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BOUNDARY TREATMENT FOR HIGH-ORDER IMEX RUNGE-KUTTA LOCAL
DISCONTINUOUS GALERKIN SCHEMES FOR MULTIDIMENSIONAL

NONLINEAR PARABOLIC PDES∗

V. GONZÁLEZ-TABERNERO†, J. G. LÓPEZ-SALAS†, M. J. CASTRO-DÍAZ‡, AND J. A.
GARCÍA-RODRÍGUEZ†

Abstract. In this article, we propose novel boundary treatment algorithms to avoid order reduction when
implicit-explicit Runge-Kutta time discretization is used for solving convection-diffusion-reaction problems with
time-dependent Dirichlet boundary conditions. We consider Cartesian meshes and PDEs with stiff terms coming
from the diffusive parts of the PDE. The algorithms treat boundary values at the implicit-explicit internal stages in
the same way as the interior points. The boundary treatment strategy is designed to work with multidimensional
problems with possible nonlinear advection and source terms. The proposed methods recover the designed order of
convergence by numerical verification. For the spatial discretization, in this work, we consider Local Discontinu-
ous Galerkin methods, although the developed boundary treatment algorithms can operate with other discretization
schemes in space, such as Finite Differences, Finite Elements or Finite Volumes.
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1. Introduction. The goal of this work is to develop high-order implicit-explicit nu-
merical schemes for solving the following nonlinear multidimensional time-dependent scalar
convection-diffusion-reaction PDE with time-dependent Dirichlet boundary conditions

𝑢𝑡 + div𝐅(𝑢) = div (𝐆(∇𝑢)) + ℎ(𝑢), (𝐱, 𝑡) ∈ Ω × (0, 𝑇 ],(1.1)
𝑢(𝐱, 0) = 𝑢0(𝐱), 𝐱 ∈ Ω,(1.2)
𝑢(𝐱, 𝑡) = 𝜔(𝐱, 𝑡), 𝐱 ∈ Γ ≡ 𝜕Ω, 𝑡 ∈ (0, 𝑇 ],(1.3)

where 𝑢0 and 𝜔 are the initial and boundary conditions, respectively. Besides, the transport
flux function is given by 𝐅(𝑢) = (𝑓1(𝑢),… , 𝑓𝑑(𝑢)) and ℎ defines the reaction terms. Moreover,
𝐆(∇𝑢) = (𝑔1(∇𝑢),… , 𝑔𝑑(∇𝑢)) is the function defining the diffusion part. In this work, we
consider nonlinear convection and source terms, while, for the sake of simplicity, we only
contemplate linear diffusion operators. Finally, Ω is a bounded rectangular domain in ℝ𝑑 .

For the time discretization of convection-diffusion-reaction equations, when the problem
is diffusion-dominated, it is well known in the literature that explicit schemes suffer a severe
time step restriction for stability (Δ𝑡 = ((Δ𝑥)2)). To overcome this demanding time step
restriction, Implicit-Explicit (IMEX) Runge-Kutta (RK) schemes can be applied. More pre-
cisely, the convection and source terms are treated explicitly, while the diffusion parts (stiff
terms) are handled implicitly. In this way, the stability condition of the IMEX method is of
the type Δ𝑡 = (Δ𝑥), i.e., the explicit stability condition of the advection terms of the PDE.
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In this work, we only deal with non-stiff source terms, although the developed methods could
be easily applied to the case of stiff sources, by implicitly treating them.

IMEX-RK methods have been extensively applied in the context of solving stiff ODE
systems resulting from the semidiscretization of PDEs: for example, coupled with finite dif-
ferences and finite volumes in [17], and coupled with Local Discontinuous Galerkin (LDG)
methods in [22, 23, 24, 26].

Although very appealing at first glance, the application of IMEX RK schemes for time-
dependent problems has also difficulties. IMEX methods achieve a high order of convergence
by considering several intermediate time stages between one discretization time and the fol-
lowing. Generally speaking, the higher the order of the scheme, the higher the number of its
internal steps. When IMEX time integrators are applied to solve the semidiscrete version of
(1.1), boundary conditions have to be imposed also at the intermediate RK stages. Problems
may appear if these boundary conditions are time-dependent. The naive way of imposing
those boundary conditions consists of just the direct evaluation of the function describing the
Dirichlet boundary condition at the boundary nodes and at the intermediate times of the IMEX
stages. Such a strategy produces a well-known phenomenon of degradation (or loss) of the
order of convergence, thus ruining the high-order of the RK scheme, and making its use point-
less. This phenomenon is known in the literature as order reduction and can be severe. More
precisely, order reduction may happen when a RK method is used together with the method
of lines for the full discretization of an initial boundary value problem, see [16, 18, 26] and
references therein. Imposing a time-dependent boundary condition for the PDE at times 𝑡𝑛,𝑖
associated with the IMEX stages, i.e. 𝑢𝑛,𝑖 = 𝜔(𝑡𝑛,𝑖), typically generates bigger errors in space
near the boundaries, known as numerical boundary layers in the literature. A common repre-
sentation of such errors is shown in Figure 1. Those spatial errors near the boundaries of the
domain do not generally cancel out, thus yielding a composition of abnormally bigger errors
in space in the neighborhood of the boundaries Γ. These errors greatly reduce the order of
convergence of the method. One approach for remedying order reduction consists of modify-
ing the way boundary conditions are imposed, by analyzing the local discretization error of
the fully discrete method. The process of obtaining suitable numerical boundary values for
the imposition of the boundary conditions at the intermediate time stages is known as bound-
ary treatment. It is a complex and classic, yet active, field of research. A proper boundary
treatment is crucial for retaining the good high-order properties of the RK time integrators
in the PDEs context. Otherwise, high-order IMEX schemes applied to stiff problems with
time-dependent boundary conditions may be inefficient. Also notice that this phenomenon is
not exclusively tied to semi-implicit RK time integrators, like IMEX-RK; but also appears in
the case where traditional RK integrators are employed.

Boundary treatment strategies for explicit schemes were studied in [1, 11, 13, 19, 20, 26,
29, 30] and references therein. A classical reference for the boundary treatment of hyperbolic
PDEs in finite differences and finite element schemes is [11], by Gottlieb et al. In [1], Baeza
et al. present a technique for the extrapolation of information from the interior of the compu-
tational domain to ghost cells designed for structured meshes. The authors applied Lagrange
interpolation with a filter for the detection of discontinuities that permits a data-dependent
extrapolation, with higher order at smooth regions and essentially non-oscillatory properties
near discontinuities. In [13], Shu et al. designed an inverse Lax-Wendroff procedure for the
imposition of numerical boundary conditions in the convection–diffusion setting with explicit
time integrators. In [29], Zhao et al. present a boundary treatment method for explicit RK
methods for solving hyperbolic systems with source terms. In [30], a finite difference bound-
ary treatment method is proposed for RK methods of hyperbolic conservation laws; the method
combines an inverse Lax-Wendroff procedure and a WENO-type extrapolation.

For IMEX time integration schemes, to the best of our knowledge, [26, 28] are the only
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FIG. 1. Examples of characteristic errors in space caused by the imposition of conventional boundary conditions
on the internal stages of IMEX methods. Left: errors in the one-dimensional problem of Section 5.1. Right: Contour
plot of the errors for the two-dimensional problem of Section 5.3.

works in the literature presenting boundary treatment strategies. In [28], Zhao et al. develop a
high-order finite difference boundary treatment method for IMEX RK schemes when solving
hyperbolic systems with stiff source terms on structured meshes. The authors compute the
solutions at ghost points from the wide stencil of the interior high-order scheme by using the
RK scheme at the boundary and an inverse Lax-Wendroff (ILW) procedure. In [26], Shu et al.
present a technique to avoid order reduction when third-order IMEX RK time discretization
is used together with LDG spatial discretization. The boundary treatment strategy is only
ad hoc presented for a specific one-dimensional linear convection-diffusion PDE with time-
dependent Dirichlet boundary conditions and a particular third-order IMEX scheme. The
authors propose a strategy of boundary treatment at each intermediate stage. The general
idea is to treat boundary values in the same way as the interior points. A Cauchy-Kovaléskya
procedure (see, for example, [10, 15]), in combination with the differentiation of the IMEX
equations for the stages, and the numerical approximation of high-order derivatives that appear
in the process, is presented.

Although the technique proposed here can be applied regardless of the employed spatial
discretization, we will focus on LDG methods. The LDG method was first presented in [7].
This method has been applied for hyperbolic conservation laws in [3, 4, 5, 6, 7, 27], and refer-
ences therein; and for convection-diffusion-reaction problems in [8, 9, 25], and the references
therein. IMEX LDG schemes were studied in [23] and references therein.

The novelties of our work concerning [26] are the following: the extension to the nonlin-
ear case and the presence of source terms, the general results for arbitrary order of convergence
higher than three, as well as the extension to multidimensional problems. On top of that, a
general procedure for boundary treatment is presented here for convection-diffusion-reaction
PDEs discretized by the method of lines using general IMEX LDG methods, which simpli-
fies the procedure described in [26]. To the best of our knowledge, this is the first time that
a general procedure of this type has been proposed for arbitrary IMEX LDG methods. The
proposed strategy achieves optimal order of accuracy by numerical verification.

The structure of this paper is the following. We start by making a brief review of IMEX
LDG numerical schemes in Section 2, paying special attention to the alternating numerical
fluxes and their boundary conditions implications. In Section 3 we present the extension of
the technique presented in [26] to general nonlinear parabolic equations with reaction terms.
In Section 4 we propose novel general algorithms for the boundary treatment of IMEX LDG
schemes. In Section 5, we perform numerical experiments to assess the good performance
of the proposed boundary treatments, and we show tables of order of convergence for the

This manuscript is for review purposes only.



4 V. GONZÁLEZ, J.G. LÓPEZ, M.J. CASTRO, AND J.A. GARCÍA

empirical validation of the presented techniques. Finally, in the Supplementary Materials A,
B and C, we fully detail the application of the boundary treatment technique developed in
Section 3 to the PDE problems of Section 5 (numerical experiments).

2. IMEX LDG methods. This section discusses the discretization of (1.1). Firstly, in
subsection 2.1 we describe the space discretization obtained by LDG schemes. Then, subsec-
tion 2.2 is devoted to IMEX Runge-Kutta schemes applied to the stiff system of differential
equations obtained by the previous LDG space discretization.

2.1. LDG space semidiscretization. In this section, we discuss the spatial semidiscreti-
zation of the problem (1.1)-(1.3). Here, we follow [8], therefore we start rewriting PDE (1.1)
as the following equivalent first-order system of PDEs:

𝑢𝑡 + div𝐅(𝑢) = div𝐆(𝐪(𝐱, 𝑡)) + ℎ(𝑢), (𝐱, 𝑡) ∈ Ω × (0, 𝑇 ],(2.1)
𝐪(𝐱, 𝑡) = ∇𝑢(𝐱, 𝑡),(2.2)

with 𝐪(𝐱, 𝑡) = (𝑞1(𝐱, 𝑡),… , 𝑞𝑑(𝐱, 𝑡)) and with the same initial condition (1.2) and boundary
conditions (1.3). In what follows, for simplicity, we only consider the two-dimensional case
(𝑑 = 2), and we use the notation 𝐱 = (𝑥, 𝑦), 𝐅 = (𝑓1, 𝑓2) and 𝐆 = (𝑔1, 𝑔2).

We assume the rectangular mesh Ω̂ =
{

▨𝑖𝑗 = [𝑥𝑖, 𝑥𝑖+1] × [𝑦𝑗 , 𝑦𝑗+1]
}𝑁−1,𝑀−1
𝑖,𝑗=0 covering

the spatial domain Ω with rectangular elements that will be denoted by ▨𝑖𝑗 . Besides, □𝑖𝑗
represents the boundary of the volume ▨𝑖𝑗 . The area of the 𝑖𝑗-element is Δ𝑖𝑥Δ𝑗𝑦 = (𝑥𝑖+1 −
𝑥𝑖)(𝑦𝑗+1 − 𝑦𝑗), for 𝑖 = 0,… , 𝑁 − 1, 𝑗 = 0,… ,𝑀 − 1. The north, south, east and west
boundaries of the volume ▨𝑖𝑗 will be denoted as Γ𝑛𝑖𝑗 , Γ

𝑠
𝑖𝑗 , Γ

𝑒
𝑖𝑗 , Γ

𝑤
𝑖𝑗 , respectively, i.e. □𝑖𝑗 =

Γ𝑛𝑖𝑗 ∪ Γ𝑠𝑖𝑗 ∪ Γ𝑒𝑖𝑗 ∪ Γ𝑤𝑖𝑗 .
Associated to the mesh Ω̂, we define the discontinuous finite element space with tensor

product polynomials

𝑉 =
{

𝑣 ∈ 𝐿2(Ω) ∶ 𝑣|▨𝑖𝑗
= 𝑣𝑖𝑗 ∈ 𝑘(▨𝑖𝑗),∀▨𝑖𝑗 ∈ Ω̂

}

,

where 𝑘(▨𝑖𝑗) = {polynomials in ▨𝑖𝑗 of degree at most 𝑘 in each variable 𝑥 and 𝑦}. The
functions 𝑝 in this space 𝑉 are allowed to have discontinuities across the boundaries of the
volumes. For each boundary of each volume, for any piecewise function 𝑝, there are two traces
along the right-hand (up) and left-hand (down), denoted by 𝑝+ and 𝑝−, respectively. For the
north and south boundaries, right-hand means from the top while left-hand refers to from the
bottom.

