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Abstract—We study the problem of universal decoding over
memoryless channels with a decoder based on the Krichevsky–
Trofimov estimator. We show that this decoder is random-coding
universal for codebooks of any size, i.e., despite being ignorant of
the channel in use, it has asymptotically the same random-coding
error exponent as the optimal maximum-likelihood decoder
for that channel. Then, we incorporate this decoding rule in
schemes to decode practical linear block codes and convolutional
codes when the channel is unknown to the receiver. Numerical
results show that efficient performance can be achieved even for
moderate blocklength or constraint length.

I. INTRODUCTION

When communications take place in practice, the channel is
often unknown, which precludes the use of the optimal maxi-
mum likelihood (ML) decoder. Instead, it is usually estimated
by sending a training sequence known to the receiver, which
can then study the statistics of the corresponding received
sequence to get an estimate of the channel law. This strategy
comes, nonetheless, with a trade-off: a sequence too short
results in an inaccurate estimation, while a sequence too long
harms the communication rate. A possible way to overcome
this is to use universal decoders for the family of channels in
consideration. These are decoders that, despite having no prior
knowledge on the specific channel in use, can asymptotically
achieve the same random-coding error exponent as the optimal
ML decoder tuned for that channel.

Among known universal decoders for finite-alphabet chan-
nels, we mention the maximum mutual information (MMI) [1],
[2] and maximum conditional entropy [3] rules for discrete
memoryless channels; the decoder based on Lempel–Ziv (LZ)
parsing for finite-state channels [3], [4]; and merged decoders
for general families of channels [5]. Universal decoding for
Gaussian intersymbol interference channels has been studied
in [6], [7], and other recent developments for more sophisti-
cated setups include [8]–[11].

Universal decoding has mostly remained a theoretical topic
so far. Indeed, a number of potential issues appear when trying
to implement them in practice. First, the results are asymptotic
with blocklength, and performance with finite blocklength may
be far from the promised one. Then, they are stated for random
codes, and might not hold for practical codes that have strong
algebraic structure. Finally, the computational complexity for
implementing universal decoding rules is usually very high:
they typically require comparing the universal metric of each

codeword (this has the same complexity as that of an ML de-
coder that compares each codeword, but becomes unpractical
for large codebooks).

An exception to that are the modified stack algorithms pro-
posed in [3], [12], [13] to decode convolutional codes. There,
the usual Fano metric, which is consistent with ML decoding,
is replaced by universal metrics that do not depend on the
channel in use. These metrics lend themselves to asymptotic
error probabilities similar to those of stack decoding with the
Fano metric and ML decoding with Viterbi algorithm, both of
which depend on the channel law.

In this work, we consider a universal decoder based on the
(conditional) Krichevsky–Trofimov (KT) estimator [14], which
enjoys a simple sequential update expression. It corresponds to
the weighting of posterior distributions with Dirichlet priors,
and is asymptotically optimal in the minimax sense [15]. A
decoding rule based on the KT estimator has been proposed
to decode convolutional codes over memoryless channels, and
shown to be random-coding universal for codebooks of two
codewords in [12]. A Bayesian motivation for its use, in
the particular case of binary symmetric channels, was given
in [13]. Here, we first extend these results, by giving a more
general justification for this rule, and showing that it is in fact
random-coding universal with codebooks of any size, for the
family of discrete memoryless channels.

Then, we incorporate the KT-based decoder in decoding
schemes for practical codes over unknown memoryless chan-
nels. For linear block codes of moderate blocklength, our
decoder performs exhaustive search on a modified version of
the original code. In numerical results with Golay codes, the
KT decoder is able to track the block error rate of the ML
decoder. For convolutional codes, we implement a modified
version of the sequential stack decoding proposed in [3],
[12], exploiting the structure of the KT decoder to apply
further practical simplifications. Numerical results reveal a
performance that is not too far from that of a stack decoder
that knows the channel.

This paper is organised as follows. Section II introduces
preliminary results and notation on universal decoding and
the method of types. Random-coding universality of the KT
decoder is derived in Section III. In Section IV, we study
decoding schemes for practical codes. Section V concludes
the paper with some future perspectives.
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Fig. 1. Communication model.

