized involves the implementation of digital sen-
sors integrated directly within the components by the manu-
facturer. The RAPL (Running Average Power Limit) sensor,
initially introduced by Intel in [13], has been widely adopted
since [14]–[16]. This instrument measures power consumption
at different component levels, encompassing the entire CPU
socket, all CPU cores, integrated GPU, and RAM. According
to the authors of [14], RAPL gives really accurate results
with very little overhead, as the sensor is based on integrated
voltage regulators since Intel Haswell architecture. AMD
processors are equipped with RAPL sensors, which operate
on a software model, unlike Intel processors. This can lead to
inconsistencies, as demonstrated by the authors of [17]. Other
components, such as Nvidia graphics cards, can be measured
with good accuracy using the NVML (Nvidia Management
Library) API [18]. In this paper, we will concentrate solely on
the power usage of the CPU, as this is the component that is
generally prioritized by power division models.

Prior to the introduction of RAPL, software models were
used to model the power consumption of physical machines.

These models still have a purpose in estimating the power
consumption of components that are not covered by RAPL,
or other embedded sensors (e.g. hard disks, network cards,
etc.). In their work [19], the authors present a taxonomy
of power models based on software monitoring. Software
monitoring is typically performed by gathering system metrics,
such as performance counters, that offer insights into the
activities and utilization of the physical machine, such as
CPU usage, instruction count, cycle count, I/O accesses, etc.
In their study [20]–[22], the authors propose linear power
models based on CPU and memory usage to estimate VM
consumption. As outlined in [19], creating a universal power
model is a challenging task because CPU usage is not fully
correlated with power consumption, and it would need to be
adapted for each type of application, let alone applications
with changing behaviour. The authors of [2] use an application
classification to determine a subset of performance counters
that can be used to represent the power consumption of a given
application. Although this classification may be appropriate in
an HPC context where only one application is used at a time
on a given machine, it does not take into account the variability
of the application (change in behaviour during execution) and
does not take into account a more cloud-oriented context
where multiple applications with different behaviours may
be running on the same hardware at the same time. Similar
research was carried out by the authors of [5], who used
performance counters to create a power model with adjustable
weights to estimate the energy consumption of applications.

Based on prior research in [2], [5], a tool called Power-
API [4] has been introduced. This tool uses the performance
counters of the applications running on a given machine to
estimate the energy consumption of the whole machine, and
also divides this estimated consumption among the applica-
tions running on it. A linear regression using RAPL as the
objective value is carried out to perform this estimation and
division. Scaphandre [23] and Kepler [9] are both tools that
aim to distribute physical machine power consumption among
running applications. Scaphandre does this by using values
obtained from RAPL and CPU usage data, while Kepler fo-
cuses on Kubernetes containers and uses performance counters
collected with eBPF and energy measurements collected with
RAPL. Close approaches are used to estimate the energy
consumption of machine learning training phases by [24]–[26],
generally using NVML to capture GPU power consumption.
While Kepler [9] is intended to be used in a cloud context
with containers (Kubernetes), the authors of PowerAPI [4] and
Scaphandre [23] claim that their models can be used in a cloud
context to divide the consumption among the VMs hosted on
a given physical machine.

We consider that there is a lack of research evaluating
the accuracy and effectiveness of the proposed methods for
dividing or assigning physical machine power consumption
to running applications. The studies conducted by [4] only
evaluate the ability of the proposed model to recover the
global power consumption of RAPL. A separate evaluation of
state-of-the-art models is presented in [6], focusing on Power-



API and Scaphandre. The authors report that various models
from the literature [4], [23] produce different allocations, but
they point out the lack of research conducted to establish the
most accurate model. To the best of our knowledge, these
are the only two evaluations of power division models in the
literature, and neither assesses the accuracy of the division
itself. The lack of evaluation in this area is often attributed
to the difficulty in providing reference values with which to
compare the results of the model, which in our view is due
to the lack of a proper definition of what is intended when
power division models are used.

To address this unresolved issue, this paper provides a
formal definition of the power division, which is then used
to construct a truth value. Following that, this definition is
applied to build an experimental protocol that evaluates the
state of the art models, highlighting their limitations. It will be
demonstrated in the remainder of this paper that this protocol
provides useful information about the conceptual limitations of
power division models and what is missing to improve them.