Now we detail how to find the numerical solution of the LDG scheme (2.1)-(2.2). The
initial condition 𝑢(𝑥, 𝑦, 0) ∈ 𝑉 is taken as an approximation of the given initial solution
𝑢0(𝑥, 𝑦, 0). For any time 𝑡 > 0, the goal is to find the numerical solution (𝑢(𝑥, 𝑦, 𝑡), 𝑞1(𝑥, 𝑦, 𝑡),
𝑞2(𝑥, 𝑦, 𝑡)) ∈ 𝑉 × 𝑉 × 𝑉 satisfying the following variational formulation

(𝑢𝑡, 𝑣)▨𝑖𝑗
= ▨𝑖𝑗

(𝑢, 𝑣) +▨𝑖𝑗
(𝑢, 𝑣) +▨𝑖𝑗

(𝑞1, 𝑞2, 𝑣),(2.3)

(𝑞1, 𝑟1)▨𝑖𝑗
= 1

▨𝑖𝑗
(𝑢, 𝑟1),(2.4)

(𝑞2, 𝑟2)▨𝑖𝑗
= 2

▨𝑖𝑗
(𝑢, 𝑟2),(2.5)
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in each volume ▨𝑖𝑗 , for any test functions (𝑣, 𝑟1, 𝑟2) ∈ 𝑉 × 𝑉 × 𝑉 . Here

▨𝑖𝑗
(𝑢, 𝑣) = (𝐅(𝑢),∇𝑣)▨𝑖𝑗

− ⟨𝐅̃(𝑢𝑖𝑛𝑖𝑗 , 𝑢
𝑜𝑢𝑡
𝑖𝑗 ), 𝑣⟩□𝑖𝑗

,(2.6)

▨𝑖𝑗
(𝑢, 𝑣) = (ℎ(𝑢), 𝑣)▨𝑖𝑗

,(2.7)

▨𝑖𝑗
(𝑞1, 𝑞2, 𝑣) = −(𝐆(𝑞1, 𝑞2),∇𝑣)▨𝑖𝑗

+ ⟨𝐆(𝑞1, 𝑞2), 𝑣⟩□𝑖𝑗
,(2.8)

1
▨𝑖𝑗

(𝑢, 𝑟1) = −(𝑢, (𝑟1)𝑥)▨𝑖𝑗
+ ⟨𝑢̃, 𝑟1⟩Γ𝑒𝑖𝑗 − ⟨𝑢̃, 𝑟1⟩Γ𝑤𝑖𝑗 ,(2.9)

2
▨𝑖𝑗

(𝑢, 𝑟2) = −(𝑢, (𝑟2)𝑦)▨𝑖𝑗
+ ⟨𝑢̃, 𝑟2⟩Γ𝑛𝑖𝑗 − ⟨𝑢̃, 𝑟2⟩Γ𝑠𝑖𝑗 ,(2.10)

where 𝑢𝑖𝑛𝑖𝑗 and 𝑢𝑜𝑢𝑡𝑖𝑗 denote the values of 𝑢 computed from inside and outside the volume ▨𝑖𝑗 .
Besides, (⋅, ⋅)▨𝑖𝑗

and ⟨⋅, ⋅⟩Γ𝑖𝑗 are the standard inner products in 𝐿2(▨𝑖𝑗) and 𝐿2(Γ𝑖𝑗), respec-
tively, i.e. the first one represents the following volume integral

(𝑢, 𝑣)▨𝑖𝑗
= ∫▨𝑖𝑗

𝑢𝑣 𝑑𝑥𝑑𝑦,

while the last one the line integral

⟨𝑢, 𝑣⟩Γ𝑖𝑗 = ∫Γ𝑖𝑗
𝑢𝑣 𝑑𝑙.

In equations (2.6)-(2.10), terms marked with the tilde command denote a numerical flux.
Firstly let us work with the line integral

⟨𝐅̃(𝑢𝑖𝑛𝑖𝑗 , 𝑢
𝑜𝑢𝑡
𝑖𝑗 ), 𝑣⟩□𝑖𝑗

= ∮□𝑖𝑗

𝐅̃(𝑢𝑖𝑛𝑖𝑗 , 𝑢
𝑜𝑢𝑡
𝑖𝑗 ) ⋅ 𝐧 𝑣 𝑑𝑙,

where 𝐧 is the outward unit normal of the volume boundary□𝑖𝑗 . 𝐅̃(𝑢𝑖𝑛𝑖𝑗 , 𝑢
𝑜𝑢𝑡
𝑖𝑗 )⋅𝐧 is any monotone

numerical flux. In this work we considered the simple local Lax-Friedrichs flux, which is given
by

𝐅̃(𝑢𝑖𝑛𝑖𝑗 , 𝑢
𝑜𝑢𝑡
𝑖𝑗 ) ⋅ 𝐧 ≈ 1

2

[(

𝐅(𝑢𝑖𝑛𝑖𝑗 ) + 𝐅(𝑢𝑜𝑢𝑡𝑖𝑗 )
)

⋅ 𝐧 − 𝛼
(

𝑢𝑜𝑢𝑡𝑖𝑗 − 𝑢𝑖𝑛𝑖𝑗
)]

,

where 𝛼 is taken as an upper bound for the eigenvalues of the Jacobian in the 𝐧 direction.
Secondly, for 𝑢̃, 𝑞1 and 𝑞2 an alternating numerical flux has to be considered (see [8]).

In our work, the alternating numerical flux at the boundaries of interior volumes ▨𝑖𝑗 ,
𝑖 = 1,… , 𝑁 − 2, 𝑗 = 1,… ,𝑀 − 2 is defined as:

∙ On the east boundary of the volume ▨𝑖𝑗 , 𝑢̃ = 𝑢−Γ𝑒𝑖𝑗
, 𝑞1 = 𝑞+1Γ𝑒𝑖𝑗

, 𝑞2 = 𝑞+2Γ𝑒𝑖𝑗
.

∙ On the west boundary of the volume ▨𝑖𝑗 , 𝑢̃ = 𝑢−Γ𝑤𝑖𝑗
, 𝑞1 = 𝑞1+Γ𝑤𝑖𝑗

, 𝑞2 = 𝑞2+Γ𝑤𝑖𝑗
.

∙ On the north boundary of the volume ▨𝑖𝑗 , 𝑢̃ = 𝑢−Γ𝑛𝑖𝑗
, 𝑞1 = 𝑞1+Γ𝑛𝑖𝑗

, 𝑞2 = 𝑞2+Γ𝑛𝑖𝑗
.

∙ On the south boundary of the volume ▨𝑖𝑗 , 𝑢̃ = 𝑢−Γ𝑠𝑖𝑗
, 𝑞1 = 𝑞1+Γ𝑠𝑖𝑗

, 𝑞2 = 𝑞2+Γ𝑠𝑖𝑗
.

The important point is that 𝑢̃ and (𝑞1, 𝑞2) have to be chosen from different directions. There-
fore, selecting 𝑢̃ from the right-hand side and (𝑞1, 𝑞2) from the left-hand side is also fine.
Nevertheless, in this article, to illustrate the boundary treatment, for the alternating numeri-
cal flux, the previous choice is considered, which is also sketched in Figure 2. Then, some
numerical fluxes at exterior volume boundaries have to be carefully handled. Firstly, for the
volumes ▨0𝑗 , 𝑢̃ is set to the Dirichlet boundary condition, i.e. 𝑢̃Γ0𝑗 = 𝜔|Γ0𝑗 . Similarly, for
the volumes ▨𝑖0, 𝑢̃|Γ𝑖0= 𝜔|Γ𝑖0 . Both these two impositions are natural under the alternating
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choice of Figure 2. Next, for the exterior right and up volume boundaries of the volumes
▨𝑁−1,𝑗 and ▨𝑖,𝑀−1, numerical fluxes 𝑢̃, 𝑞1, 𝑞2 are firstly inverted, concerning the choice in
Figure 2. Therefore 𝑢 is selected from the right-hand side, while 𝑞1 and 𝑞2 are taken from the
left-hand side. Taking advantage of the same boundary treatment strategy just for 𝑢 in all Γ(Ω)
is the reason behind this change. Such boundary treatment scheme is going to be designed
in Section 3. If this inversion was not carried out, one would also need to design a proper
boundary treatment for Neumann boundary conditions for 𝑞1 and 𝑞2 at Γ𝑒(Ω) and Γ𝑛(Ω).

(𝑥𝑖, 𝑦𝑗) (𝑥𝑖+1, 𝑦𝑗)

(𝑥𝑖+1, 𝑦𝑗+1)(𝑥𝑖, 𝑦𝑗+1)

▨𝑖𝑗

𝑢
=
𝑢− Γ𝑤 𝑖

𝑗

𝑞 1
=
𝑞 1

+ Γ𝑤 𝑖
𝑗,
𝑞 2

=
𝑞 2

+ Γ𝑤 𝑖
𝑗

𝑢̃ = 𝑢−Γ𝑠𝑖𝑗

𝑞1 = 𝑞1+Γ𝑠𝑖𝑗
, 𝑞2 = 𝑞2+Γ𝑠𝑖𝑗

𝑢
=
𝑢− Γ𝑒 𝑖

𝑗

𝑞 1
=
𝑞 1

+ Γ𝑒 𝑖
𝑗,
𝑞 2

=
𝑞 2

+ Γ𝑒 𝑖
𝑗

𝑢̃ = 𝑢−Γ𝑛𝑖𝑗

𝑞1 = 𝑞1+Γ𝑛𝑖𝑗
, 𝑞2 = 𝑞2+Γ𝑛𝑖𝑗

FIG. 2. Definition of alternating numerical flux at the boundaries of interior volumes.

Finally, on top of that alternating inversion, penalty terms of the form 1
Δ (𝑢

− − 𝜔) are
added in the numerical fluxes for 𝑞1 and 𝑞2. These penalty expressions are considered to
“enhance the stability and guarantee the optimal accuracy of the scheme”, see [26]. Lastly, as
an example, the alternating numerical fluxes for the right-up cornered volume ▨𝑁−1,𝑀−1 are
the following (also sketched in Figure 3),

∙ On the east boundary of the volume ▨𝑖=𝑁−1,𝑗=𝑀−1,

𝑢̃ = 𝜔|Γ𝑒𝑖𝑗 , 𝑞1 = 𝑞1
−
Γ𝑒𝑖𝑗

+ 1
Δ𝑗𝑦

(

𝑢−Γ𝑒𝑖𝑗
− 𝜔|Γ𝑒𝑖𝑗

)

, 𝑞2 = 𝑞2
−
Γ𝑒𝑖𝑗

+ 1
Δ𝑗𝑦

(

𝑢−Γ𝑒𝑖𝑗
− 𝜔|Γ𝑒𝑖𝑗

)

.

∙ On the west boundary of the volume ▨𝑖=𝑁−1,𝑗=𝑀−1, 𝑢̃ = 𝑢−Γ𝑤𝑖𝑗
, 𝑞1 = 𝑞1+Γ𝑤𝑖𝑗

, 𝑞2 = 𝑞2+Γ𝑤𝑖𝑗
.

∙ On the north boundary of the volume ▨𝑖=𝑁−1,𝑗=𝑀−1,

𝑢̃ = 𝜔|Γ𝑛𝑖𝑗 , 𝑞1 = 𝑞1
−
Γ𝑛𝑖𝑗

+ 1
Δ𝑖𝑥

(

𝑢−Γ𝑛𝑖𝑗
− 𝜔|Γ𝑛𝑖𝑗

)

, 𝑞2 = 𝑞2
−
Γ𝑛𝑖𝑗

+ 1
Δ𝑖𝑥

(

𝑢−Γ𝑛𝑖𝑗
− 𝜔|Γ𝑛𝑖𝑗

)

.

∙ On the south boundary of the volume▨𝑖=𝑁−1,𝑗=𝑀−1, 𝑢̃ = 𝑢−Γ𝑠𝑖𝑗
, 𝑞1 = 𝑞1+Γ𝑠𝑖𝑗

, 𝑞2 = 𝑞2+Γ𝑠𝑖𝑗
.

So far the semidiscrete LDG scheme has been defined. By summing up the variational
formulations (2.3)-(2.5) over all the volumes ▨𝑖𝑗 (𝑖 = 0,… , 𝑁 −1, 𝑗 = 0,… ,𝑀 −1) we get
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(𝑥𝑖, 𝑦𝑗) (𝑥𝑖+1, 𝑦𝑗)

(𝑥𝑖+1, 𝑦𝑗+1)(𝑥𝑖, 𝑦𝑗+1)

▨𝑖=𝑁−1,𝑗=𝑀−1

𝑢
=
𝑢− Γ𝑤 𝑖

𝑗

𝑞 1
=
𝑞 1

+ Γ𝑤 𝑖
𝑗,
𝑞 2

=
𝑞 2

+ Γ𝑤 𝑖
𝑗

𝑢̃ = 𝑢−Γ𝑠𝑖𝑗

𝑞1 = 𝑞1+Γ𝑠𝑖𝑗
, 𝑞2 = 𝑞2+Γ𝑠𝑖𝑗

𝑢
=
𝜔
|

Γ𝑒 𝑖
𝑗

𝑞 1
=
𝑞 1

− Γ𝑒 𝑖
𝑗
+

1 Δ
𝑗𝑦

(

𝑢− Γ𝑒 𝑖
𝑗
−
𝜔
|

Γ𝑒 𝑖
𝑗)

𝑞 2
=
𝑞 2

− Γ𝑒 𝑖
𝑗
+

1 Δ
𝑗𝑦

(

𝑢− Γ𝑒 𝑖
𝑗
−
𝜔
|

Γ𝑒 𝑖
𝑗)

𝑢̃ = 𝜔|Γ𝑛𝑖𝑗

𝑞1 = 𝑞1−Γ𝑛𝑖𝑗
+ 1

Δ𝑖𝑥

(

𝑢−Γ𝑛𝑖𝑗
− 𝜔|Γ𝑛𝑖𝑗

)

𝑞2 = 𝑞2−Γ𝑛𝑖𝑗
+ 1

Δ𝑖𝑥

(

𝑢−Γ𝑛𝑖𝑗
− 𝜔|Γ𝑛𝑖𝑗

)

FIG. 3. Definition of alternating numerical flux at the boundaries of the ▨𝑁−1,𝑀−1 volume.

the following semidiscrete LDG in the global form:

(𝑢𝑡, 𝑣)Ω̂ = (𝑢, 𝑣) +(𝑢, 𝑣) +(𝑞1, 𝑞2, 𝑣),(2.11)
(𝑞1, 𝑟1)Ω̂ = 1(𝑢, 𝑟1),(2.12)
(𝑞2, 𝑟2)Ω̂ = 2(𝑢, 𝑟2),(2.13)

where
(𝑣,𝑤)Ω̂ =

∑

▨𝑖𝑗

(𝑣,𝑤)▨𝑖𝑗

is the inner product in 𝐿2(Ω̂). Besides

(𝑢, 𝑣) =
∑

▨𝑖𝑗

▨𝑖𝑗
(𝑢, 𝑣),

and similarly for , , 1 and 2.
Finally, we express the numerical solution as

𝑢̂(𝑥, 𝑦) =
𝑘
∑

𝑘1,𝑘2=0
𝑢𝑘1,𝑘2𝑖,𝑗 Φ𝑘1,𝑘2

𝑖𝑗 (𝑥, 𝑦), (𝑥, 𝑦) ∈ ▨𝑖𝑗 ,

and we should solve for the coefficients 𝑢𝑘1,𝑘2𝑖,𝑗 . In this work, we take the orthogonal nodal basis
defined by the tensor product of the one-dimensional Lagrange interpolation polynomial basis
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8 V. GONZÁLEZ, J.G. LÓPEZ, M.J. CASTRO, AND J.A. GARCÍA

over the 𝑘 Gauss-Legendre quadrature nodes in the intervals [𝑥𝑖, 𝑥𝑖+1] and [𝑦𝑗 , 𝑦𝑗+1], respec-
tively. As an example, we show under this setting how to compute ▨𝑖𝑗

(𝑢, 𝑣) = (ℎ(𝑢), 𝑣)▨𝑖𝑗
.