II. PRELIMINARIES

A. Universal Decoding

Consider the communication model depicted in Fig. 1:
a code C := {xxx1, . . . ,xxxM} ⊆ Bn, of blocklength n and
rate R = (logM)/n, has its codewords selected from the
input set Bn ⊆ Xn. A message i ∈ H := {1, 2, . . . ,M}
is uniformly selected, encoded as codeword xxxi ∈ C, and
transmitted through the channel pθ, producing the received
sequence yyy ∈ Yn. The channel belongs to a parametric fam-
ily F := {pθ(yyy | xxx) : θ ∈ Θ} with input and output alphabets,
respectively, X := {1, . . . , |X |} and Y := {1, . . . , |Y|}.

The decoder implements a rule ϕ : Yn → H that maps the
channel output yyy ∈ Yn to a guess î = ϕ(yyy) of the original
message. The maximum a posteriori (MAP) rule ϕMAP(yyy) =
argmaxi∈H pθ(xxxi | yyy) minimises the probability of error, and
coincides with the ML rule ϕML(yyy) = argmaxi∈H pθ(yyy | xxxi)
when messages are equiprobable. Both require knowing the
channel distribution pθ. A universal decoder, on the other
hand, is a decoder that, despite having no prior information
on the channel pθ (other than the family F to which it
belongs), can asymptotically achieve the same random-coding
error exponent as the optimal ML decoder tuned for pθ.

When considering random codes, we suppose that the code-
words in C are chosen independently and uniformly among
the sequences in Bn. Let Pθ,ϕ(error) denote the average error
probability (over messages and codes) when decoder ϕ is used
in channel pθ. We adopt the following definitions from [5].

Definition 1: A sequence of decoders (un)n∈N is said to be
random-coding (weakly) universal for the family of channels
F = {pθ(yyy | xxx) : θ ∈ Θ} and the sequence of input
sequences (Bn)n∈N, if limn→∞

1
n log

(
Pθ,un (error)
Pθ,ML(error)

)
= 0,

for all θ ∈ Θ; and random-coding strongly universal, if
limn→∞ supθ∈Θ

1
n log

(
Pθ,un (error)
Pθ,ML(error)

)
= 0.

We borrow the following lemma from [5, Eq. (25)] (see also
[3, Corollary 1]), which will be helpful in proving universality.

Lemma 1 ([5, Eq. (25)]): Consider two decoders of the form
ϕj(yyy) = argmaxi∈H fj(xxxi, yyy), for functions fj : X ×Y → R,
j ∈ {1, 2}. Their average error probabilities are related by

Pθ,ϕ2
(error)

Pθ,ϕ1(error)
≤ max

(xxx,yyy)∈Bn×Yn

∣∣Eϕ2(xxx,yyy)
∣∣∣∣Eϕ1

(xxx,yyy)
∣∣ , (1)

where Eϕj
(xxx,yyy) :=

{
xxx′ ∈ Bn : fj(xxx

′, yyy) ≥ fj(xxx,yyy)
}

.
The next lemma, inspired by [12], gives an upper bound on

|Eϕ(xxx,yyy)| when the decoder metric is a probability p̂(· | yyy)
on Bn. It formalises the fact that there can only be so many
sequences xxx′ ∈ Bn with probability larger than p̂(xxx | yyy).

Lemma 2: Let xxx ∈ Bn and yyy ∈ Yn. Consider a decoder of
the form ϕ(yyy) = argmaxi∈H

1
n log p̂(xxxi | yyy), with p̂(· | yyy) a

probability distribution over Bn ⊆ Xn. Then,∣∣Eϕ(xxx,yyy)∣∣ ≤ 1

p̂(xxx | yyy)
. (2)

Proof: Let XXX ′ be a uniform random variable over Bn. We
have, by Markov’s inequality,

|Eϕ(xxx,yyy)| =

∣∣∣∣∣
{
xxx′ :

1

n
log p̂(xxx′ | yyy) ≥ 1

n
log p̂(xxx | yyy)

}∣∣∣∣∣
= |Bn| · P

[
p̂(XXX ′ | yyy) ≥ p̂(xxx | yyy)

]
≤ |Bn|

∑
xxx′∈Bn

1
|Bn| p̂(xxx

′ | yyy)
p̂(xxx | yyy)

=
1

p̂(xxx | yyy)
.