III. DEFINITION AND VALIDATION PROTOCOL FOR POWER
DIVISION MODELS

As outlined in the related work section, several papers
introducing a new power model assess their findings at the
server level, either against a software solution, such as RAPL,
or a physical wattmeter. As a result, it is often assumed that
the division of energy consumption at the software level is
valid, despite a lack of validation protocols. As previously
discussed, this lack of evaluation is frequently justified by
the absence of a baseline against which to compare. From
our perspective, the lack of objective value in this area stems
from the absence of a formal definition for what is intended
and expected from power division models. In this section,
we aim to outline a clear definition of the division phase of
such models. This section will solely focus on power division;
however, Section V will cover the conceptual distinctions
between power and energy modelization, and present open
research perspectives on energy division.
A) Notations - To fully comprehend our proposed definition
of power division models, it is necessary to introduce some
notations and some context on power consumption of physical
machines. Let P represent a set of applications that can be
executed on a physical machine M , with each Pi denoting the
i-th application. A scenario S ⊂ P comprises of n applications
from P. There are two types of scenarios. Firstly, a parallel
scenario, denoted as P0 ∥ P1, where two applications P0

and P1 run concurrently on the machine. On the contrary,
a sequential scenario is denoted as just Pi, where only one
applications namely Pi is executed. The scenario S/Pi denotes
the scenario S without the application Pi, with Pi ∈ S. Let
TPi

S represent the time taken by application Pi in scenario S,
measured in seconds, and TS the time taken by the execution
of the whole scenario S. CS, t denote the power consumption
of machine M executing scenario S at instant t ≤ Ts. Let
CePi

S, t represent the estimated power consumption of the
application Pi at a given moment t when executed in scenario

S. For instance, consider two applications P0 and P1 executed
in the scenario P0 ∥ P1, CeP0

P0 ∥ P1, t
is the estimated power

consumption of the application P0 at instant t. Please refer to
Table I for a summary of these notations.

Without any knowledge of the specifics of a physical
machine’s power consumption, one can consider the following
definition for the allocation of consumption among processes.
The estimated consumption of a process is the extra consump-
tion that would not be observed if the process was not running
on the machine. For a specific scenario S, this definition
can be condensed into the Equation 1, assuming that TS and
TS/Pi

are equal (see Section V). This definition is incomplete
and incompatible with reality, as will be demonstrated in the
upcoming section.

∀Pi ∈ S, ∀t ∈ TS ,

CePi

S, t = CS, t −CS/Pi, t

(1)

Symbol Explanation
Pi ∈ P Application i

Pi ∥ Pj a scenario where Pi and Pj are executed in parallel

S/Pi a scenario of multiple applications, where Pi is removed

CS, t The real power consumption of the scenario S at instant t (e.g. RAPL)
R The residual consumption of the machine

AS, t The active consumption of the scenario S at instant t

CePi

S, t The estimated consumption of Pi in the scenario S at instant t

AePi

S, t The estimated active consumption of Pi in the scenario S at instant t

TS The time taken to execute the scenario S

T
Pi

S The time taken by the application Pi in the scenario S

TABLE I: Notations
Power division models are applicable on machines with

different settings, including toggling hyperthreading and turbo-
boost. The power consumption of a physical machine is signif-
icantly affected by the presence or absence of Hyperthreading
and turboboost. In this paper, we use their presence and
absence as two contexts for both laboratory simplified context
and production context. The context we are calling laboratory
is the context we used to stabilize the power consumption
of the machines and to have a simplified environment where
comparisons of models are easier.
B) CPU power consumption without hyperthreading and tur-
boboost - Power division models commonly divide CPU
power consumption. This paper analyses this use case. The
power consumption of a CPU depends on the workload being
executed on it, which mainly depends on the number of cores
currently in use. To obtain the curve of the CPU consumption,
various functions from the stress-ng suite 1 were executed with
the number of processes varying between 0 and the number
of physical cores present on the machine. Functions from
the stress-ng suite were selected due to their highly stable
resource and power usage (generally less than 0.5 watt of
variance in their load). Two different machines were employed
during the experiments, and their specifications are outlined
in Table II. DAHUis a machine which is accessible in the
Grid’5000 testbed2 from the Cluster in Grenoble.

1https://github.com/ColinIanKing/stress-ng
2https://www.grid5000.fr



Name Description
SMALL INTEL 6 cores (12 logicals) Intel(R) Xeon(R)

W-2133 CPU, 32GB RAM, 256GB SSD
DAHU 2× 16 cores (64 logicals) Intel Xeon Gold

6130 CPUs, 192GB RAM, 240GB SSD

TABLE II: List of machines used in the experiments

In this initial power measurement, both hyperthreading
and turboboost were disabled. Figure 1 plots the maximum
and minimum power consumption recorded on the machines
during various stress tests as a function of CPU load (i.e. the
number of cores used compared to the total number of physical
cores available), where 0% indicates that the machine is idle.
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Fig. 1: Minimal and maximal power usage of the machines
operating without Hyperthreading and turboboost capabilities

Upon analysis of the results, it becomes apparent that there
is a certain degree of variation in power consumption when
exposed to the same CPU load. On DAHU, we recorded a
variation of 25 watts, or more than 10% of its maximum power
consumption. This variance is due to the diverse range of
stress applications that were executed on the nodes, producing
different types of instructions with varying costs [17], [27].
The power consumption, ranging from 1 active core (3%
usage on DAHU and 16% on SMALL INTEL) to 100% usage,
appears almost linear to the CPU load. However, there is
a large gap between the idle power consumption and the
power consumption when 1 core is used. Indeed, on SMALL
INTEL, the linear factor between 16% and 100% results in
approximately 7 watts for the highest recorded consumption.
However, there is a gap of about 22 watts between 0% and
16%. On DAHU, the gap is considerably larger at 81 watts, for
a maximal linear factor of 2.8 watts. In the upcoming sections
of this article, the term residual consumption will be utilized
to refer to this consumption and will be denoted by R. It is
important to note that residual consumption differs from idle
power consumption as it only occurs when the CPU is under
a load.