Let Φ𝑘1,𝑘2 (𝜉𝑥, 𝜉𝑦) = 𝜙𝑘1 (𝜉𝑥)𝜙𝑘2 (𝜉𝑦) denote the (𝑘1, 𝑘2)-Lagrange polynomial basis on the
(𝑘1, 𝑘2) Gauss-Legendre quadrature node in the canonical volume [−1, 1] × [−1, 1]. Let
𝑤𝑘1,𝑘2 = 𝑤𝑘1𝑤𝑘2 denote the weight associated to such quadrature node. Such basis func-
tions are mapped to the volume ▨𝑖𝑗 with the bijections 𝑇 𝑥𝑖 (𝜉𝑥) =

𝑥𝑖+1+𝑥𝑖
2 + Δ𝑖𝑥

2 𝜉𝑥, i.e

Φ𝑘1,𝑘2
𝑖𝑗 (𝑥, 𝑦) = 𝜙𝑘1◦

(

𝑇 𝑥𝑖
)−1 (𝑥) ⋅ 𝜙𝑘2◦

(

𝑇 𝑦𝑗
)−1

(𝑦).

Therefore:

▨𝑖𝑗
(𝑢,Φ𝑘1,𝑘2

𝑖𝑗 (𝑥, 𝑦)) = ∫▨𝑖𝑗

ℎ(𝑢)Φ𝑘1,𝑘2
𝑖𝑗 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦

=
Δ𝑖𝑥
2

Δ𝑗𝑦
2 ∫[−1,1]×[−1,1]

ℎ
(

𝑢
(

𝑇 𝑥𝑖 (𝜉𝑥), 𝑇
𝑦
𝑗 (𝜉𝑦)

))

𝜙𝑘1 (𝜉𝑥)𝜙𝑘2 (𝜉𝑦) 𝑑𝜉𝑥𝑑𝜉𝑦

≈
Δ𝑖𝑥
2

Δ𝑗𝑦
2

𝑘
∑

𝑘1,𝑘2=0
𝑤𝑘1,𝑘2ℎ

(

𝑢
(

𝑇 𝑥𝑖 (𝜉𝑥𝑘1 ), 𝑇
𝑦
𝑗 (𝜉𝑦𝑘2 )

))

𝜙𝑘1 (𝜉𝑥𝑘1 )𝜙
𝑘2 (𝜉𝑦𝑘2 )

=
Δ𝑖𝑥
2

Δ𝑗𝑦
2
𝑤𝑘1𝑤𝑘2ℎ

(

𝑢𝑘1,𝑘2𝑖𝑗

)

.

The computations of (2.6), (2.8)-(2.10) are left to the reader.
In the next section, the spatial discretization is coupled with the IMEX time marching

scheme.

2.2. IMEX time discretization. Before the end of this section, a fully-discrete LDG
scheme will be presented. Here we follow [8, 21, 22, 23]. In order to introduce IMEX schemes
we consider the next ODE system:

𝑢𝑡 = 𝜉(𝑢, 𝑡) + 𝜓(𝑢, 𝑡),(2.14)
𝑢(𝑡0) = 𝑢0,(2.15)

where 𝜉(𝑢, 𝑡) comes from the spatial discretization of convection and source terms, and 𝜓(𝑥, 𝑡)
arises from the discretization of the diffusive terms.

Let {𝑡𝑛 = 𝑛𝜏}𝐿𝑛=0 be the uniform partition of the time interval [0, 𝑇 ]with time step 𝜏. Non-
uniform time partitions could be adopted, although in this work, for simplicity, we consider
a constant time step 𝜏. Given 𝑢𝑛, the numerical solution of (2.14)-(2.15) at time 𝑡𝑛, a general
IMEX scheme builds the solution at time 𝑡𝑛+1, 𝑢𝑛+1, by the following means

𝑢𝑛,0 =𝑢𝑛,

𝑢𝑛,𝑖 =𝑢𝑛 + 𝜏
𝑖−1
∑

𝑗=0
𝑎̃𝑖𝑗𝜉

𝑛,𝑗 + 𝜏
𝑖

∑

𝑗=0
𝑎𝑖𝑗𝜓

𝑛,𝑗 , 1 ≤ 𝑖 ≤ 𝑠,(2.16)

𝑢𝑛+1 =𝑢𝑛 + 𝜏
𝑠
∑

𝑖=0
𝑏̃𝑖𝜉

𝑛,𝑖 + 𝜏
𝑠
∑

𝑖=0
𝑏𝑖𝜓

𝑛,𝑖,

where 𝑢𝑛,𝑖 are the intermediate IMEX stages for 𝑖 = 1,… , 𝑠 and 𝑡𝑛,𝑖 = 𝑡𝑛 + 𝑐𝑖𝜏. Additionally,
∀𝐱 ∈ Ω̂,

𝜉𝑛,𝑗 = 𝜉(𝑢𝑛,𝑗 , 𝐱, 𝑡𝑛,𝑗) = −div𝐅(𝑢𝑛,𝑗) + ℎ(𝑢𝑛,𝑗 , 𝐱, 𝑡𝑛,𝑗),(2.17)
𝜓𝑛,𝑗 = 𝜓(𝑢𝑛,𝑗 , 𝐱, 𝑡𝑛,𝑗) = div (𝐆(∇𝑢𝑛,𝑗)).(2.18)
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Besides, the matrices 𝐴̃ = (𝑎̃𝑖𝑗) and 𝐴 = (𝑎𝑖𝑗), 0 ≤ 𝑖, 𝑗 ≤ 𝑠, are (𝑠+1) × (𝑠+1) matrices such
that the resulting scheme is explicit in 𝜉 and implicit in 𝜓 . The coefficients 𝑐 = (0, 𝑐1,… , 𝑐𝑠)T

are given by the relation 𝑐𝑖 =
∑𝑖−1
𝑗=0 𝑎̃𝑖𝑗 =

∑𝑖
𝑗=0 𝑎𝑖𝑗 . Additionally, 𝑏̃ = (𝑏̃0, 𝑏̃1,… , 𝑏̃𝑠) and

𝑏 = (𝑏0, 𝑏1,… , 𝑏𝑠) are considered. All in all, the general IMEX time marching scheme (2.16)
can be expressed as the following Butcher tableaus

𝑐 𝐴̃ 𝐴
𝑏̃ 𝑏 .

In the subsequent Section 3, for the sake of simplicity, we present the boundary treatment
strategy with the succeeding particular third-order IMEX RK method, whose tableaus are
given by (see [2, 24])

0 0 0 0 0 0 0 0 0
𝛾 𝛾 0 0 0 0 𝛾 0 0

1+𝛾
2

1+𝛾
2 − 𝛼1 𝛼1 0 0 0 1−𝛾

2 𝛾 0
1 0 1 − 𝛼2 𝛼2 0 0 𝛽1 𝛽2 𝛾

0 𝛽1 𝛽2 𝛾 0 𝛽1 𝛽2 𝛾

,

where 𝛾 is the middle root of 6𝑥3−18𝑥2+9𝑥−1 = 0, 𝛾 = 1767732205903
4055673282236 , 𝛽1 = − 3

2𝛾
2+4𝛾− 1

4 ,

𝛽2 =
3
2𝛾

2 − 5𝛾 + 5
4 , 𝛼1 = −0.35 and 𝛼2 =

1
3 − 2𝛾2 − 2𝛽2𝛼1𝛾

𝛾(1 − 𝛾)
. Note also that the intermediate

time levels are defined as 𝑡𝑛,1 = 𝑡 + 𝛾𝜏, 𝑡𝑛,2 = 𝑡 + 1+𝛾
2 𝜏, 𝑡𝑛,3 = 𝑡𝑛 + 𝜏. Thus, for any function

(𝑣, 𝑟1, 𝑟2) ∈ 𝑉 × 𝑉 × 𝑉 , given (𝑢𝑛, 𝑞𝑛1 , 𝑞
𝑛
2), the numerical solution at the next time level is

computed through three intermediate numerical solutions (𝑢𝑛,𝑖, 𝑞𝑛,𝑖1 , 𝑞
𝑛,𝑖
2 ), 𝑖 = 1, 2, 3, in the

following way

(𝑢𝑛,1, 𝑣)Ω̂ = (𝑢𝑛, 𝑣)Ω̂ + 𝛾𝜏( +)(𝑢𝑛, 𝑣) + 𝛾𝜏(𝑞𝑛,11 , 𝑞𝑛,12 , 𝑣),

(2.19)

(𝑢𝑛,2, 𝑣)Ω̂ = (𝑢𝑛, 𝑣)Ω̂ +
(

1 + 𝛾
2

− 𝛼1

)

𝜏( +)(𝑢𝑛, 𝑣) + 𝛼1𝜏( +)(𝑢𝑛,1, 𝑣)

+
1 − 𝛾
2

𝜏(𝑞𝑛,11 , 𝑞𝑛,12 , 𝑣) + 𝛾𝜏(𝑞𝑛,21 , 𝑞𝑛,22 , 𝑣),(2.20)

(𝑢𝑛,3, 𝑣)Ω̂ = (𝑢𝑛, 𝑣)Ω̂ + (1 − 𝛼2)𝜏( +)(𝑢𝑛,1, 𝑣) + 𝛼2𝜏( +)(𝑢𝑛,2, 𝑣)

+ 𝛽1𝜏(𝑞𝑛,11 , 𝑞𝑛,12 , 𝑣) + 𝛽2𝜏(𝑞𝑛,21 , 𝑞𝑛,22 , 𝑣) + 𝛾𝜏(𝑞𝑛,31 , 𝑞𝑛,32 , 𝑣),(2.21)

(𝑢𝑛+1, 𝑣)Ω̂ = (𝑢𝑛, 𝑣)Ω̂ + 𝛽1𝜏( +)(𝑢𝑛,1, 𝑣) + 𝛽2𝜏( +)(𝑢𝑛,2, 𝑣) + 𝛾𝜏( +)(𝑢𝑛,3, 𝑣)

+ 𝛽1𝜏(𝑞𝑛,11 , 𝑞𝑛,12 , 𝑣) + 𝛽2𝜏(𝑞𝑛,21 , 𝑞𝑛,22 , 𝑣) + 𝛾𝜏(𝑞𝑛,31 , 𝑞𝑛,32 , 𝑣),(2.22)

(𝑞𝑛,𝑖1 , 𝑟)Ω̂ = 1(𝑢𝑛,𝑖, 𝑟), (𝑞𝑛,𝑖2 , 𝑟)Ω̂ = 2(𝑢𝑛,𝑖, 𝑟), 𝑖 = 1, 2, 3.
(2.23)

Concerning the boundary conditions, we distinguish two cases. On the one hand, at times
𝑡𝑛, one can directly impose the boundary condition 𝜔, i.e. 𝑢𝑛 = 𝜔(𝑡𝑛). On the other hand, it is
well known in the literature that, when an IMEX method is used together with the method of
lines for the full discretization of problem (2.1)-(2.2), the time-dependent boundary condition
𝜔 should not be directly evaluated at the intermediate stage time levels 𝑡𝑛,𝑖, 1 ≤ 𝑖 ≤ 𝑠, i.e.
𝑢𝑛,𝑖 = 𝜔(𝑡𝑛,𝑖). Such a naive strategy generates numerical boundary layers [14]. The conse-
quence is a serious degradation in the accuracy of the scheme, i.e. the order of convergence is
smaller than the conventional order of the considered time integrator. In the next section, we
design a strategy to compute appropriate boundary conditions to be imposed at the intermedi-
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ate IMEX time stages. Such boundary treatment techniques will allow the method to achieve
the desired order accuracy when dealing with general convection-diffusion-reaction problems
with Dirichlet boundary conditions.

3. Boundary treatment, general technique. In this section, we describe the general
boundary treatment technique for parabolic PDEs, both for linear and nonlinear cases. We
present the detailed procedure in the scalar case for the IMEX third-order scheme (2.19)-
(2.23), for the sake of simplicity. Nevertheless, the strategy can be applied to any IMEX
LDG scheme, as it will be shown in Section 4. In the supplementary materials A and B, we
show the application of the general technique to one-dimensional linear and nonlinear PDEs,
respectively, both with source terms. Finally, in the supplementary material C we extend the
procedure to the two-dimensional case. All the computations for each stage are fully detailed
so that the interested reader can easily reproduce all the results presented in Section 5 of
numerical experiments.

We start by considering a generic nonlinear one-dimensional convection-diffusion-reac-
tion PDE in the conservative form:

(3.1) 𝑢𝑡 + 𝑓𝑥(𝑢) = 𝑔𝑥(𝑢𝑥) + ℎ(𝑢, 𝑥, 𝑡),

where 𝑓 (𝑢) is a physical flux, 𝑔𝑥(𝑢𝑥) is the diffusive term and ℎ(𝑢, 𝑥, 𝑡) is the source term. We
consider that 𝑓 , 𝑔 and ℎ are smooth functions. We can write equation (3.1) as follows,

𝑢𝑡 = − 𝑓𝑥(𝑢) + 𝑔𝑥(𝑢𝑥) + ℎ(𝑢, 𝑥, 𝑡).(3.2)

The boundary treatment technique is based on:
1. Using the equations of the IMEX internal stages.
2. Differentiating the equations of the IMEX internal stages.
3. Using the Lax-Wendroff approach (also called the Cauchy-Kovalévskaya procedure,

see, for example, [10, 15]) to replace certain time derivatives into space derivatives.
4. Doing the numerical approximation of some high-order spatial derivatives of the

numerical solution at the boundaries.
As presented in (1.3), 𝜔(𝑡) is the Dirichlet boundary condition to be applied at time 𝑡. We

remark that the treatment is equivalent in any boundary of the spatial domain. To proceed, we
introduce the following result.