B. Method of Types

We briefly recall definitions from the method of types in
order to introduce our notation. The type of a sequence xxx ∈
Xn is the probability distribution πxxx given by the relative
frequency of symbols, i.e., πxxx(x) = axxx(x)/n, where axxx(x) is
the number of times that symbol x ∈ X appears in sequence xxx.
We denote aaaxxx :=

(
axxx(x)

)
x∈X the vector of counts. The type

class T (n)(πxxx) is the set of all sequences in Xn that have type
πxxx. We denote H(πxxx) := −

∑
x∈X πxxx(x) log πxxx(x).

Given sequences xxx ∈ Xn and yyy ∈ Yn, denote aaaxxx,yyy :=(
axxx,yyy(x, y)

)
(x,y)∈X×Y , where axxx,yyy(x, y) is the number of

times that (x, y) ∈ X×Y appears in the joint sequence xxx⊗yyy :=(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y)n. Note that ayyy(y) =∑

x∈X axxx,yyy(x, y). The joint type is πxxx,yyy(x, y) = axxx,yyy(x, y)/n,
and the marginal type, πyyy(y) = ayyy(y)/n. The conditional type
πxxx|yyy is given by πxxx|yyy(x | y) := πxxx,yyy(x, y)/πyyy(y), if πyyy(y) ̸= 0,
and 0 otherwise. We then have

πxxx|yyy(xxx | yyy) :=
∏
x∈X

∏
y∈Y

πxxx|yyy(x | y)axxx,yyy(x,y).

We adopt the notations

H(πxxx|yyy | πyyy) := −
∑
y∈Y

πyyy(y)
∑
x∈X

πxxx|yyy(x | y) log πxxx|yyy(x | y),

(3)
and I(πxxx : πyyy) := H(πxxx) +H(πyyy)−H(πxxx,yyy).

III. RANDOM-CODING UNIVERSALITY

Let us consider the class of discrete memoryless chan-
nels (DMCs). Denoting xxx := xn

1 := x1x2 · · ·xn ∈ Xn and,
analogously, yyy := yn1 ∈ Yn, the channel law can be written as

pθ(yyy | xxx) =
n∏

i=1

pθ(yi | xi) =
∏
x∈X

∏
y∈Y

pθ(y | x)axxx,yyy(x,y). (4)

This family can be parametrised by vectors θ ∈
(
∆(|Y|−1)

)|X |
,

where ∆k ⊆ Rk+1 denotes the k-dimensional simplex. The
next lemma, borrowed from [3, Lemma 1, Eq. (23a)], states a
property of the family of channels (4).



Lemma 3 ([3, Lemma 1]): Let yyy ∈ Yn and xxx ∈ Bn, with
Bn = Xn or Bn = T (n)(π) for some type π on Xn. Then,∣∣EML(xxx,yyy)

∣∣ = ∣∣{xxx′ ∈ Bn : pθ(yyy | xxx′) ≥ pθ(yyy | xxx)}
∣∣

≥ 2nH(πxxx|yyy|πyyy)(n+ 1)−|X||Y|. (5)

We are interested in studying a decoding rule based on the
KT estimator [14]. The KT estimator for a sequence xxx ∈ Xn

is the probability distribution

pKT(xxx) =
Γ
(

|X |
2

)
Γ
(
1
2

)|X |

∏
x∈X Γ

(
axxx(x) +

1
2

)
Γ
(
n+ |X |

2

) , (6)

where Γ(z) =
∫∞
0

tz−1e−t dt is the Gamma function.
To derive a conditional version of that, note that the poste-

rior distribution can be written as

pθ(xxx | yyy) = pθ(yyy | xxx)p(xxx)
pθ(yyy)