When trying to make an attribution, between two applica-
tions P0 and P1, using the definition presented in Equation 1,
one can note a first problem. The sum of the estimations
CeP0

S, 0 + CeP1

S, 0 for S = P0 ∥ P1 is lower than the

real power consumption CS, 0 as residual consumption is

simply ignored (illustrated in Figure 2). Let’s denote AS, t

the active power consumption of a scenario at instant t, such
that AS, t = CS, t − R, and AePi

S, t the estimated active
consumption of the application Pi in the scenario S. In our
case the residual consumption includes the idle consumption.
It can be argued that residual consumption is generated by
both programs, as it appears only because the CPU is under
load.

w

t0 1

w

t0 1

w

t0 1

CeP0

S

−

AS

R =

AP1

R

Fig. 2: Estimation of P0 according to Equation 1

From a practical point of view, it makes sense to disregard
this residual consumption R and say that, like idle consump-
tion, it is due to all applications running on the machine and
therefore cannot be allocated to any specific application. This
residual consumption could be allocated according to many
possible policies. For example, let’s consider the three follow-
ing families: (F1) divide the residual consumption according
to the ratio of the respective active consumption of each
running applications, (F2) divide the residual consumption so
that the estimated consumption of two applications running in
sequential and parallel contexts maintain the same ratio (i.e.
CP0

CP1

=
CeP0

P0 ∥ P1

CeP1

P0 ∥ P1

), (F3) disregard it, so that the estimated

power consumption of an application does not depend on
whether other applications are present. It can be reasonably
argumented that all three are valid and provide different
properties. This results in models that cannot be evaluated
based on physical reality, but rather on allocation policies.

The state-of-the-art power division models, Scaphandre,
Kepler and PowerAPI, apply the first policy. In fact they divide
the total machine consumption (i.e. CS) among applications
without considering the presence of residual consumption,
producing the same result as using the same ratio for active
and residual consumption. Regardless of the decision made
regarding residual consumption, the active consumption of
an application can serve as a comparable value to verify the
precision of power models, as specified in Equation 2, where
x is to be defined by the family of power models in use. This
equation will be extended in the next subsection for production
context.

∀Pi ∈ S,∀t ∈ TS ,

CePi

S, t = AS, t −AS/Pi, t + xR
(2)

The frequency significantly affects residual consumption.
For example, when limiting the maximum frequency of the
CPU cores of SMALL INTEL to 2Ghz, the residual con-
sumption drops from about 28 watts to 17 watts, and to 15
watts when setting the maximum frequency to the nominal



one (1.2Ghz). Residual consumption is not cumulative and is
correlated to the frequency of the fastest-running core across
all cores. Based on the given information, it can be argued that
the increase in residual consumption should be attributed to
the applications that caused one of the cores to increase CPU
frequency. In our opinion, the second family, which maintains
the same ratio in parallel execution as in isolated execution,
has the advantage of taking this reality into account, since it
considers the residual consumption as part of the application
consumption. Thus, it will be presented as an alternative
solution in the next section.
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Fig. 3: Minimal and maximal power usage of the machines
operating with Hyperthreading and turboboost capabilities

C) CPU power consumption with hyperthreading and turbo-
boost - In the previous section, we observed a simplified
setting where hyperthreading and turboboost were disabled.
In a cloud computing context (we named production context),
which is a typical setting for employing a power division
model as presented in the introduction, this setting is unlikely
to be used. Figure 3 plots the minimum and maximum power
consumption recorded on the machine using the same protocol
as in the last section, but with hyperthreading and turboboost
enabled. The residual consumption is still observable, as
expected, but the power consumption no longer follows a
linear curve, but rather a logarithmic one. Due to this, the
active power usage of a scenario is no longer equivalent to the
sum of the active power usage of the applications when each is
run individually. Instead, it becomes less than or equal to the
sum, i.e. AS ≤

∑
Pi∈S

APi
. All applications in the scenario bear

responsibility for the execution context and ensuing decrease
in active consumption compared to sequential executions.
Once again, policy statements could be made to define a share
allocation of consumption. However, it can be argued that a
model must remain consistent in various contexts, regardless
of whether hyperthreading and turboboost are enabled or
disabled. To achieve this, active power should be allocated
in a consistent manner. Consequently, the estimated active
power consumption of applications should maintain the same
ratio for parallel and sequential execution as it does when
hyperthreading and turboboost are disabled. This is formalized
by Equation 3.