PROPOSITION 3.1. Let 𝐻 ∶ Ω × [0, 𝑇 ] → Ω be a 𝐶2 function, then

𝐻(𝑧(𝑥, 𝑡 + 𝜏), 𝑡 + 𝜏) = 𝐻(𝑧(𝑥, 𝑡), 𝑡) + (𝜏) ≡ 𝐻̄(𝑡, 𝑡 + 𝜏).

for 𝑧 = 𝑢, 𝑢𝑥.
Proof: We just need to consider the Taylor expansion

𝐻(𝑧(𝑡 + 𝜏), 𝑡 + 𝜏) = 𝐻(𝑧(𝑡), 𝑡) +
[

𝜕𝑡𝐻 (𝑧(𝑡), 𝑡) + 𝜕𝐻
𝜕𝑧

(𝑧(𝑡), 𝑡) 𝜕𝑧
𝜕𝑡

(𝑧(𝑡), 𝑡)
]

𝜏 + 
(

𝜏2
)

,

which stands for any function 𝑧 of 𝑢 and 𝑢𝑥.
Remark 3.2. The previous proposition can be extended to an arbitrary order in 𝜏 by

adding more terms of the Taylor expansion. This is needed for higher-order IMEX LDG
schemes, as we will see in the following subsection.

3.1. First IMEX stage. The first IMEX stage (2.19) then reads:

(3.3) 𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

=
[

−𝑓𝑥(𝑢𝑛) + ℎ(𝑢𝑛, 𝑥, 𝑡𝑛)
]

+
[

𝑔𝑥(𝑢𝑛,1𝑥 )
]

.
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Now, using (2.17), it can be written as

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

= 𝜉𝑛,0 +
[

𝑔𝑥(𝑢𝑛,1𝑥 )
]

.

In the latter, in order to lighten the notation, we are dropping the dependences (𝑢, 𝑥, 𝑡) of 𝜉𝑛,𝑙.
Then, we consider that equation (3.2) is also satisfied in 𝑡𝑛,1, so

𝑔𝑥(𝑢𝑛,1𝑥 ) =𝑢𝑛,1𝑡 − 𝜉𝑛,1.

Plugging this result into (3.3) and solving for 𝑢𝑛,1, we get

𝑢𝑛,1 =𝑢𝑛 + 𝛾𝜏
(

𝜉𝑛,0 + 𝑢𝑛,1𝑡 − 𝜉𝑛,1
)

,(3.4)

where 𝑢𝑛,1𝑡 = 𝜕𝑡𝜔(𝑡𝑛,1) is the time derivative of the boundary condition evaluated at time 𝑡𝑛,1.
Now, it is important to notice that 𝜉𝑛,1 has dependence on 𝑢𝑛,1𝑥 and 𝑢𝑛,1. On the one hand, 𝑢𝑛,1𝑥
is unknown. To avoid the dependence on this derivative, we take derivative concerning 𝑥 on
both sides of (3.3),

𝑢𝑛,1𝑥 = 𝛾𝜏
( 𝑢𝑛𝑥
𝛾𝜏

+ 𝜉𝑛,0𝑥 + 𝑔𝑥𝑥(𝑢𝑛,1𝑥 )
)

.

And we replace this derivative on 𝜉𝑛,1. We can see that in this substitution, 𝑢𝑛,1𝑥 is still in-
volved due to the factor 𝑔𝑥𝑥(𝑢

𝑛,1
𝑥 ), but it is now multiplied by 𝜏. Then, this substitution, using

Proposition 3.1 (with 𝐻 = 𝑔𝑥𝑥) leads to

(3.5) 𝑢𝑛,1𝑥 = 𝛾𝜏
( 𝑢𝑛𝑥
𝛾𝜏

+ 𝜉𝑛,0𝑥 + 𝑔𝑥𝑥(𝑢𝑛,1𝑥 )
)

= 𝛾𝜏
( 𝑢𝑛𝑥
𝛾𝜏

+ 𝜉𝑛,0𝑥 + 𝑔𝑥𝑥(𝑢𝑛,0𝑥 )
)

+ (𝜏2).

Using this result on (3.4) ensures a third-order time approximation for 𝑢𝑛,1. For higher or-
der schemes, according to Proposition 3.1, we need to compute time derivatives of 𝑢𝑛,0𝑥 . We
can take derivatives on (3.2) to compute these terms. On the other hand, the fact that 𝜉𝑛,1
has a dependence on 𝑢𝑛,1 forces us to solve in general a nonlinear equation. Once 𝑢𝑛,1𝑥 is cor-
rectly approximated as described just before, we propose two possible ways to deal with this
equation:
1. Solve directly the nonlinear equation, either analytically or numerically. The resulting

equation (or system of equations) reads

𝑢𝑛,1 = 𝜁 (𝑢𝑛,1),

which could be solved with a fixed point iterative method, Newton method, or any other
nonlinear solver.

2. Use Proposition 3.1: by setting 𝐻 as the identity function, we can find the suitable ap-
proximation of 𝑢𝑛,1 in terms of 𝑢𝑛,0 and its derivatives. As 𝜉𝑛,1 is multiplied by 𝜏 we only
need to consider 𝑝 − 1 time derivatives of 𝑢𝑛,0 for a 𝑝-th order IMEX LDG scheme. In
general, for a third-order IMEX-LDG scheme the approximation of 𝑢𝑛,𝑙 involved in 𝜉𝑛,𝑙 is

(3.6) 𝑢𝑛,𝑙 = 𝑢𝑛,0 + 𝑢𝑛,0𝑡 𝑐𝑙𝜏 + (𝜏2).

We remark that this approximation may only be substituted in the terms involved on 𝜉𝑛,𝑙.
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Remark 3.3. In (3.4) we are assuming that the time derivatives of the boundary condition
can be computed at any intermediate time. If this is not possible, one can consider a Cauchy-
Kovalévskaya procedure to compute the time derivatives with spatial derivatives in 𝑡𝑛,0. Also,
in case we have point-wise data of the boundary condition, an interpolation procedure with
enough order may be applied in order to interpolate the values at the time points where the
boundary condition must be evaluated.

Remark 3.4. Note that in equation (3.5), in general we need to compute a numerical ap-
proximation for 𝑢𝑛𝑥, 𝑢𝑛𝑥𝑥 and 𝑢𝑛𝑥𝑥𝑥. For a 𝑝-th order LDG scheme, to recover the 𝑝-th order accu-
racy, we need to consider approximations of that derivatives of at least order (Δ𝑥𝑝−2), since
in the boundary treatment equations for the internal IMEX stages, these spatial derivatives are
all multiplied by 𝜏2. In such a situation, the time step 𝜏 has to be 𝜏 = (Δ𝑥), to recover the
desired accuracy also in time. Therefore, we can use the approximations 𝑢𝑥(𝑥) = 𝑢̂𝑥(𝑥) and
𝑢𝑥𝑥(𝑥) = 𝑢̂𝑥𝑥(𝑥), with 𝑥 ∈ Γ(Ω), since the first and the second derivatives are order 𝑝− 1 and
𝑝 − 2, respectively. For the third derivative, since 𝑢̂𝑥𝑥𝑥 is only (Δ𝑥𝑝−3), we can not directly
rely on the numerical derivative of the local polynomial solution of the boundary volumes.
Therefore one must construct some valid numerical approximation using information from
the neighbouring volumes. Below we detail first-order approximation that could be used for
third-order schemes. Let

(

𝑢̂𝑥
)

𝑖±𝑎 ∶=
(

𝑢̂𝑥
)

𝑖±𝑎 (𝑥 ± 𝑎Δ𝑖𝑥). We consider:
∙ If 𝑥 is at the left boundary:

𝑢̂𝑥𝑥𝑥(𝑥) ≈

(

𝑢̂𝑥
)

𝑖+2 − 2
(

𝑢̂𝑥
)

𝑖+1 +
(

𝑢̂𝑥
)

𝑖

(Δ𝑖𝑥)2
.

∙ If 𝑥 is at the right boundary:

𝑢̂𝑥𝑥𝑥(𝑥) ≈

(

𝑢̂𝑥
)

𝑖 − 2
(

𝑢̂𝑥
)

𝑖−1 +
(

𝑢̂𝑥
)

𝑖−2

(Δ𝑖𝑥)2
.

3.2. Second IMEX stage. The second IMEX stage (2.20) reads

𝑢𝑛,2 − 𝑢𝑛
𝜏

=
(

1 + 𝛾
2

− 𝛼1

)

𝜉𝑛,0 + 𝛼1𝜉𝑛,1 +
1 − 𝛾
2

𝑔𝑥(𝑢𝑛,1𝑥 ) + 𝛾𝑔𝑥(𝑢𝑛,2𝑥 ).(3.7)

As in the previous stage, we impose that the PDE (3.2) is satisfied at times 𝑡𝑛,1 and 𝑡𝑛,2, then,
we substitute the diffusive terms leading to

𝑢𝑛,2 − 𝑢𝑛
𝜏

=
(

1 + 𝛾
2

− 𝛼1

)

𝜉𝑛,0 + 𝛼1𝜉𝑛,1 +
1 − 𝛾
2

[

𝑢𝑛,1𝑡 − 𝜉𝑛,1
]

+ 𝛾
[

𝑢𝑛,2𝑡 − 𝜉𝑛,2
]

.

Rewriting the terms we end up with

𝑢𝑛,2 − 𝑢𝑛
𝜏

=
1 − 𝛾
2

𝑢𝑛,1𝑡 + 𝛾𝑢𝑛,2𝑡 +
(

1 − 𝛾
2

− 𝛼1

)

(

𝜉𝑛,0 − 𝜉𝑛,1
)

+ 𝛾𝜉𝑛,0 − 𝛾𝜉𝑛,2,

where 𝜉𝑛,0−𝜉𝑛,1 can be substituted using (3.4) which is the first IMEX stage equation. Finally

𝑢𝑛,2 − 𝑢𝑛
𝜏

= 𝛼1𝑢
𝑛,1
𝑡 + 𝛾𝑢𝑛,2𝑡 +

(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

+ 𝛾𝜉𝑛,0 − 𝛾𝜉𝑛,2.(3.8)

Again, we need to solve this nonlinear system of equations which might have a dependence
on 𝑢𝑛,2𝑥 , which can be computed by taking derivatives on the second IMEX stage (3.7):

𝑢𝑛,2𝑥 = 𝑢𝑛𝑥 + 𝜏
[(

1 + 𝛾
2

− 𝛼1

)

𝜉𝑛,0𝑥 + 𝛼1𝜉𝑛,1𝑥 +
1 − 𝛾
2

𝑔𝑥𝑥(𝑢𝑛,1𝑥 ) + 𝛾𝑔𝑥𝑥(𝑢𝑛,2𝑥 )
]

.
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According to Proposition 3.1 for all the terms in 𝑡𝑛,1 and 𝑡𝑛,2 and regrouping

𝑢𝑛,2𝑥 = 𝑢𝑛𝑥 + 𝜏
[(

1 + 𝛾
2

)

𝜉𝑛,0𝑥 +
1 + 𝛾
2

𝑔𝑥𝑥(𝑢𝑛,0𝑥 )
]

+ (𝜏2).

Now notice that the last term is exactly (3.5), which is already computed:

(3.9) 𝑢𝑛,2𝑥 = 𝑢𝑛𝑥 +
(

1 + 𝛾
2

)

𝑢𝑛,1𝑥 − 𝑢𝑛,0𝑥
𝛾

.

Then we substitute this expression on 𝜉𝑛,2 in equation (3.8) leading to a nonlinear problem
on 𝑢𝑛,2 that may be solved the same way as described in the first stage. The result in (3.9) is
generalized for any intermediate step of any IMEX scheme in the next Theorem 3.5.

THEOREM 3.5. Let 𝑢𝑛,𝑖 be the solution at the intermediate IMEX time 𝑡𝑛,𝑖 for 𝑖 ≥ 1 accord-
ing to scheme (2.16). Then, the approximation of the first derivative, according to Proposition
3.1 is

𝑢𝑛,𝑖𝑥 = 𝑢𝑛,0𝑥 + 𝜏

[

𝑐𝑖
𝑢𝑛,1𝑥 − 𝑢𝑛,0𝑥

𝑐1𝜏
+

𝑖−1
∑

𝑗=0
𝑎̃𝑖𝑗

(

𝜉𝑥(𝑡𝑛,0, 𝑡𝑛,𝑗) − 𝜉𝑥(𝑡𝑛,0)
)

+
𝑖

∑

𝑗=0
𝑎𝑖𝑗

(

𝜓𝑥(𝑡𝑛,0, 𝑡𝑛,𝑗) − 𝜓𝑥(𝑡𝑛,0, 𝑡𝑛,1)
)

]

.

We recall that 𝜉𝑥(𝑡𝑛,0, 𝑡𝑛,𝑗) and 𝜓𝑥(𝑡𝑛,0, 𝑡𝑛,𝑗) are the approximations for the time 𝑡𝑛,𝑗 in terms
of 𝑡𝑛,0 for the explicit and implicit parts, respectively.

Proof. We take the derivative on (2.16) which leads us to:

𝑢𝑛,𝑖𝑥 − 𝑢𝑛,0𝑥
𝜏

=
𝑖−1
∑

𝑗=0
𝑎̃𝑖𝑗𝜉𝑥(𝑡𝑛,𝑗) +

𝑖
∑

𝑗=0
𝑎𝑖𝑗𝜓𝑥(𝑡𝑛,𝑗)

=
𝑖−1
∑

𝑗=0
𝑎̃𝑖𝑗𝜉𝑥(𝑡𝑛,0) +

𝑖
∑

𝑗=0
𝑎𝑖𝑗𝜓𝑥(𝑡𝑛,0, 𝑡𝑛,1)

+
𝑖−1
∑

𝑗=0
𝑎̃𝑖𝑗

(

𝜉𝑥(𝑡𝑛,0, 𝑡𝑛,𝑗) − 𝜉𝑥(𝑡𝑛,0)
)

+
𝑖

∑

𝑗=0
𝑎𝑖𝑗

(

𝜓𝑥(𝑡𝑛,0, 𝑡𝑛,𝑗) − 𝜓𝑥(𝑡𝑛,0, 𝑡𝑛,1)
)

=𝑐𝑖
(

𝜉𝑥(𝑡𝑛,0) + 𝜓𝑥(𝑡𝑛,0, 𝑡𝑛,1)
)

+
𝑖−1
∑

𝑗=0
𝑎̃𝑖𝑗

(

𝜉𝑥(𝑡𝑛,0, 𝑡𝑛,𝑗) − 𝜉𝑥(𝑡𝑛,0)
)

+
𝑖

∑

𝑗=0
𝑎𝑖𝑗

(

𝜓𝑥(𝑡𝑛,0, 𝑡𝑛,𝑗) − 𝜓𝑥(𝑡𝑛,0, 𝑡𝑛,1)
)

=𝑐𝑖
𝑢𝑛,1𝑥 − 𝑢𝑛,0𝑥

𝑐1𝜏

+
𝑖−1
∑

𝑗=0
𝑎̃𝑖𝑗

(

𝜉𝑥(𝑡𝑛,0, 𝑡𝑛,𝑗) − 𝜉𝑥(𝑡𝑛,0)
)

+
𝑖

∑

𝑗=0
𝑎𝑖𝑗

(

𝜓𝑥(𝑡𝑛,0, 𝑡𝑛,𝑗) − 𝜓𝑥(𝑡𝑛,0, 𝑡𝑛,1)
)

,

where we have taken into account that

𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
𝑐1𝜏

= 𝜉𝑥(𝑡𝑛,0) + 𝜓𝑥(𝑡𝑛,0, 𝑡𝑛,1).
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We can compute further the last term

𝜓𝑥(𝑡𝑛,0, 𝑡𝑛,𝑗) − 𝜓𝑥(𝑡𝑛,0, 𝑡𝑛,1) =
𝑘−2
∑

𝑟=0

1
𝑟!
𝜕𝑟

𝜕𝑡𝑟
𝜓𝑥(𝑡𝑛,0)

[

(𝑡𝑛,𝑗 − 𝑡𝑛,0)𝑟 − (𝑡𝑛,1 − 𝑡𝑛,0)𝑟
]

=
𝑘−2
∑

𝑟=0

1
𝑟!
𝜕𝑟

𝜕𝑡𝑟
𝜓𝑥(𝑡𝑛,0)

[

(𝑐𝑗𝜏)𝑟 − (𝑐1𝜏)𝑟
]

=
𝑘−2
∑

𝑟=0

𝜏𝑟

𝑟!
(𝑐𝑟𝑗 − 𝑐

𝑟
1)
𝜕𝑟

𝜕𝑡𝑟
𝜓𝑥(𝑡𝑛,0).