=
|Bn|−1

pθ(yyy)

∏
x∈X

∏
y∈Y

pθ(y | x)axxx,yyy(x,y),

with pθ(yyy) :=
∑

xxx∈Bn
pθ(yyy | xxx)p(xxx). We denote fθ(x, y) :=

pθ(y | x), so that the normalised version

qξ(x | y) := fθ(x, y)

Cθ(y)
, with Cθ(y) :=

∑
x′∈X

fθ(x
′, y)

can be seen as a posterior distribution on X parametrised by
ξ = ξ(θ) ∈

(
∆|X |−1

)|Y|
. Then, we have

pθ(xxx | yyy) = |Bn|−1

pθ(yyy)

∏
x∈X

∏
y∈Y

Cθ(y)
axxx,yyy(x,y)qξ(x | y)axxx,yyy(x,y)

=

(∏
y∈Y Cθ(y)

ayyy(y)

|Bn| pθ(yyy)

) ∏
x∈X

∏
y∈Y

qξ(x | y)axxx,yyy(x,y)

︸ ︷︷ ︸
(⋆)

.

For a fixed yyy ∈ Yn, maximising pθ(xxx | yyy) over xxx is thus
equivalent to maximising (⋆), where qξ can be seen as a
memoryless law and some sort of ‘backward channel’. If the
channel parameters θ, and therefore ξ, are unknown, we can
marginalise it with a choice of prior on π(ξ), that is, compute

p̂(xxx | yyy) ∝
∫ ∏

x∈X

∏
y∈Y

qξ(x | y)axxx,yyy(x,y)

 dπ(ξ).

Choosing independent Dirichlet priors with parameters(
1
2 , . . . ,

1
2

)
for each qξ(· | y) corresponds to Jeffreys prior

and is asymptotically optimal in the minimax sense [15]. In
this case, the integral can be computed in much the same way
as in [16, Prop. 2.15], resulting in the conditional version of
the KT estimator (also in [12, Eq. (49)]):

pKT(xxx | yyy) =
Γ
(

|X |
2

)|Y|

Γ
(
1
2

)|X ||Y|

∏
x∈X

∏
y∈Y Γ

(
axxx,yyy(x, y) +

1
2

)
∏

y∈Y Γ
(
ayyy(y) +

|X |
2

) .

(7)

Note that this quantity only depends on the counts aaaxxx,yyy and
aaayyy , or, equivalently, on the joint and marginal types πxxx,yyy and
πyyy . We will be interested in studying the universal decoder

ϕKT(yyy) = argmax
i∈H

1

n
log pKT(xxxi | yyy). (8)

First, we provide some results on the conditional KT esti-
mator.

Lemma 4: For xxx ∈ Xn and yyy ∈ Yn,

log

(∏
x∈X

∏
y∈Y πxxx|yyy(x | y)axxx,yyy(x,y)

pKT(xxx | yyy)

)

≤ (|X | − 1)|Y|
2

log n+ 2|Y|. (9)

Proof: Using the expression in (7), we get

log

(∏
x∈X

∏
y∈Y πxxx|yyy(x | y)axxx,yyy(x,y)

pKT(xxx | yyy)

)

=
∑
y∈Y

log


∏

x∈X πxxx|yyy(x | y)axxx,yyy(x,y)

Γ(
|X|
2 )

Γ( 1
2 )

|X|

∏
x∈X Γ(axxx,yyy(x,y)+

1
2 )

Γ
(
ayyy(y)+

|X|
2

)


≤
∑
y∈Y

(
|X | − 1

2
log ayyy(y) + 2

)
≤ (|X | − 1)|Y|

2
log n+ 2|Y|,

where, for the first inequality, we apply [16, Thm. 2.16] on
each subsequence of xxx of length ayyy(y) whose symbols jointly
appear with the same y ∈ Y in xxx⊗ yyy.