∀Pi ∈ S, ∀t ∈ TS ,

AePi

S, t = AS, t ×
APi, t∑

Pj∈S

APj , t

(3)

It can be argued that alternative allocations may be prefer-
able. However, due to the lack of consensus in the literature on
power division definition in this specific context, we suggest
our definition as a fair proposal for state-of-the-art model
comparison.

D) To summarize, – Defining the notion of energy consumption
of a software is not an easy task, and there is no apparent con-
sensus in the state of the art. From Figure 3, three challenges
regarding power division models can be extracted. The first
challenge (C1) - which is generally raised in the literature -
is to consider the accuracy of the power model to account for
different types of application behavior. This can be considered
a technical challenge, since the observed variation is due to
variability in application behavior, which results in variation
in power consumption. The second challenge (C2) is to take
into account the context of execution to provide stable results
for a given application, since its consumption depends mostly
on the deployment context. This second challenge is often
overlooked in the literature on power division models, and
with such vagueness as to suggest that it is possible to use
them for software optimization (comparison of two versions
of the same application in production context) without clear
evaluation. The next challenge (C3) - deciding how to allocate
the residual consumption, deciding how to allocate the power
efficiency gain at higher CPU usage and so on -, defines a list
of policy decisions. These decisions needs to be arbitrated, as
no single option stands out as inherently better. This could lead
to the creation of families of models ((F1), (F2),. . . ). These
decisions must be correctly defined when presenting a power
division model in order to be comparable and repeatable as
required by the scientific method. The next Sections IV and V
present evaluations of the ability of the power division models
to meet these challenges.

E) Protocol - To evaluate the accuracy of a power division
model, a protocol consisting of three main parts must be
defined. Given a list of applications Pi ∈ P that execute
a set of repeatable instructions with stable and predictable
power usage, first compute the active consumption of each
application APi, 0 by running them alone on the machine and
removing the residual consumption R from the acquired power
consumption. Second, generate a list of scenarios consisting
of two applications and simultaneously execute them, while
ensuring there is no contention on the machine, i.e., the parallel
and sequential executions have the same execution time.
Obtain the estimated consumption CePi

S, 0 of the applications
according to the models and compare them with the active
consumption acquired during phase (1).

Because the state-of-the-art models (Scaphandre, Power-
API) use the policy of applying the same ratio for residual
and active consumption, it is easy to extract the estimated



active consumption when disabling hyperthreading and turbo
boost, following Equation 4.

∀Pi ∈ S,∀t ∈ TS ,

AePi

S, t = CePi

S, t −R×
CePi

S, t

CS, t

(4)

When both hyperthreading and turboboost are activated,
the estimated active power usage of an application is not
equivalent in parallel and sequential execution. Therefore,
another ratio must be calculated as outlined in Equation 3.
Since this equation is applicable even if hyperthreading or
turboboost are not activated, the model’s absolute error can be
calculated for both contexts by the following Equation 5.

AES =

∑
Pi∈S
t∈TS

∣∣∣∣CePi

S, t

CS, t

− APi, t∑
Pj∈S

APj , t

∣∣∣∣
dim(S)× TS

(5)

IV. EVALUATION OF THE MODELS ON STRESS
APPLICATIONS

In this section, a first evaluation of the models from the
literature is presented. The applications in the set P are se-
lected to stress the CPU cores of the selected machines. These
applications are functions within the popular benchmarking
suite stress-ng, which provides more than 300 functions to
generate specific loads on various components of the system:
CPU, memory, file system, etc. The selection of stress-ng
stems from its ability to produce consistent benchmarks,
whereby each function always produces exactly the same load.
We selected a subset of 12 tests that target the CPU, as listed
in Table III. This evaluation was conducted on the DAHU and
the SMALL INTEL machines (see Table II). All scripts and
traces are available on a git repository3.

Name Description
ACKERMANN,
QUEENS, FIBONACCI

Implementations of well-known algorithms

FLOAT64, INT64, DEC-
IMAL64, DOUBLE

Perform operations of a given type

INT64FLOAT,
INT64DOUBLE

Convert a given type to another

MATRIXPROD Computes matrix product
RAND Generates random numbers
JMP Performs conditional jumps

TABLE III: List of stress-ng tests

Multiple sets of applications were created with a varying
number of threads. Note that the two largest applications
(with the higher number of threads) can run on the machines
without competing for CPU. Following the protocol outlined
in Section III, we obtained values for all stress functions
separately on each machine (CPi

,∀Pi ∈ P) using RAPL.
Then, we ran all possible combinations of the 12 functions
with varying numbers of threads in parallel, collecting values
for each combination (CePi

Pi ∥ Pj
, ∀Pi, Pj ∈ P).