Remark 3.6. For a 𝑝-th order IMEX scheme, it is needed at least a 𝑝−2-th order approx-
imation of the spatial derivative. Then, for second and third-order IMEX schemes it is only
needed a first-order approximation using Proposition 3.1. In this case, last terms vanished due
to 𝐻(𝑡𝑛,𝑗 , 𝑡𝑛,0) = 𝐻(𝑡𝑛,1, 𝑡𝑛,0).

3.3. Third IMEX stage. The third IMEX stage (2.21) reads

(3.10) 𝑢𝑛,3 − 𝑢𝑛
𝜏

=
(

1 − 𝛼2
)

𝜉𝑛,1 + 𝛼2𝜉𝑛,2 + 𝛽1𝑔𝑥(𝑢𝑛,1𝑥 ) + 𝛽2𝑔𝑥(𝑢𝑛,2𝑥 ) + 𝛾𝑔𝑥(𝑢𝑛,3𝑥 ).

We impose the PDE to be valid on 𝑡𝑛,𝑖 for 𝑖 = 1, 2, 3 and substitute the diffusive terms

𝑢𝑛,3 − 𝑢𝑛
𝜏

=
(

1 − 𝛼2
)

𝜉𝑛,1 + 𝛼2𝜉𝑛,2 + 𝛽1
(

𝑢𝑛,1𝑡 − 𝜉𝑛,1
)

+ 𝛽2
(

𝑢𝑛,2𝑡 − 𝜉𝑛,2
)

+ 𝛾
(

𝑢𝑛,3𝑡 − 𝜉𝑛,3
)

=𝛽1𝑢
𝑛,1
𝑡 + 𝛽2𝑢

𝑛,2
𝑡 + 𝛽3𝑢

𝑛,3
𝑡 −

(

𝛼2 + 𝛽2 − 1
)

𝜉𝑛,1 −
(

𝛽2 − 𝛼2
)

𝜉𝑛,2 − 𝛾𝜉𝑛,3.

Then, using (3.4) and (3.8) we can substitute 𝜉𝑛,𝑖:

𝜉𝑛,1 = 𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

− 𝜉𝑛,0 − 𝑢𝑛,1𝑡 ,

𝜉𝑛,2 = 𝑢𝑛,2 − 𝑢𝑛
𝛾𝜏

−
𝛼1
𝛾
𝑢𝑛,1𝑡 − 𝑢𝑛,2𝑡 −

(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛

𝛾2𝜏
− 𝜉𝑛,0.

Substituting these expressions, regrouping and using that 𝛽1 + 𝛽2 + 𝛾 = 1:

𝑢𝑛,3 − 𝑢𝑛
𝜏

=
[

1 − 𝛼2 −
(

𝛽2 − 𝛼2
) 𝛼1
𝛾

]

𝑢𝑛,1𝑡 + 𝛼2𝑢
𝑛,2
𝑡 + 𝛾𝑢𝑛,3𝑡 +

(

𝛼2 + 𝛽1 − 1
) 𝑢𝑛,1 − 𝑢𝑛

𝛾𝜏

+
(

𝛽2 − 𝛼2
)

[

𝑢𝑛,2 − 𝑢𝑛
𝛾𝜏

−
(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛

𝛾2𝜏

]

+ 𝛾𝜉𝑛 − 𝛾𝜉𝑛,3.(3.11)

Again, we have a dependency of 𝑢𝑛,3𝑥 on 𝜉𝑛,3 which can be vanished by taking the derivative
in (3.10), taking into account the order on 𝜏 and 𝛽1 + 𝛽2 + 𝛾 = 1, it results in

𝑢𝑛,3𝑥 − 𝑢𝑛𝑥
𝜏

= 𝜉𝑛,0𝑥 + 𝑔𝑥𝑥(𝑢𝑛,0𝑥 ) +  (𝜏) =
𝑢𝑛,1𝑥 − 𝑢𝑛,0𝑥

𝛾𝜏
+  (𝜏) ,(3.12)

which is the result we stated in Theorem 3.5.
Finally, substituting this result on 𝜉𝑛,3 involved on (3.11) leads to a nonlinear problem on

𝑢𝑛,3 which, again, might be solved as in the first stage.

This manuscript is for review purposes only.
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4. Numerical algorithms for the boundary treatment. The computations described in
the previous section can become quite convoluted and tedious to be done by hand, in partic-
ular for the last internal IMEX stages. On top of that, those computations are exhausting for
schemes of higher order. In this section, we propose a completely algorithmic version of the
presented technique, that allows us to fully automate the boundary treatment strategy, by let-
ting the computer numerically perform all the computations. The proposed general algorithms
can be applied to any IMEX scheme, as long as the IMEX tableaus are supplied.

Algorithm 4.1 is a generalization of the procedure described previously for IMEX time
integration schemes of arbitrary order. For third-order IMEX schemes, as stated before, in the
Taylor expansions in time for passing the space derivatives of 𝑢𝑛,𝑖 to time 𝑡𝑛,0, it is enough to
truncate the series to its first zero order term. For schemes of higher order, more terms have to
be considered. In such a situation, mixed (space-time) derivatives of 𝑢𝑛,𝑖 have to be computed.
The way we propose to deal with these terms is to make use of the PDE itself to convert the
mixed derivatives to just spatial derivatives, which can be computed using the LDG solution
as done before. Besides, we point out that in this algorithm, the terms 𝑢𝑛,𝑖 coming from the
source term of the PDE are denoted as 𝑢𝑛,𝑖ℎ . To avoid having to solve, eventually, nonlinear
equations numerically, Taylor expansion to time 𝑡𝑛,0 is here considered. Finally, notice that
stages 3, 5, and 7 are the suitable Taylor expansions of the terms approximated according
to Proposition 3.1, and stage 6 is the result proved in Theorem 3.5. All in all, Algorithm
4.1 is a generalization of the work proposed by Shu et al. which opens the door to naturally
implement the boundary treatment strategy detailed in Section 3. Therefore, the procedure
is fully numerical, letting the machine deal with the computations, without the hassle of the
analytical calculations and the corresponding simplifications.

At this point, in Algorithm 4.2 we present an improvement of Algorithm 4.1. Firstly,
we note that it is not necessary to move from time 𝑡𝑛,𝑖 to time 𝑡𝑛,0 by Taylor expansion of
the 𝜉 terms treated explicitly by IMEX. They can be directly evaluated in their natural IMEX
times 𝑡𝑛,𝑖. The advantages are twofold. On the one hand, errors coming from the truncation
in the Taylor series are avoided. On the other hand, the implementation is easier, especially
for IMEX schemes of order greater than three, since we circumvent the computation of time-
space derivatives for the 𝜉 terms. The second improvement in Algorithm 4.2 is related to the
treatment of the 𝜓𝑥 terms treated implicitly by IMEX. At the 𝑖-th IMEX intermediate stage,
the terms 𝜓𝑛,𝑗𝑥 for 𝑗 < 𝑖 are directly computed using the corresponding intermediate LDG
solution at the same 𝑡𝑛,𝑗 time. Besides, for the terms 𝜓𝑛,𝑖𝑥 , we move them to the immediately
preceding time 𝑡𝑛,𝑖−1 by Taylor expansion. Finally, note that the terms 𝑢𝑛,𝑖 coming from the
reaction part of the PDE, denoted in the algorithms by 𝑢𝑛,𝑖ℎ , are treated in the same way as in
Algorithm 4.1. The reason behind this choice is that the Taylor expansions of these terms only
require the computation of analytical time derivatives of 𝜔.

Finally, the extension of Algorithm 4.2 to the high dimensional case is straightforward.
It is shown in Algorithm 4.3 for the two-dimensional case in structured meshes.

5. Numerical experiments. In this section, we present four numerical experiments to
empirically validate that, using the boundary treatment procedure proposed in this work the
convergence order is successfully restored.

In all the numerical tests presented in this section, there is no substantial numerical dif-
ference in considering the approaches “1” or “2” when dealing with the nonlinear equations
resulting at the end of the boundary treatment of all IMEX stages. Besides, also as expected,
no substantial numerical differences are observed between Algorithms 4.1 and 4.2, the second
one being easier to implement, as explained before.

The tables of errors and convergence orders will be computed for the 𝐿1 norm, as well as
for the more demanding 𝐿2 and 𝐿∞ norms.

This manuscript is for review purposes only.



16 V. GONZÁLEZ, J.G. LÓPEZ, M.J. CASTRO, AND J.A. GARCÍA

Algorithm 4.1 Boundary treatment approximating the terms 𝜉𝑛,𝑖𝑥 with 𝜉𝑛,0𝑥 , and 𝜓𝑛,𝑖𝑥 with 𝜓𝑛,0𝑥 ,
𝑢𝑡 = 𝜉(𝑢, 𝑡) + 𝜓(𝑢, 𝑡), one-dimensional problem.

1: 𝜉𝑛 = 𝜉𝑛,0 ← 𝜉𝑛,0(𝑢̂𝑛,0𝑥 , 𝑢𝑛,0) = 𝜉𝑛,0(𝑢̂𝑛𝑥, 𝜔(𝑡
𝑛))

2: for 𝑖 ← 1..., 𝑠 do

3: 𝑢𝑛,𝑖−1𝑥𝑥 ←
𝑘−2
∑

𝑟=0

𝜏𝑟

𝑟!
𝜕𝑟𝑡 𝑢̂

𝑛,0
𝑥𝑥 𝑐

𝑟
𝑖−1 (Taylor expansion). For 3rd order (𝑘 = 2) , 𝑢𝑛,𝑖−1𝑥𝑥 ← 𝑢̂𝑛,0𝑥𝑥

4: 𝜉𝑛,𝑖−1𝑥 ← 𝜉𝑛,𝑖−1𝑥 (𝑢𝑛,𝑖−1𝑥𝑥 , 𝑢𝑛,𝑖−1𝑥 )

5: 𝜓𝑛,𝑖𝑥 ←
𝑘−2
∑

𝑟=0

𝜏𝑟

𝑟!
𝜕𝑟𝑡𝜓

𝑛,0
𝑥 𝑐𝑟𝑖 (Taylor expansion). For 3rd order (𝑘 = 2) , 𝜓𝑛,𝑖𝑥 ← 𝜓̂𝑛,0𝑥

6: 𝑢𝑛,𝑖𝑥 ← 𝑢̂𝑛𝑥 + 𝜏
𝑖−1
∑

𝑗=0
𝑎̃𝑖𝑗𝜉

𝑛,𝑗
𝑥 + 𝜏

𝑖
∑

𝑗=0
𝑎𝑖𝑗𝜓

𝑛,𝑗
𝑥

7: 𝑢𝑛,𝑖ℎ ←
𝑘−1
∑

𝑟=0

𝜏𝑟𝑐𝑟𝑖
𝑟!

𝜕𝑟𝑡 𝑢
𝑛 (Taylor expansion). For 3rd order, 𝑢𝑛,𝑖ℎ ← 𝑢𝑛+𝑐𝑖𝜏𝑢𝑛𝑡 = 𝜔(𝑡𝑛)+𝑐𝑖𝜏𝜔𝑡(𝑡𝑛)

8: 𝜉𝑛,𝑖 ← 𝜉𝑛,𝑖(𝑢𝑛,𝑖𝑥 , 𝑢
𝑛,𝑖
ℎ )

9: 𝑢𝑛,𝑖 ← 𝑢𝑛 + 𝜏
𝑖−1
∑

𝑗=0
𝑎̃𝑖𝑗𝜉

𝑛,𝑗 + 𝜏
𝑖

∑

𝑗=0
𝑎𝑖𝑗(𝑢

𝑛,𝑗
𝑡 − 𝜉𝑛,𝑗)

10: end for

Algorithm 4.2 Boundary treatment just approximating the terms 𝜓𝑛,𝑖𝑥 with 𝜓𝑛,𝑖−1𝑥 , 𝑢𝑡 =
𝜉(𝑢, 𝑡) + 𝜓(𝑢, 𝑡), one-dimensional problem.

1: 𝜉𝑛 = 𝜉𝑛,0 ← 𝜉𝑛,0(𝑢̂𝑛,0𝑥 , 𝑢𝑛,0) = 𝜉𝑛,0(𝑢̂𝑛𝑥, 𝜔(𝑡
𝑛))

2: for 𝑖 ← 1..., 𝑠 do

3: 𝜉𝑛,𝑖−1𝑥 ← 𝜉𝑛,𝑖−1𝑥 (𝑢̂𝑛,𝑖−1𝑥𝑥 , 𝑢𝑛,𝑖−1𝑥 )

4: 𝜓𝑛,𝑖𝑥 ←
𝑘−2
∑

𝑟=0

𝜏𝑟

𝑟!
𝜕𝑟𝑡 𝜓̂

𝑛,𝑖−1
𝑥 (𝑐𝑖 − 𝑐𝑖−1)𝑟. For 3rd order (𝑘 = 2) 𝜓𝑛,𝑖𝑥 ← 𝜓̂𝑛,𝑖−1𝑥

5: 𝑢𝑛,𝑖𝑥 ← 𝑢̂𝑛𝑥 + 𝜏
𝑖−1
∑

𝑗=0
𝑎̃𝑖𝑗𝜉

𝑛,𝑗
𝑥 + 𝜏

𝑖−1
∑

𝑗=0
𝑎𝑖𝑗𝜓̂

𝑛,𝑗
𝑥 + 𝑎𝑖𝑖𝜓𝑛,𝑖𝑥

6: 𝑢𝑛,𝑖ℎ ←
𝑘−1
∑

𝑟=0

𝜏𝑟𝑐𝑟𝑖
𝑟!