Lemma 5: Given sequences xn+1
1 = x1 · · ·xnxn+1 ∈ Xn+1

and yn+1
1 = y1 · · · ynyn+1 ∈ Yn+1, we have

pKT(x
n+1
1 | yn+1

1 ) =axn
1 ,y

n
1
(xn+1, yn+1) +

1
2

ayn
1
(yn+1) +

|X |
2

 pKT(x
n
1 | yn1 ). (10)

Proof: Write (7) for sequences of length n and n+1, and
use the fact that Γ(z + 1) = zΓ(z).

This nice sequential behaviour is analogous to the one for
the simple estimator (6). It means that pKT(xxx | yyy) can be
sequentially computed by keeping track only of the counts
aaaxxx,yyy . In particular, we can write

pKT

(
xn+k
n+1 , y

n+k
n+1 | aaaxn

1 ,y
n
1

)
:=

pKT(x
n+k
1 | yn+k

1 )

pKT(xn
1 | yn1 )

=

n+k−1∏
i=n

axi
1,y

i
1
(xi+1, yi+1) +

1
2

ayi
1
(yi+1) +

|X |
2

 . (11)

Remark 1: In [3], the minimum conditional entropy (MCE)
decoding rule ϕMCE(yyy) = argmini∈H H(πxxxi|yyy | πyyy) was
proposed for the family of memoryless channels, and shown



to be strongly random-coding universal, when either Bn = Xn

or Bn = T (n)(π). This rule is equivalent to

ϕMCE(yyy) = argmax
i∈H

πxxxi|yyy(xxxi | yyy)

= argmax
i∈H

sup
ξ

qξ(xxxi | yyy), (12)

where the supremum is taken over all memoryless laws
qξ(x | y), making it somewhat similar to the generalised
likelihood test [17, p. 2166], with the likelihood replaced by
a posterior law. When Bn = T (n)(π), this rule coincides with
the MMI decoder ϕMMI(yyy) = argmaxi∈H I(πxxxi

: πyyy) [2],
since H(πxxxi|yyy | πyyy) = H(πxxxi)− I(πxxxi

: πyyy). Finally, we note
that a sequential expression analogous to (10) holds for the
estimator in (12). The updating term, given in the following,
has a slightly less simple expression:

πxn+1
1 |yn+1

1
(xn+1

1 | yn+1
1 ) = πxn

1 |yn
1
(xn

1 | yn1 )

×

(
axn

1 ,y
n
1
(xn+1, yn+1) + 1

ayn
1
(yn+1) + 1

)axn
1 ,yn

1
(xn+1,yn+1)+1

×

(
ayn

1
(yn+1)

axn
1 ,y

n
1
(xn+1, yn+1)

)axn
1 ,yn

1
(xn+1,yn+1)

.

We are now ready to state our main result concerning
random-coding universality of the KT decoder:

Theorem 1: Let Bn = Xn or Bn = T (n)(π) the type class
of some type π on Xn. The decoder (8) is strongly universal
for the family of memoryless channels (4).

Proof: Using (2) with p̂(· | yyy) = pKT(· | yyy) gives∣∣EKT(xxx,yyy)
∣∣ ≤ 1

pKT(xxx|yyy) . Together with (3) and (5), we get∣∣EKT(xxx,yyy)
∣∣∣∣EML(xxx,yyy)
∣∣ ≤ (n+ 1)|X ||Y|

∏
x∈X

∏
y∈Y πxxx|yyy(x | y)axxx,yyy(x,y)

pKT(xxx | yyy)
.

Taking the logarithm on both sides and applying (9) yields

log
|EKT(xxx,yyy)|
|EML(xxx,yyy)|

≤ |X ||Y| log(n+ 1) +
(|X | − 1)|Y|

2
log n+ 2|Y|.

Finally, using (1), we conclude that

1

n
log

Pθ,KT(error)

Pθ,ML(error)

≤ |X ||Y|
n

log(n+ 1) +
(|X | − 1)|Y|

2n
log n+

2|Y|
n

,

which goes to 0 as n → ∞, and does not depend on θ.
This means that, in the ensemble of random codes, and

asymptotically with blocklength n, the error exponent obtained
with the KT decoder is the same as that of the optimal
ML decoder. In particular, as far as asymptotic performance
is concerned, the KT decoder (8) is on par with the MCE
decoder (12). The particular case of this result for codebooks
of size M = 2 appeared in [12].