3https://github.com/davidson-consulting/software-energy-model-evaluation

A) Evaluation in laboratory context - In this section, we
evaluate the PowerAPI and Scaphandre models from the
literature in a laboratory context. In this context, the turboboost
and hyperthreading are disabled in order to stabilize the power
consumption of the machines, as we have seen in Section III.
PowerAPI and Scaphandre are the models we selected for
evaluation and discarded Kepler as it targets a kubernetes
environment, yet we wanted the simplest context with as
little overhead and side effects as possible. However, because
Kepler operates on a model that is relatively similar to the
one utilized by Scaphandre, the conclusions presented in this
section are applicable to it as well. Because hyperthreading
was disabled, SMALL INTEL was capable of running 6 threads
simultaneously without any contention while DAHU was able
to handle 32. Consequently, the largest application on SMALL
INTEL consisted of 3 threads, while on DAHU it consisted of
16 threads.

Figure 4 and 5 illustrate the power consumption ratio
difference of two applications on the SMALL INTEL node
for Scaphandre and PowerAPI, respectively. The ratio on the
x-axis is calculated using the active power consumption of
the two applications when executed independently on the

machine 100 −

(
APi

APj

× 100

)
. The ratio on the y-axis is

calculated using the estimated consumptions, represented by

100−

(
CePi

Pi ∥ Pj

CePj

Pi ∥ Pj

× 100

)
. The ratios have been subtracted

from 100 to center them around 0, so a result equal to 0
means two applications with the same power consumption,
a negative result means P1 consumes more than P0, and a
positive result means the opposite. Applications of different
sizes were executed in parallel and are presented in Figures 4b
and Figures 5b. The gray line represents the target value y = x.
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Fig. 4: Ratio for stress without HT according to Scaphan-
dre on SMALL INTEL

During the evaluation, stress applications ran for 30 seconds,
and the 10 seconds with the least extreme values were selected
to ensure a variation of less than 2 watts at most in the
estimations. It should be noted that slight variations may occur
due to delays in the start of the stress execution, so that some
points at the beginning and end of a scenario are not relevant
to the behavior of the power division model. With Scaphandre,
typically more than ten data points were usable. However,
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Fig. 5: Ratio for stress without HT according to PowerAPI on
SMALL INTEL

because of the nature of PowerAPI, which requires a learning
phase, the first ten seconds of test execution are disregarded by
the model, generating no estimations. It is worth noting that
these estimation drops occur whenever there is a change in
context. For our evaluation, we elected to remove these drops
from consideration.

Both models seem to consider that applications with the
same number of running threads consumes roughly the same
amount of power, and omit the differences in terms of instruc-
tion and thus the differences in term of consumptions between
different stress functions. In result, the maximum error that can
be observed is 11.7% for both PowerAPI and Scaphandre, and
occurs for the same pairs involving FIBONACCI (being the less
consuming function) and one of the top consuming application
(MATRIXPROD, INT64FLOAT, JMP). This maximum error ratio
is almost the same as the width of the power consumption
curve that was observed in Figure 1 and correspond to
approximately 8 Watts on SMALL INTEL. However, because
applications are relatively well scattered in term of power
consumptions within the width of the power consumption
curve of the machine, the overall error of the models are
respectively 3.12% for PowerAPI and 3.15% for Scaphandre
(cf. Equation 5).
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Fig. 6: Ratio for stress without HT according to Scaphan-
dre on DAHU

Figures 6 and 7 illustrate the power ratio difference of
two applications when run individually and in parallel on the
DAHU node for Scaphandre and PowerAPI, respectively. The
behavior displayed by Scaphandre is similar to that observed
on SMALL INTEL, with an average error rate of 2.7%. The
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Fig. 7: Ratio for stress without HT according to PowerAPI on
DAHU

maximum error of 17.4% can be observed between QUEENS
and FLOAT64, which are near the minimum and maximum
limits of the consumption curve of DAHU.

Alternatively, the PowerAPI produces varying results on
DAHU compared to SMALL INTEL, with an average error
rate of 16.23% and a maximum error rate of 49.1%. Such
disparities could arise due to technical issues with the model,
resulting in inconsistencies during runs. For instance, the
model tends to define FLOAT64 as one of the least consuming
applications, generally accounting for only about 10% of
the machine’s consumption, when in fact this application is
one of the most consuming based on its isolated execution.
Furthermore, the model occasionally changes its decisions,
even if the applications’ behavior remains stable. For example,
we conducted two identical tests comparing FLOAT64 and
MATRIXPROD. In the first test, PowerAPI assigned 90% of the
consumption to FLOAT64, while in the second test, it assigned
90% of the consumption to MATRIXPROD. This results are pre-
sented in Figure 8. This behavior was not observed on SMALL
INTEL, which suggests possible implementation issues (note
that the latest stable official version 2.1.2 of PowerAPI was
used).
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Fig. 8: Attribution between MATRIXPROD and FLOAT64
according to PowerAPI on DAHU