𝜕𝑟𝑡 𝑢
𝑛. For 3rd order, 𝑢𝑛,𝑖ℎ ← 𝑢𝑛 + 𝑐𝑖𝜏𝑢𝑛𝑡 = 𝜔(𝑡𝑛) + 𝑐𝑖𝜏𝜔𝑡(𝑡𝑛)

7: 𝜉𝑛,𝑖 ← 𝜉𝑛,𝑖(𝑢𝑛,𝑖𝑥 , 𝑢
𝑛,𝑖
ℎ )

8: 𝑢𝑛,𝑖 ← 𝑢𝑛 + 𝜏
𝑖−1
∑

𝑗=0
𝑎̃𝑖𝑗𝜉

𝑛,𝑗 + 𝜏
𝑖

∑

𝑗=0
𝑎𝑖𝑗(𝑢

𝑛,𝑗
𝑡 − 𝜉𝑛,𝑗)

9: end for
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Algorithm 4.3 Boundary treatment, 𝑢𝑡 = 𝜉(𝑢, 𝑡) + 𝜓(𝑢, 𝑡), two-dimensional problem.
1: 𝜉𝑛 = 𝜉𝑛,0 ← 𝜉𝑛,0(𝑢̂𝑛,0𝑥 , 𝑢̂𝑛,0𝑦 , 𝑢𝑛,0) = 𝜉𝑛,0(𝑢̂𝑛𝑥, 𝑢̂

𝑛
𝑦, 𝜔(𝑡

𝑛))

2: for 𝑖 ← 1..., 𝑠 do

3: 𝜉𝑛,𝑖−1𝑥 ← 𝜉𝑛,𝑖−1𝑥 (𝑢̂𝑛,𝑖−1𝑥𝑥 , 𝑢̂𝑛,𝑖−1𝑦𝑥 , 𝑢𝑛,𝑖−1𝑥 ), 𝜓𝑛,𝑖𝑥 ←
𝑘−2
∑

𝑟=0

𝜏𝑟

𝑟!
𝜕𝑟𝑡 𝜓̂

𝑛,𝑖−1
𝑥 (𝑐𝑖 − 𝑐𝑖−1)𝑟

4: 𝑢𝑛,𝑖𝑥 ← 𝑢̂𝑛𝑥 + 𝜏
𝑖−1
∑

𝑗=0
𝑎̃𝑖𝑗𝜉

𝑛,𝑗
𝑥 + 𝜏

𝑖−1
∑

𝑗=0
𝑎𝑖𝑗𝜓̂

𝑛,𝑗
𝑥 + 𝑎𝑖𝑖𝜓𝑛,𝑖𝑥

5: 𝜉𝑛,𝑖−1𝑦 ← 𝜉𝑛,𝑖−1𝑦 (𝑢̂𝑛,𝑖−1𝑥𝑦 , 𝑢̂𝑛,𝑖−1𝑦𝑦 , 𝑢𝑛,𝑖−1𝑦 ), 𝜓𝑛,𝑖𝑦 ←
𝑘−2
∑

𝑟=0

𝜏𝑟

𝑟!
𝜕𝑟𝑡 𝜓̂

𝑛,𝑖−1
𝑦 (𝑐𝑖 − 𝑐𝑖−1)𝑟

6: 𝑢𝑛,𝑖𝑦 ← 𝑢̂𝑛𝑦 + 𝜏
𝑖−1
∑

𝑗=0
𝑎̃𝑖𝑗𝜉

𝑛,𝑗
𝑦 + 𝜏

𝑖−1
∑

𝑗=0
𝑎𝑖𝑗𝜓̂

𝑛,𝑗
𝑦 + 𝑎𝑖𝑖𝜓𝑛,𝑖𝑦

7: 𝑢𝑛,𝑖ℎ ←
𝑘−1
∑

𝑟=0

𝜏𝑟𝑐𝑟𝑖
𝑟!

𝜕𝑟𝑡 𝑢
𝑛

8: 𝜉𝑛,𝑖 ← 𝜉𝑛,𝑖(𝑢𝑛,𝑖𝑥 , 𝑢
𝑛,𝑖
𝑦 , 𝑢

𝑛,𝑖
ℎ )

9: 𝑢𝑛,𝑖 ← 𝑢𝑛 + 𝜏
𝑖−1
∑

𝑗=0
𝑎̃𝑖𝑗𝜉

𝑛,𝑗 + 𝜏
𝑖

∑

𝑗=0
𝑎𝑖𝑗(𝑢

𝑛,𝑗
𝑡 − 𝜉𝑛,𝑗)

10: end for

On the one hand, for the first three numerical experiments, the third order was consid-
ered, using the IMEX scheme presented in equations (2.19)-(2.23). On the other hand, the
ARK4(3)6L[2]SA–ERK and ESDIRK tableaus of [12] are employed for the last fourth-order
numerical test.

5.1. One-dimensional convective heat equation, third-order test. Here we solve the
one-dimensional linear PDE 𝑢𝑡 + 𝜕𝑥𝑓 (𝑢) = 𝜕𝑥𝑔(𝑢𝑥) + ℎ(𝑢), where 𝑓 = −𝐶𝑢, 𝑔 = 𝐷𝑢𝑥,
ℎ = (𝐷 − 1)𝑢, 𝐶,𝐷 ∈ ℝ. For this problem, the boundary treatment strategy is explicitly
detailed in the supplementary material A. For the spatial domain, we consider Ω = [−1, 1],
while the computing time is taken as 𝑇 = 5. The corresponding time-dependent Dirichlet
boundary conditions are given by the exact solution 𝑢(𝑥, 𝑡) = 𝑒−𝑡 sin(𝑥 + 𝐶𝑡).

In Table 1 we show the errors and orders of convergence for the third-order IMEX LDG
scheme, without and with boundary treatment. Firstly, in the case without boundary treatment,
boundary conditions are naively imposed, meaning that boundary conditions are directly eval-
uated at the intermediate time steps of the IMEX RK time marching method. As expected, the
third-order convergence is far from being achieved with this conventional strategy, especially
for the 𝐿2 and 𝐿∞ norms. Secondly, in the case of boundary treatment, the technique ex-
plained in Section 4 is considered. In this case, the method recovers the third-order accuracy
for the three considered norms.

Figure 4 shows the single time step (𝑡 = 𝜏) and the final time (𝑡 = 𝑇 ) errors in space
in the cases without and with boundary treatment (w/o bt and w bt, respectively). The huge
spatial errors in the boundary regions, appearing when no boundary treatment is considered,
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vanish with the proposed treatment.

TABLE 1
Errors and orders of accuracy for PDE 𝑢𝑡+𝜕𝑥𝑓 (𝑢) = 𝜕𝑥𝑔(𝑢𝑥)+ℎ(𝑢), where 𝑓 = −𝐶𝑢, 𝑔 = 𝐷𝑢𝑥, ℎ = (𝐷−1)𝑢,

considering 𝐶 = 0.1, 𝐷 = 2. 𝐶𝐹𝐿 = 0.25. Spatial domain [−1, 1], computing time 𝑇 = 5. Dirichlet boundary
conditions given by the exact solution 𝑢(𝑥, 𝑡) = 𝑒−𝑡 sin(𝑥 + 𝐶𝑡).

𝑁 Without boundary treatment
𝐿1 error 𝐿1 order 𝐿2 error 𝐿2 order 𝐿∞ error 𝐿∞ order

5 5.03𝑒 − 05 − 4.86𝑒 − 05 − 9.60𝑒 − 05 −
10 9.11𝑒 − 06 2.47 9.56𝑒 − 06 2.35 2.31𝑒 − 05 2.06
20 1.63𝑒 − 06 2.48 1.92𝑒 − 06 2.32 5.70𝑒 − 06 2.02
40 2.85𝑒 − 07 2.52 3.93𝑒 − 07 2.29 1.42𝑒 − 06 2.01
80 4.96𝑒 − 08 2.52 8.11𝑒 − 08 2.28 3.57𝑒 − 07 1.99
160 8.61𝑒 − 09 2.53 1.69𝑒 − 08 2.26 8.96𝑒 − 08 1.99
320 1.50𝑒 − 09 2.52 3.53𝑒 − 09 2.26 2.25𝑒 − 08 1.99
640 2.62𝑒 − 10 2.52 7.41𝑒 − 10 2.25 5.64𝑒 − 09 2.00
𝑁 With boundary treatment

𝐿1 error 𝐿1 order 𝐿2 error 𝐿2 order 𝐿∞ error 𝐿∞ order
5 1.17𝑒 − 05 − 1.39𝑒 − 05 − 3.18𝑒 − 05 −
10 1.18𝑒 − 06 3.31 1.30𝑒 − 06 3.42 3.72𝑒 − 06 3.1
20 1.41𝑒 − 07 3.07 1.42𝑒 − 07 3.19 4.55𝑒 − 07 3.03
40 1.82𝑒 − 08 2.95 1.70𝑒 − 08 3.06 5.67𝑒 − 08 3.00
80 2.37𝑒 − 09 2.94 2.13𝑒 − 09 3.00 7.15𝑒 − 09 2.99
160 3.08𝑒 − 10 2.94 2.69𝑒 − 10 2.99 9.03𝑒 − 10 2.99
320 3.98𝑒 − 11 2.95 3.40𝑒 − 11 2.98 1.14𝑒 − 10 2.99
640 5.08𝑒 − 12 2.97 4.27𝑒 − 12 2.99 1.44𝑒 − 11 2.98
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FIG. 4. |𝑢̂ − 𝑢| for 𝑁 = 160 with the same data of Table 1.

5.2. One-dimensional diffusive Burgers equation, third-order test. Now we solve the
one-dimensional nonlinear PDE 𝑢𝑡 + 𝜕𝑥𝑓 (𝑢) = 𝜕𝑥𝑔(𝑢𝑥) + ℎ(𝑢, 𝑥, 𝑡), where 𝑓 = 𝑢2

2 , 𝑔 = 𝐷𝑢𝑥,
ℎ = 𝑝(𝑥, 𝑡)𝑢, considering 𝐷 = 2 and 𝑝(𝑥, 𝑡) = 𝐷 − 1 + 𝑒−𝑡 cos 𝑥. The spatial domain is taken
as Ω = [−1, 1] and 𝑇 = 5 is the computing time. The corresponding Dirichlet boundary
conditions are given by the exact solution 𝑢(𝑥, 𝑡) = 𝑒−𝑡 sin 𝑥. The boundary treatment for this
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case is fully presented in the supplementary material B.

TABLE 2
Errors and orders of accuracy for PDE 𝑢𝑡+𝜕𝑥𝑓 (𝑢) = 𝜕𝑥𝑔(𝑢𝑥)+ℎ(𝑢, 𝑥, 𝑡), where 𝑓 = 𝑢2

2 , 𝑔 = 𝐷𝑢𝑥, ℎ = 𝑝(𝑥, 𝑡)𝑢,
considering 𝐷 = 2 and 𝑝(𝑥, 𝑡) = 𝐷 − 1 + 𝑒−𝑡 cos 𝑥. 𝐶𝐹𝐿 = 0.4. Spatial domain [−1, 1], computing time 𝑇 = 5.
Dirichlet boundary conditions given by the exact solution 𝑢(𝑥, 𝑡) = 𝑒−𝑡 sin 𝑥.

𝑁 Without boundary treatment
𝐿1 error 𝐿1 order 𝐿2 error 𝐿2 order 𝐿∞ error 𝐿∞ order

5 3.10𝑒 − 06 − 2.30𝑒 − 06 − 2.95𝑒 − 06 −
10 3.75𝑒 − 07 3.05 2.90𝑒 − 07 2.99 5.26𝑒 − 07 2.49
20 5.19𝑒 − 08 2.85 4.35𝑒 − 08 2.74 1.17𝑒 − 07 2.17
40 7.43𝑒 − 09 2.80 7.55𝑒 − 09 2.53 2.88𝑒 − 08 2.02
80 1.10𝑒 − 09 2.76 1.45𝑒 − 09 2.38 7.25𝑒 − 09 1.99
160 1.66𝑒 − 10 2.73 2.94𝑒 − 10 2.30 1.84𝑒 − 09 1.98
320 2.58𝑒 − 11 2.69 6.09𝑒 − 11 2.27 4.66𝑒 − 10 1.98
640 4.10𝑒 − 12 2.65 1.27𝑒 − 11 2.26 1.18𝑒 − 10 1.98
𝑁 With boundary treatment

𝐿1 error 𝐿1 order 𝐿2 error 𝐿2 order 𝐿∞ error 𝐿∞ order
5 3.03𝑒 − 06 − 2.19𝑒 − 06 − 2.19𝑒 − 06 −
10 3.47𝑒 − 07 3.13 2.49𝑒 − 07 3.14 2.24𝑒 − 07 3.29
20 4.23𝑒 − 08 3.04 3.05𝑒 − 08 3.03 2.81𝑒 − 08 2.99
40 5.26𝑒 − 09 3.01 3.79𝑒 − 09 3.01 3.51𝑒 − 09 3.00
80 6.56𝑒 − 10 3.00 4.73𝑒 − 10 3.00 4.39𝑒 − 10 3.00
160 8.20𝑒 − 11 3.00 5.92𝑒 − 11 3.00 5.48𝑒 − 11 3.00
320 1.03𝑒 − 11 2.99 7.39𝑒 − 12 3.00 6.86𝑒 − 12 3.00
640 1.28𝑒 − 12 3.01 9.24𝑒 − 13 3.00 8.57𝑒 − 13 3.00

In Table 2 errors and orders of convergence for the third-order IMEX LDG scheme are
shown. Once more, the solver without a proper boundary treatment suffers from the order
reduction phenomenon. However, the designed boundary treatment strategy can successfully
restore third-order accuracy, even in this nonlinear problem with huge temporal variations at
the boundaries.