IV. DECODING SCHEMES FOR PRACTICAL CODES

A. Linear Block Codes
When applying universal decoders to binary (k, n)-linear

block codes, two issues appear due to the code structure. First,
it contains the all-zero codeword, which is always chosen by
the KT decoder, since it maximises (7), regardless of yyy. To
avoid this, all the codewords are shifted by a constant sequence
known to the receiver. Second, since the code contains pairs
of antipodal codewords, the decoder assigns the same metric
for each pair, as it does not know whether or not bits are
flipped by the channel. To deal with this, we identify antipodal
codewords as representing the same message. This reduces the
code rate from k

n to k−1
n . Another solution could be to send

a short training sequence to initialise the decoder.
We simulate binary channels (|X | = |Y| = 2) and encode

our messages using a Golay code (k = 12, n = 24) [18,
Sec. 1.9], with codewords shifted and antipodal pairs iden-
tified. For every block of B = 10 messages, a DMC with
random cross-over probabilities p := PY |X(1 | 0) and
q := PY |X(0 | 1) is uniformly drawn with p, q ∼ U

(
[0, α]

)
,

α ∈ ]0, 1]. Decoding is done by comparing the metrics of each
codeword, as in (8), which is still feasible for moderate code-
book sizes. Instead of computing the KT estimator pKT(xxxi | yyy)
in (7) using only the counts aaaxxxi,yyy obtained from the received
yyy ∈ Yn and codeword xxxi ∈ C, we use a version of the counts
stored in the receiver memory. For each codeword, if decoding
is done above a confidence threshold (i.e., if the ratio between
first and second highest metrics associated to codewords is
greater than a certain threshold), then the counts obtained from
the decoded codeword and corresponding received sequence
are used to update the counts in the memory.

We compare the performance of the KT decoder with that
of the MCE decoder (12), MMI decoder [1], [2], LZ decoder
from [3], [4], and an omniscient ML decoder. All decoders
(except the ML) are allowed to use a similar confidence
threshold to update its rule according to previously decoded
messages. In Fig. 2, we compare the block error rate (BLER)
as function of the channel meta-parameter α for these schemes.
We observe that KT, MCE and MMI essentially track the
performance of the ML decoder, despite having no prior
information on the channel. The more distant performance of
LZ is explained by the slow convergence of this algorithm,
which is actually universal for the broader family of finite-
state channels.

B. Convolutional Codes
We consider feed-forward convolutional codes of constraint

length K: at time i, a binary b-tuple ui is input to the encoder,
and the corresponding output, a binary ν-tuple, is added to
vvv0,i ∈ Fν

2 , resulting in the ν-tuple vvvi; this is then mapped
to xxxi := (xi,1, . . . xi,l) = L(vvvi), a sequence in X l, see [19,
Fig. 5.1]. To simplify, we assume that |X |l = 2ν . Denote xxxj

i ∈
X l(j−i+1) the sequence formed by the concatenation of the
symbols in xxxi, . . . ,xxxj . The rate of the encoder is R = b/l bits
per channel use. To apply universal decoding to convolutional
codes, we follow [3], [12] and use a modified stack decoder.
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Fig. 2. BLER of different decoders for modified Golay code (R = 11/24)
in random binary DMCs with cross-over probabilities p, q ∼ U([0, α]).

Sequential decoding of convolutional codes achieves re-
duced complexity by avoiding to compute the metrics of all
paths in the trellis, and concentrating instead on the paths
with higher metrics. The basic stack sequential decoding [19,
Ch. 6] (see also [20], [21]) works as follows1: the algorithm
keeps a stack of searched paths (of different lengths), ordered
according to their metric. At each step, the path with higher
metric is extended by one branch, and replaced by its 2b

successors; then, the stack is sorted by metric. The algorithm
ends when the path on top of the stack (higher metric) reaches
the end of the trellis. For memoryless channels of known
parameters, the usual choice of metric, which is consistent
with ML decoding, is the Fano metric [19, Eq. (6.1.2)].