B) Considering Residual consumption - In these initial ex-
periments, we did not include residual consumption as part
of the application’s power usage. Our decision was based
on the fact that existing models use a linear approach that
excludes this factor. However, as discussed in Section III,



residual consumption is not an idle consumption but is actually
determined by the frequency of the cores and is generated by
the applications themselves. In the following evaluation, we
consider a workload that caused the residual consumption to
vary. On node SMALL INTEL, we compared stress functions
with CPU time capped at 50% (using cgroup) to stress
functions without capping. To prevent context switching and
ensure that some cores run for 50% of the time, we pinned the
stress processes to specific CPU cores, with one process per
core. In this scenario, the cores performing a stress function
at a maximum of 50% usage operated at an average speed of
2.4 GHz. A residual consumption of 15 watts was produced
when these stresses were executed independently. Meanwhile,
the remaining cores were running at 3.6 GHz, resulting in
28 watts of residual power when the stresses were executed
alone, the same residual consumption was observed when
capped and uncapped applications where running in parallel.
Since the machine’s total power consumption when running
capped applications was about 20 watts on average (for a
residual of 15 watts), which is lower than its residual power
consumption when running uncapped applications (28 watts,
for a global consumption of about 74 watts on average), it can
be concluded that the residual power consumption variability
is indeed caused by application behavior. The figure 9a shows
the results of the execution of capped applications against
uncapped applications according to Scaphandre, where P0 is
capped to 50% of cpu time. The residual consumption of P0

being lower than the residual consumption observed for P1

when executed in isolation, the difference between the two
residual consumption is allocated to P1 in the objective value.
In this context, the average error rate of Scaphandre is 13.7%
with a maximum error rate of 21.64%.
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Fig. 9: Ratio for stress without HT according to Scaphan-
dre considering part of R as application consumption

Because residual consumption is generated by applications,
one should assign it to the consumption of the applications,
even in isolation. However, this statement does not accurately
reflect the actions of Scaphandre or PowerAPI. Figure 9b
presents the error rate of the model for the execution presented
in last subsection based on Scaphandre, while taking into

account an expected ratio of 100−

(
CPi

−R0

CPj
−R0

× 100

)
, with

R0 being the residual consumption of the machine at nominal
frequency. In this case, the maximum error rate is 19.3%,

and the global error rate averages 6.19%. These rates are
primarily due to applications of the same size (same number of
threads). However, by removing them from the evaluation set,
the average error rate increases to 11.3%. Similar results were
observed for PowerAPI with an average error rate of 5.6%
(and 10.7% without same size applications) and a maximum
error rate of 19.1%.

In our opinion, this reflects the incapacity of Scaphan-
dre and PowerAPI to consider the variability of frequencies
in application behavior. If this variability could be considered
by the family of models of PowerAPI and Scaphandre (family
(F1)), defining this power model family becomes difficult as
it changes in varying contexts. This is due to the need for
a complex definition for residual consumption. Note that it
becomes even more complex when taking into account context
with Hyperthreading and turboboost as depicted in Section III.
A simpler and, in our opinion, more justifiable solution would
be to take into account this variability by defining another
family of power division models, the family (F2) that tries to
keep the same ratio in isolated and parallel executions. One
approach that could prove promising, would be to construct
such a model using a state-of-the-art model that estimates the
consumption of each application individually as isolated at
the machine level, and uses these estimations to compute a
ratio to allocate the actual consumption to each application;
constructing such a model is beyond the scope of this paper,
but could be the subject of interesting future work.
C) Conclusion - In section III challenges of power division
models were raised. In this section, two of them, namely
(C1) and (C3) have been evaluated. It is found that state-of-
the-art power division models have difficulty meeting these
challenges. First they do not account for the variability in
power consumption of different applications, and only CPU
time, which is not fully correlated with power consumption,
seems to have an impact on the results. Second, because
PowerAPI and Scaphandre don’t consider the existence of
residual consumption and consider it as an idle consumption
allocation, they don’t take into account its dynamic aspect
and in our opinion fail to meet the challenge (C3) by having
different allocation policy depending on application behaviors.

V. USING POWER MODELS AS ENERGY MODELS

In the previous section, the evaluation of power division
models was discussed. In this section, we will examine the
fundamental differences between power and energy division
models. To illustrate these distinctions, we selected a set of
applications more complex than the stress function from the
Phoronix test suite4. The selected applications are presented
in Table IV. They were selected for their minimal variance
since they behave nearly identically when run multiple times
within the same context. This characteristic is crucial for the
application employed in this experimental protocol since it is
necessary to minimize deviations to ensure that the variations

4https://openbenchmarking.org/suites/pts



observed are due only to the division algorithm and not to the
applications themselves.