5.3. Two-dimensional convective heat equation, third-order test. Here the numerical
solution of the following two-dimensional linear PDE is carried out

𝑢𝑡 + 𝜕𝑥𝑓1(𝑢) + 𝜕𝑦𝑓2(𝑢) = 𝜕𝑥𝑔1(𝑢𝑥, 𝑢𝑦) + 𝜕𝑦𝑔2(𝑢𝑥, 𝑢𝑦) + ℎ(𝑢),

with 𝑓1 = −𝐶𝑢, 𝑓2 = −𝐶𝑢, 𝑔1 = 𝐷𝑢𝑥, 𝑔2 = 𝐷𝑢𝑦 and ℎ = (2𝐷 − 1)𝑢. 𝐶 ∈ ℝ rep-
resents the convection coefficients while 𝐷 ∈ ℝ the diffusion parameters. For the spatial
domain we consider Ω = [−1, 1] × [−1, 1], while the computing time is taken as 𝑇 = 5.
The corresponding Dirichlet boundary conditions are given by the exact solution 𝑢(𝑥, 𝑦, 𝑡) =
𝐷𝑒−𝑡 sin(𝑥+𝐶𝑡) cos(𝑦+𝐶𝑡). The boundary treatment strategy for this problem is fully detailed
in the supplementary material C.

In Table 3 we show the errors and orders of accuracy for the third-order IMEX LDG
scheme, firstly without applying the boundary treatment, and later applying it. This example
shows by numerical verification that the designed boundary treatment strategy is also able
to recover the third-order accuracy even for multidimensional convection-diffusion-reaction
problems with time-dependent Dirichlet boundary conditions.

This manuscript is for review purposes only.



20 V. GONZÁLEZ, J.G. LÓPEZ, M.J. CASTRO, AND J.A. GARCÍA

TABLE 3
Errors and orders of accuracy for PDE 𝑢𝑡 + 𝜕𝑥𝑓1(𝑢) + 𝜕𝑦𝑓2(𝑢) = 𝜕𝑥𝑔1(𝑢𝑥, 𝑢𝑦) + 𝜕𝑦𝑔2(𝑢𝑥, 𝑢𝑦) + ℎ(𝑢), where

𝑓1 = −𝐶𝑢, 𝑓2 = −𝐶𝑢, 𝑔1 = 𝐷𝑢𝑥, 𝑔2 = 𝐷𝑢𝑦, ℎ = (2𝐷 − 1)𝑢, considering 𝐶 = 0.1, 𝐷 = 1. 𝐶𝐹𝐿 = 0.2.
Spatial domain [−1, 1] × [−1, 1], computing time 𝑇 = 5. Dirichlet boundary conditions given by the exact solution
𝑢(𝑥, 𝑦, 𝑡) = 𝑒−𝑡 sin(𝑥 + 𝐶𝑡) cos(𝑦 + 𝐶𝑡).

𝑁,𝑀 Without boundary treatment
𝐿1 error 𝐿1 order 𝐿2 error 𝐿2 order 𝐿∞ error 𝐿∞ order

5 8.74𝑒 − 06 − 6.43𝑒 − 06 − 1.22𝑒 − 05 −
10 1.52𝑒 − 06 2.52 1.29𝑒 − 06 2.32 3.15𝑒 − 06 1.95
20 2.61𝑒 − 07 2.54 2.63𝑒 − 07 2.29 8.12𝑒 − 07 1.96
40 4.50𝑒 − 08 2.54 5.43𝑒 − 08 2.28 2.12𝑒 − 07 1.94
80 7.78𝑒 − 09 2.53 1.13𝑒 − 08 2.26 5.45𝑒 − 08 1.96
𝑁 With boundary treatment

𝐿1 error 𝐿1 order 𝐿2 error 𝐿2 order 𝐿∞ error 𝐿∞ order
5 4.28𝑒 − 06 − 2.43𝑒 − 06 − 2.62𝑒 − 06 −
10 5.35𝑒 − 07 3.00 2.97𝑒 − 07 3.03 2.70𝑒 − 07 3.28
20 6.74𝑒 − 08 2.99 3.74𝑒 − 08 2.99 3.22𝑒 − 08 3.07
40 8.46𝑒 − 09 2.99 4.71𝑒 − 09 2.99 4.06𝑒 − 09 2.99
80 1.06𝑒 − 09 3.00 5.91𝑒 − 10 2.99 5.08𝑒 − 10 3.00

5.4. One-dimensional convective heat equation, fourth-order test . Finally, this sec-
tion is devoted to numerically showing that the proposed boundary treatment strategy extends
to integrators of higher order than three. Here we solve the linear PDE of Section 5.1 with
𝐷 = 1.

In this fourth-order numerical experiment, as previously stated, an additional term (up to
order one) in the Taylor expansions in time of 𝑢𝑛,𝑖𝑥𝑥 and 𝑢𝑛,𝑖𝑥𝑥𝑥 needs to be considered. The mixed
time-space derivatives are moved to space derivatives applying the Lax-Wendroff procedure,
thus yielding to third, fourth, and fifth-order derivatives. All of them need1 to be computed
at least at first order since they are multiplied by a constant of (𝜏3) in the global boundary
treatment strategy and we take 𝜏 = (Δ𝑥). Thus, 𝑢̂𝑥𝑥𝑥 is directly given by the polynomial
solution. The fourth derivative is computed as (𝑢̂𝑥𝑥𝑥)𝑥 with the first-order finite difference ap-
proximation of the first derivative along the boundary and its closest neighbor cell. Finally, the
fifth derivative is computed with the first-order finite difference approximation of the second
derivative of the previously computed first-order 𝑢̂𝑥𝑥𝑥 along the boundary and its two closest
neighbor cells.

In Table 4 we show the errors and orders of convergence for the fourth-order IMEX LDG
scheme, without and with boundary treatment. Firstly, in the case without boundary treatment,
the order reduction is severe (only second𝐿∞ order). Secondly, when the boundary treatment
is applied, fourth-order accuracy is successfully restored for the three considered error norms.
Finally, Figure 5 shows that the boundary treatment strategy vanishes the annoying spatial
errors in the regions near the boundaries.

5.5. Boundary treatment efficiency. Up to here we have shown that boundary treatment
is crucial in terms of order of convergence. Here, we aim to emphasize that the computational
cost of the boundary strategy is negligible concerning the one of IMEX LDG solvers without
boundary treatment. In Figure 6, accuracy-work diagrams are shown for the numerical ex-

1The third order derivative appears also outside this Taylor expansion in time. In such places, it must be approx-
imated at least at second order. We computed it as (𝑢̂𝑥𝑥)𝑥, using second-order finite difference approximations of the
first derivative (see the previous Remark 3.4).
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FIG. 5. |𝑢̂ − 𝑢| for 𝑁 = 160 with the same data of Table 4.

TABLE 4
Errors and orders of accuracy for PDE 𝑢𝑡+𝜕𝑥𝑓 (𝑢) = 𝜕𝑥𝑔(𝑢𝑥), where 𝑓 = −𝐶𝑢, 𝑔 = 𝐷𝑢𝑥, considering𝐶 = 0.1,

𝐷 = 1. 𝐶𝐹𝐿 = 0.25. Spatial domain [−1, 1], computing time 𝑇 = 5. Dirichlet boundary conditions given by the
exact solution 𝑢(𝑥, 𝑡) = 𝑒−𝑡 sin(𝑥 + 𝐶𝑡).

𝑁 Without boundary treatment
𝐿1 error 𝐿1 order 𝐿2 error 𝐿2 order 𝐿∞ error 𝐿∞ order

5 4.30𝑒 − 08 − 3.58𝑒 − 08 − 5.57𝑒 − 08 −
10 4.00𝑒 − 09 3.42 4.04𝑒 − 09 3.14 1.08𝑒 − 08 2.36
20 4.61𝑒 − 10 3.11 6.91𝑒 − 10 2.54 2.20𝑒 − 09 2.29
40 6.89𝑒 − 11 2.74 1.37𝑒 − 10 2.33 5.36𝑒 − 10 2.03
80 1.19𝑒 − 11 2.53 2.81𝑒 − 11 2.28 1.32𝑒 − 10 2.02
160 2.10𝑒 − 12 2.50 5.83𝑒 − 12 2.26 3.24𝑒 − 11 2.02
𝑁 With boundary treatment

𝐿1 error 𝐿1 order 𝐿2 error 𝐿2 order 𝐿∞ error 𝐿∞ order
5 3.61𝑒 − 08 − 2.96𝑒 − 08 − 3.96𝑒 − 08 −
10 2.48𝑒 − 09 3.86 2.05𝑒 − 09 3.85 2.62𝑒 − 09 3.92
20 1.57𝑒 − 10 3.98 1.31𝑒 − 10 3.97 1.68𝑒 − 10 3.96
40 9.87𝑒 − 12 3.99 8.24𝑒 − 12 3.99 1.08𝑒 − 11 3.96
80 6.17𝑒 − 13 4.00 5.17𝑒 − 13 3.99 6.92𝑒 − 13 3.96
160 3.90𝑒 − 14 3.98 3.28𝑒 − 14 3.98 4.48𝑒 − 14 3.95

periments previously explained in Sections 5.1 and 5.4. The codes were developed in C++
language and were executed on a recent 13th Gen Intel(R) Core(TM) i7-1365U processor.
On the 𝑥-axis the computing time in seconds is shown. On the 𝑦-axis, both 𝐿2 errors (left)
and 𝐿∞ errors (right) are displayed. Both third and fourth-order IMEX LDG methods are
shown. Each one of the markers over the lines corresponds to one refinement level in space
(𝑁 = 5, 10, 20, 40, 80, 160, 320, 640). From the plots, it is clear that the additional cost of
the boundary correction technique is negligible relative to a naive application of boundary
conditions. In summary, the plots confirm that performing the boundary treatment strategy is
highly beneficial.

6. Conclusions. In this article, we propose novel algorithms to overcome the order
reduction phenomenon when IMEX RK methods are applied to PDE problems with time-
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FIG. 6. Efficiency plots with the same data of Table 4 in the 𝑙𝑜𝑔10 × 𝑙𝑜𝑔10 scale.

dependent Dirichlet boundary conditions. The algorithms treat boundary points in the same
way as interior points. To this end, a Cauchy-Kovalévskaya procedure and the differentiation
of the IMEX internal stages are carried out. The proposed algorithms can be applied to gen-
eral IMEX schemes and nonlinear PDE problems in dimensions greater than one. Besides,
the strategies can be directly applied to problems with possibly stiff source terms. We show
numerically that the designed algorithms can recover the desired order of accuracy for one-
dimensional linear and nonlinear problems, as well as two-dimensional problems. Finally,
we would like to point out that our boundary treatment algorithms can be directly applied
to explicit schemes since explicit schemes are a special case of IMEX RK time integration
methods.
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Supplementary materials for the article “Boundary treatment for high-order IMEX
Runge-Kutta Local Discontinuous Galerkin schemes for multidimensional nonlinear

parabolic PDEs”

The supplementary materials explicitly detail the boundary treatment procedure devel-
oped in Section 3, for the PDEs numerically solved in Section 5, considering the third-order
IMEX scheme (2.19)-(2.23). Therefore, this section is intended to allow the reader to easily
reproduce the numerical experiments of our article.

A. One-dimensional linear PDE with source terms. In this section, the boundary
treatment strategy is applied to the following one-dimensional PDE presented in Section 5.1
of the article,

𝑢𝑡 + 𝜕𝑥𝑓 (𝑢) = 𝜕𝑥𝑔(𝑢𝑥) + ℎ(𝑢),

where

𝑓 (𝑢) = −𝐶𝑢, 𝑔(𝑢𝑥) = 𝐷𝑢𝑥, ℎ(𝑢) = (𝐷 − 1)𝑢,

𝐶,𝐷 ∈ ℝ are the convection and diffusion coefficients, respectively. Besides, a time-depen-
dent boundary condition 𝑢

|Γ = 𝜔(𝑡) is considered. Therefore,

𝑢𝑡 =𝐶𝑢𝑥+(𝐷 − 1)𝑢 +𝐷𝑢𝑥𝑥.(A.1)

On the one hand, for 𝐷 = 1, this PDE is the one presented in [26]. On the other hand, for
𝐷 ≠ 1, the PDE has a linear source term. Note that 𝑢(𝑥, 𝑡) = 𝑒−𝑡 sin(𝑥 + 𝐶𝑡) is the exact
solution of the problem.

A.1. First IMEX stage. The first IMEX stage (3.3) in this case, is

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

=
[

𝐶𝑢𝑛𝑥+(𝐷 − 1)𝑢𝑛
]

+
[

𝐷𝑢𝑛,1𝑥𝑥
]

.(A.2)

According (2.17), the explicit part is given by

𝜉𝑛,𝑖(𝑢, 𝑥, 𝑡) = 𝐶𝑢𝑛,𝑖𝑥 + (𝐷 − 1)𝑢𝑛,𝑖.

Then, equation (3.4) reads

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

=𝐶𝑢𝑛,0𝑥 + (𝐷 − 1)𝑢𝑛,0 + 𝑢𝑛,1𝑡 −
(

𝐶𝑢𝑛,1𝑥 + (𝐷 − 1)𝑢𝑛,1
)

.(A.3)

Now, 𝑢𝑛,1𝑥 is computed with (3.5), substituting and regrouping, the equation reduces to

𝑢𝑛,1 − 𝑢𝑛 = 𝛾𝜏
[

𝑢𝑛,1𝑡 −(𝐷 − 1)(𝑢𝑛,1 − 𝑢𝑛)
]

− 𝛾2𝜏2𝐶
(

(𝐷 − 1)𝑢𝑛𝑥+𝐶𝑢
𝑛
𝑥𝑥 +𝐷𝑢

𝑛,1
𝑥𝑥𝑥

)

.

At this point, we apply Proposition 3.1, up to the first term to approximate 𝑢𝑛,1𝑥𝑥𝑥. We end up
with

𝑢𝑛,1 − 𝑢𝑛 =𝛾𝜏
[

𝑢𝑛,1𝑡 −(𝐷 − 1)(𝑢𝑛,1 − 𝑢𝑛)
]

− 𝛾2𝜏2𝐶
(

(𝐷 − 1)𝑢𝑛𝑥+𝐶𝑢
𝑛
𝑥𝑥 +𝐷𝑢

𝑛
𝑥𝑥𝑥

)

.