Following [3], [12], when the channel is unknown, we
replace the Fano metric by a universal metric. Let xxxj

i :=
xxxi · · ·xxxj ∈ X l(j−i+1) denote an input sequence (path in the
trellis) and yyyji := yyyi · · ·yyyj ∈ Y l(j−i+1) an output sequence of
the channel. For the KT estimator, we have the path metric

MKT(xxx
j
i , yyy

j
i ) :=

log pKT(xxx
j
i | yyy

j
i ) + l(j − i+ 1)

[
log |X | − (R+∆)

]
,

for ∆ > 0. Despite not being additive in the sense that, in
general, MKT(xxx

j
i , yyy

j
i ) ̸= MKT(xxx

k
i , yyy

k
i ) + MKT(xxx

j
k+1, yyy

j
k+1),

this metric can be sequentially computed, in the sense that

MKT(xxx
j+1
i , yyyj+1

i ) =MKT(xxx
j
i , yyy

j
i ) +

[
log |X | − (R+∆)

]
+ log pKT

(
xxxj+1, yyyj+1 | aaaxxxj

i ,yyy
j
i

)
,

so long as one keeps track of the counts aaaxxxj
i ,yyy

j
i
. Storing the

counts needs no more than |X ||Y| log(n+ 1) bits, since each
count is a value from 0 to n, which is much less than the
n log(|X ||Y|) bits used to store the whole sequence xxx ⊗ yyy.
Note that this simplifies implementation when using the KT
estimator, and cannot be done, for instance, with the LZ
metric [3], due to the changes in the incremental parsing every
time a path is extended.

1We ignore the merging step proposed in [19], as doing so reduces
complexity, and does not significantly increase error probability [19, p. 371].
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Fig. 3. BER of different decoders for convolutional code (K = 7, R = 1/2)
in a BSC with cross-over probability ϵ.

Therefore, we can use the basic stack sequential decoding
algorithm in much the same way as described previously,
except that, now, along with each path xxxj

i in the stack, we store
not only its metric MKT(xxx

j
i , yyy

j
i ), but also the counts aaaxxxj

i ,yyy
j
i
.

As in [12], we limit the number of computations in a given
branch of the trellis: when decoding ui, if more than Lmax

nodes are visited in the branch corresponding to ui = u ∈ Fb
2,

we declare ûi = u. Additionally, we propose that, when this
occurs, instead of reinitialising the counts to restart the process
for ui+1, we keep the previous values in the counts. We remark
that [12, Thm. 1] assures an average bit error probability of
order O(K2−bK), over the ensemble of random convolutional
codes, for rates below the cut-off rate.

In our simulations, we set |X | = |Y| = 2, Lmax = 2bK ,
∆ = 10−5, and use the rate-1/2 convolutional code with
K = 7 determined by the coefficients 1338 and 1718 in octal
notation. The channel is a binary symmetric channel (BSC)
with cross-over probability ϵ ∈ [0, 1]. In Fig. 3, we plot the
bit error rate (BER) as a function of ϵ for stack decoders
using the KT and Fano metrics, and for the Viterbi decoder
implementing the ML rule. We see that, despite having no prior
information about the channel (not even that it is symmetric),
the stack decoder with KT metric has performance not too far
from that of the stack decoder that knows the channel and uses
the Fano metric.

V. CONCLUSION

We have studied universal decoding with the KT estimator
over DMCs. We showed that this decoder is random-coding
strongly universal for the family of DMCs, and integrated it
in decoding schemes for linear block codes and convolutional
codes. Numerical results revealed that efficient decoding can
be done even for moderate blocklength or constraint length.
Future perspectives include investigating analogous decoders
for more general channels. If the same proof techniques are
to be followed, the main difficulty so far seems to reside in
deriving an analogue to Lemma 3 for those channels, which
could require new combinatorial results.
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