Name Description Type
COMPRESS-
7ZIP

7zip compression, decompression CPU

BUILD2 Compilation of the build2 CPU , I/O
toolchain

DACAPO Java benchmark CPU , system
CLOVERLEAF Hydrodynamics benchmark CPU

TABLE IV: List of Phoronix tests

Application CLOVERLEAF DACAPO BUILD2 COMPRESS-7ZIP

CS (RAPL, kJ) 36.46 (0.3 %) 13.51 (0.4 %) 26.75 (0.6%) 23.53 (0.2 %)
Execution time (s) 516 ( 0.4 %) 364 (0.3%) 384 (0%) 396 ( 0.3 %)

TABLE V: Reference values of Phoronix applications on
SMALL INTEL on 6 vcpusThe benchmarks in the Phoronix test suite aim to fully
exploit all available resources on the server running them. To
execute multiple applications at once, it is essential that each
application uses a consistent number of resources- regardless
of whether they are executed individually or in parallel.
Therefore, VMs are provisioned with a subset of the allocated
resources to run the applications. Provisioned virtual machines
operate on the Ubuntu 22.04 operating system and have 4GB
of RAM and 6 fixed vCPUs. When applications are run within
virtual machines, no division is made between applications
within a single virtual machine. As a result, for this particular
experiment, VMs are regarded as regular applications without
further division. To provide a relevant context for production,
hyperthreading and turboboost are enabled in this experiment.
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Fig. 10: Behavior of phoronix tests on the SMALL IN-
TEL server according to RAPL

A) Understanding application’s behavior from power con-
sumption - In this experiment involving actual applications,
the virtual machines (VMs) are set up to utilize 6 vCPUs
each. Since the selected host machine (SMALL INTEL) has
12 CPU cores and at most two VMs are active at a time,

there is no risk of overloading the machine. Before running
together, the applications are first run individually on the
machine three times to establish a baseline in Joules. The
program was executed three times to confirm its low variability
and ensure any future differences in results stem from the
energy models. Table V contains the reference values for these
runs on the SMALL INTEL node. The first row shows the
average consumption of the machine running the application
and its variability, and the second row shows the average
execution time and its variability. In Figure 10, each chosen
application’s performance is exhibited while being executed
on node SMALL INTEL during a single run. It’s noteworthy
that the machine consumption variability is really low.

To comply with the protocol outlined in Section III, applica-
tions are run a second time in parallel with another application.
State-of-the-art models are power division models, and are run
at a given frequency to divide the current power consumption
of the machine among the running applications. These models
could also be utilized as energy division models by calculating
the integration of the power curve of each respective applica-
tion. In a production environment, contexts often change due
to the arrival and departure of applications or changes in their
behavior. Consequently, power consumption of the machine
may fluctuate, significantly impacting the allocation of con-
sumption among applications. For instance, let’s consider three
applications P0, P1 and P2, all three applications are running a
stable workload (with the same isolated residual consumption),
but are started and stopped at different times, as shown in
Figure 11. As a result of changes in the execution context,
power consumption allocation varies over time, despite the
application’s consistent behavior throughout its execution. The
incorporation of changes in power consumption curves will
alter the overall energy consumption estimation of applications
and their perceived behavior. It is essential to keep this aspect
in mind while utilizing energy division models.
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Fig. 11: Illustration of how power division leads to context-
dependent results

This can be observed using PowerAPI and Scaphandre.
Figure 12 displays the power consumption estimations for
BUILD2 and DACAPO when running in parallel. When running
sequentially, these two applications require a total of 39 kJ of
energy whereas when running in parallel they require 33 kJ, or
a reduction of 13% (due to the logarithmic consumption curve
and residual consumption of SMALL INTEL); this reduction in
consumption is necessarily reported in the estimation of the



consumption of the two applications. For example, when run
in parallel with DACAPO, according to PowerAPI BUILD2
consumed 24.5 kJ instead of 26 kJ (a decrease of 6%),
and DACAPO consumed 8.4 kJ instead of 13 kJ (a decrease
of 35%). Scaphandre gives matching results. This decrease
in energy consumption can vary greatly depending on the
execution context. For instance, when running the CLOVER-
LEAF application on DAHU under different conditions (without
contention), energy consumption ranged from 60 kJ to 26 kJ
(as reported by Scaphandre when executed in parallel of 9
other similar VMs), resulting in a decrease of over 56% in
consumption. Any comparison of the energy consumption of
two applications in a production context becomes uncertain
as the context may have a greater impact on their energy
consumption than the applications themselves.
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Fig. 12: Behavior of BUILD2 vs DACAPO on the SMALL
INTEL server
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Fig. 13: Behavior of COMPRESS-7ZIP vs CLOVERLEAF on
the SMALL INTEL server

In addition to the change in overall energy consumption,
the behavior of applications cannot be solely explained by
the power consumption curve. Although the behavior of
DACAPO appears distinguishable in Figure 12, the behavior
of BUILD2 is entirely contextual, mirroring the behavior of
DACAPO and mistaking its consumption troughs for peaks.
A similar observation can be made for CLOVERLEAF when
executed against COMPRESS-7ZIP in Figure 13. Notice that
PowerAPI has difficulty staying stable in its estimations. In the
last experiment, CLOVERLEAF and COMPRESS-7ZIP executed
the same workload repeatedly, resulting in similar contexts at
multiple instants (t = 150, t = 300, etc.). Nonetheless, Pow-
erAPI provided varying estimations in these similar contexts.

B) Conclusion - Assuming that there is a perfect energy
allocation model (for any given family (F1), (F2), etc.), this
model would be able to capture an abstract vision of the
infrastructure by allocating parts of its energy consumption
to running applications (for example, to construct Life Cycle
Assessments). However, we believe, on the other hand, that
it won’t be applicable to understand the behavior of running
applications, nor will it be applicable to support energy op-
timizations at the application level in a production context,
despite suggestions to do so in [4]. These experiments lead
to a key result of this paper; power division models produce
measurements that are highly context-dependent and, as a
consequence, fail to meet the challenge (C2). At this point, we
have no reason to believe that this limitation is not inherent
to the power division approach, and therefore that a power
division model could meet this challenge.

VI. CONCLUSION AND FUTURE WORK

The literature has demonstrated limited attention towards
validating power division models, as there were no clear
benchmarks for comparison. This lack of clarity in our opinion
reflects the lack of a clear definition of the problem of power
division. Our paper aims to address this by proposing a
new definition of power division models that introduces the
possibility of multiple valid divisions that can be grouped into
families of models. We didn’t aim to provide an exhaustive
evaluation (as there are an infinite number of deployment
contexts, CPU architectures, applications, etc.), but to show
that it is possible to give a formal definition of a power division
model, and that the lack of such a definition in the state of
the art already leads to significant limitations even in very
controlled situations.

Our proposed definition was supported by an analysis of the
power consumption of physical machines. Various power divi-
sion families exhibit distinct characteristics. In our viewpoint,
a certain family is noteworthy due to its simplicity in definition
and justification, as opposed to the family selected by state-of-
the-art models. Based on this definition, we designed a proto-
col to evaluate power division according to its model family.
Our protocol was applied to two separate models, Scaphan-
dre and PowerAPI, on two machines with different levels of
computational power. This evaluation highlights the limitations
of current models in accounting for the variability of energy
consumption due to the different instruction costs, and their
difficulty in accounting for the variability of consumption due
to the frequencies of the CPU cores. A discussion of the
conceptual differences between a power division model and an
energy division model has been presented. If power division
models can be utilized to allocate the power consumption of an
infrastructure among running applications, this type of model
does not seem to be applicable for energy optimization at the
application level, as the behavior of applications is completely
lost in context.

Because optimizing software in terms of energy consump-
tion remains an important and challenging objective, we pro-
pose the following future work. Investigate the possibility of



statically adding debugging information to a program in order
to extract the path taken during its execution (e.g. number and
type of instructions) and estimate the energy consumption it
would have generated if executed alone on a given physical
machine. Such a power model would be suitable for creating
a power division model of the second family and would also
help in optimizing energy consumption.
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[6] M. Jay, V. Ostapenco, L. Lefèvre, D. Trystram, A.-C. Orgerie, and
B. Fichel, “An experimental comparison of software-based power me-
ters: focus on CPU and GPU,” in CCGrid 2023, Bangalore, India, 2023.

[7] S. Georgiou, S. Rizou, and D. Spinellis, “Software development lifecycle
for energy efficiency: Techniques and tools,” ACM Comput. Surv., 2019.

[8] N. Rashid and S. U. Khan, “Agile practices for global software devel-
opment vendors in the development of green and sustainable software,”
Journal of Software: Evolution and Process, 2018.

[9] [Online]. Available: https://sustainable-computing.io/
[10] J. Pastor and J. M. Menaud, “Seduce: a testbed for research on thermal

and power management in datacenters,” in 2018 26th international
conference on software, telecommunications and computer networks
(SoftCOM), 2018.

[11] M. D. De Assuncao, J.-P. Gelas, L. Lefevre, and A.-C. Orgerie, “The
green grid’5000: Instrumenting and using a grid with energy sensors,”
in Remote Instrumentation for eScience and Related Aspects, 2012.

[12] S. Delamare and L. Nussbaum, “Kwollect: Metrics collection for ex-
periments at scale,” in IEEE INFOCOM 2021-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), 2021.

[13] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl:
Memory power estimation and capping,” in 2010 ACM/IEEE Interna-
tional Symposium on Low-Power Electronics and Design (ISLPED),
2010, pp. 189–194.

[14] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl in
action: Experiences in using rapl for power measurements,” ACM Trans.
Model. Perform. Eval. Comput. Syst., 2018.

[15] A. Venkatesh, K. Kandalla, and D. K. Panda, “Evaluation of energy
characteristics of mpi communication primitives with rapl,” in 2013
IEEE International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum, 2013.

[16] J. Phung, Y. C. Lee, and A. Y. Zomaya, “Modeling system-level power
consumption profiles using rapl,” in 2018 IEEE 17th International
Symposium on Network Computing and Applications (NCA), 2018.
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