Finally, we need to solve the linear equation, we propose:
1. If we solve the equation analytically, which in this case is easy to solve for 𝑢𝑛,1, the

value at the first stage can finally be written as

𝑢𝑛,1 =𝑢𝑛 + 1
1 + 𝛾𝜏(𝐷 − 1)

[

𝛾𝜏𝑢𝑛,1𝑡 − 𝛾2𝜏2𝐶
(

(𝐷 − 1)𝑢𝑛𝑥+𝐶𝑢
𝑛
𝑥𝑥 +𝐷𝑢

𝑛
𝑥𝑥𝑥

)

]

.
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2. If we approximate the term 𝑢𝑛,1 of the right-hand side to time 𝑡𝑛 considering (3.6)
with the first two terms of the expansion, then we get:

𝑢𝑛,1 =𝑢𝑛 + 𝛾𝜏𝑢𝑛,1𝑡 + 𝛾𝜏(𝐷 − 1)𝑢𝑛 − 𝛾𝜏(𝐷 − 1)
(

𝑢𝑛 + (𝑡𝑛 + 𝛾𝜏 − 𝑡𝑛)𝑢𝑛𝑡 + 𝑂((𝛾𝜏)
2)
)

− 𝛾2𝜏2𝐶
(

(𝐷 − 1)𝑢𝑛𝑥 + 𝐶𝑢
𝑛
𝑥𝑥 +𝐷𝑢

𝑛
𝑥𝑥𝑥

)

=𝑢𝑛 + 𝛾𝜏𝑢𝑛,1𝑡 − 𝛾2𝜏2(𝐷 − 1)𝑢𝑛𝑡
− 𝛾2𝜏2𝐶

(

(𝐷 − 1)𝑢𝑛𝑥 + 𝐶𝑢
𝑛
𝑥𝑥 +𝐷𝑢

𝑛
𝑥𝑥𝑥

)

+ (𝜏3).

A.2. Second IMEX stage. The second IMEX stage (3.7) is now given in this case by:

𝑢𝑛,2 − 𝑢𝑛
𝜏

=
(

1 + 𝛾
2

− 𝛼1

)

[

𝐶𝑢𝑛𝑥+(𝐷 − 1)𝑢𝑛
]

+ 𝛼1
[

𝐶𝑢𝑛,1𝑥 +(𝐷 − 1)𝑢𝑛,1
]

+
1 − 𝛾
2

[

𝐷𝑢𝑛,1𝑥𝑥
]

+ 𝛾
[

𝐷𝑢𝑛,2𝑥𝑥
]

.

Thus, applying the general equation (3.8), we obtain:

𝑢𝑛,2 − 𝑢𝑛
𝜏

=𝛼1𝑢
𝑛,1
𝑡 + 𝛾𝑢𝑛,2𝑡 +

(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

+ 𝛾
[

𝐶𝑢𝑛𝑥+(𝐷 − 1)𝑢𝑛
]

+ 𝛾
[

−𝐶𝑢𝑛,2𝑥 −(𝐷 − 1)𝑢𝑛,2
]

.(A.4)

Therefore, now we are going to calculate the derivative of 𝑢𝑛,2 using the IMEX scheme. Note
that from these third-order approximations of the derivatives in 𝜏 and applying Section 3.2,
we know that

𝑢𝑛,2𝑥 − 𝑢𝑛𝑥
𝜏

=
(

1 + 𝛾
2

) 𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
𝛾𝜏

,

being 𝑢𝑛,1𝑥 −𝑢𝑛𝑥
𝛾𝜏 the replacement we did in the first stage. Therefore:

𝑢𝑛,2 − 𝑢𝑛
𝜏

=𝛼1𝑢
𝑛,1
𝑡 + 𝛾𝑢𝑛,2𝑡 +𝛾(−(𝐷 − 1))(𝑢𝑛,2 − 𝑢𝑛) +

(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

− 𝐶
(

1 + 𝛾
2

)

(

𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
)

,

where 𝑢𝑛,1𝑥 − 𝑢𝑛𝑥 is calculated with (3.5). Then, the linear equation for this stage reads

𝑢𝑛,2 − 𝑢𝑛 =𝛼1𝜏𝑢
𝑛,1
𝑡 + 𝛾𝜏𝑢𝑛,2𝑡 +

(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛
𝛾

− 𝐶
(

1 + 𝛾
2

)

𝜏
(

𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
)

+ 𝛾𝜏(−(𝐷 − 1))(𝑢𝑛,2 − 𝑢𝑛).

We propose the following ways to solve it:
1. Solving it analytically we get the following expression for 𝑢𝑛,2:

𝑢𝑛,2 =𝑢𝑛 + 𝜏
1 + 𝜏𝛾(𝐷 − 1)

[

𝛼1𝑢
𝑛,1
𝑡 + 𝛾𝑢𝑛,2𝑡 +

(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

− 𝐶
(

1 + 𝛾
2

)

(

𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
)

]

.
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2. Passing the term 𝑢𝑛,2 of the right hand side to time 𝑡𝑛 by using (3.6), we obtain:

𝑢𝑛,2 =𝑢𝑛 + 𝛼1𝜏𝑢
𝑛,1
𝑡 + 𝛾𝜏𝑢𝑛,2𝑡 +

(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛
𝛾

− 𝐶
(

1 + 𝛾
2

)

𝜏
(

𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
)

+ 𝛾𝜏(−(𝐷 − 1))
(

𝑢𝑛 +
1 + 𝛾
2

𝜏𝑢𝑛𝑡

)

+ 𝛾𝜏(𝐷 − 1)𝑢𝑛

=𝑢𝑛 + 𝛼1𝜏𝑢
𝑛,1
𝑡 + 𝛾𝜏𝑢𝑛,2𝑡 +

(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛
𝛾

− 𝐶
(

1 + 𝛾
2

)

𝜏
(

𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
)

− 𝛾𝜏2(𝐷 − 1)
1 + 𝛾
2

𝑢𝑛𝑡 .

A.3. Third IMEX stage. The third IMEX stage (3.10) reads

𝑢𝑛,3 − 𝑢𝑛
𝜏

=
(

1 − 𝛼2
) [

𝐶𝑢𝑛,1𝑥 +(𝐷 − 1)𝑢𝑛,1
]

+ 𝛼2
[

𝐶𝑢𝑛,2𝑥 +(𝐷 − 1)𝑢𝑛,2
]

+ 𝛽1
[

𝐷𝑢𝑛,1𝑥𝑥
]

+ 𝛽2
[

𝐷𝑢𝑛,2𝑥𝑥
]

+ 𝛾
[

𝐷𝑢𝑛,3𝑥𝑥
]

.

Following Section 3.3 this results in

𝑢𝑛,3 − 𝑢𝑛
𝜏

=
(

1 − 𝛼2
)

𝑢𝑛,1𝑡 + 𝛽2𝑢
𝑛,2
𝑡 + 𝛾𝑢𝑛,3𝑡 +

(

𝛼2 + 𝛽1 − 1
) 𝑢𝑛,1 − 𝑢𝑛

𝛾𝜏

+
(

𝛽2 − 𝛼2
)

[

𝑢𝑛,2 − 𝑢𝑛
𝛾𝜏

−
𝛼1
𝛾
𝑢𝑛,1𝑡 − 𝑢𝑛,2𝑡 −

(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛

𝛾2𝜏

]

+ 𝛾
[

𝐶𝑢𝑛𝑥+(𝐷 − 1)𝑢𝑛
]

+ 𝛾
[

−𝐶𝑢𝑛,3𝑥 −(𝐷 − 1)𝑢𝑛,3
]

.

It remains to evaluate the directional derivatives of 𝑢𝑛,3, we use (3.12), so that:

𝑢𝑛,3 − 𝑢𝑛
𝜏

=
(

1 − 𝛼2
)

𝑢𝑛,1𝑡 + 𝛽2𝑢
𝑛,2
𝑡 + 𝛾𝑢𝑛,3𝑡 +

(

𝛼2 + 𝛽1 − 1
) 𝑢𝑛,1 − 𝑢𝑛

𝛾𝜏

+
(

𝛽2 − 𝛼2
)

[

𝑢𝑛,2 − 𝑢𝑛
𝛾𝜏

−
𝛼1
𝛾
𝑢𝑛,1𝑡 − 𝑢𝑛,2𝑡 −

(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛

𝛾2𝜏

]

+ 𝛾
[

𝐶𝑢𝑛𝑥+(𝐷 − 1)𝑢𝑛
]

+ 𝛾

[

−𝐶
(

𝑢𝑛𝑥 +
𝑢𝑛,1𝑥 − 𝑢𝑛𝑥

𝛾

)

−(𝐷 − 1)𝑢𝑛,3
]

=
(

1 − 𝛼2 −
(𝛽2 − 𝛼2)𝛼1

𝛾

)

𝑢𝑛,1𝑡 + 𝛼2𝑢
𝑛,2
𝑡 + 𝛾𝑢𝑛,3𝑡 +𝛾(−(𝐷 − 1))(𝑢𝑛,3 − 𝑢𝑛)

+
(

𝛼2 + 𝛽1 − 1 −
𝛽2 − 𝛼2
𝛾

(

1 − 𝛾
2

− 𝛼1

))

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

+
𝛽2 − 𝛼2
𝛾

[

𝑢𝑛,2 − 𝑢𝑛
𝜏

]

− 𝐶
(

𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
)

.

Again, we need to solve the linear equation. As before, here we propose two ways:
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1. The algebraic solution of the linear equation:

𝑢𝑛,3 =𝑢𝑛 + 𝜏
1 + 𝛾𝜏(𝐷 − 1)

{

(

1 − 𝛼2 −
(𝛽2 − 𝛼2)𝛼1

𝛾

)

𝑢𝑛,1𝑡 + 𝛼2𝑢
𝑛,2
𝑡 + 𝛾𝑢𝑛,3𝑡

+
[

𝛼2 + 𝛽1 − 1 −
𝛽2 − 𝛼2
𝛾

(

1 − 𝛾
2

− 𝛼1

)]

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

+
𝛽2 − 𝛼2
𝛾

[

𝑢𝑛,2 − 𝑢𝑛
𝜏

]

− 𝐶
(

𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
)

}

.

2. Taking 𝑢𝑛,3 on the right hand side to time 𝑡𝑛 leads to

𝑢𝑛,3 − 𝑢𝑛 =
(

1 − 𝛼2 −
(𝛽2 − 𝛼2)𝛼1

𝛾

)

𝜏𝑢𝑛,1𝑡 + 𝛼2𝜏𝑢
𝑛,2
𝑡 + 𝛾𝜏𝑢𝑛,3𝑡

+
(

𝛼2 + 𝛽1 − 1 −
𝛽2 − 𝛼2
𝛾

(

1 − 𝛾
2

− 𝛼1

))

𝑢𝑛,1 − 𝑢𝑛
𝛾

+
𝛽2 − 𝛼2
𝛾

[

𝑢𝑛,2 − 𝑢𝑛
]

− 𝐶𝜏
(

𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
)

− 𝛾𝜏2(𝐷 − 1)𝑢𝑛𝑡 .

B. One-dimensional nonlinear PDE with source terms. In this section, the proposed
boundary treatment strategy is applied to the following diffusive Burgers equation with source
terms solved in Section 5.2 of the article,

𝑢𝑡 + 𝜕𝑥𝑓 (𝑢) = 𝜕𝑥𝑔(𝑢𝑥) + ℎ(𝑢, 𝑥, 𝑡),

where

𝑓 (𝑢) = 𝑢2

2
, 𝑔(𝑢𝑥) = 𝐷𝑢𝑥, ℎ(𝑢, 𝑥, 𝑡) = 𝑝(𝑥, 𝑡)𝑢,

being 𝐷 ∈ ℝ the diffusion parameter. Therefore,

𝑢𝑡 = − 𝑢𝑢𝑥 +𝐷𝑢𝑥𝑥 + 𝑝(𝑥, 𝑡)𝑢.(B.1)

B.1. First IMEX stage. The first IMEX stage (3.3) reads

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

=
[

−𝑢𝑛𝑢𝑛𝑥 + 𝑝(𝑥, 𝑡)𝑢
𝑛] +

[

𝐷𝑢𝑛,1𝑥𝑥
]

.

According to (2.17), the explicit part operator is

𝜉𝑛,𝑖(𝑥) = −𝑢𝑛,𝑖𝑢𝑛,𝑖𝑥 + 𝑝(𝑥, 𝑡𝑛,𝑖)𝑢𝑛,𝑖.

Substituting the derivative (3.5) on (3.4) for this particular case, and replacing 𝑢𝑛,1𝑥𝑥𝑥 with 𝑢𝑛,0𝑥𝑥𝑥
we end up with

𝑢𝑛,1 =𝑢𝑛 + 𝛾𝜏
(

𝑢𝑛,1𝑡 + 𝑝(𝑥, 𝑡)𝑢𝑛 − 𝑢𝑛𝑢𝑛𝑥
)

− 𝛾𝜏𝑝(𝑥, 𝑡𝑛,1)𝑢𝑛,1

+ 𝛾𝜏𝑢𝑛,1
[

𝑢𝑛𝑥 + 𝛾𝜏
(

− (𝑢𝑛𝑥)
2 − 𝑢𝑛𝑢𝑛𝑥𝑥 + 𝑝

′(𝑥, 𝑡𝑛)𝑢𝑛 + 𝑝(𝑥, 𝑡𝑛)𝑢𝑛𝑥 +𝐷𝑢
𝑛
𝑥𝑥𝑥

)

]

.

In order to deal with this nonlinear equation in 𝑢𝑛,1 we propose:
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1. Obtaining the exact solution:

𝑢𝑛,1 =
𝑢𝑛 + 𝛾𝜏

(

−𝑢𝑛𝑢𝑛𝑥 + 𝑝(𝑥, 𝑡
𝑛)𝑢𝑛 + 𝑢𝑛,1𝑡

)

1 − 𝛾2𝜏2
(

− 𝑝(𝑥,𝑡𝑛,1)
𝛾𝜏 + 𝑢𝑛𝑥

𝛾𝜏 − (𝑢𝑛𝑥)2 − 𝑢𝑛𝑢𝑛𝑥𝑥 + 𝑝′(𝑥, 𝑡𝑛)𝑢𝑛 + 𝑝(𝑥, 𝑡𝑛)𝑢𝑛𝑥 +𝐷𝑢𝑛𝑥𝑥𝑥
) .

2. Solving by transforming the terms 𝑢𝑛,1 in the right side to terms in 𝑢𝑛,0 according to
the approximation obtained in (3.6):

𝑢𝑛,1 =𝑢𝑛 + 𝛾𝜏
(

𝑢𝑛,1𝑡 + 𝑝(𝑥, 𝑡)𝑢𝑛 − 𝑢𝑛𝑢𝑛𝑥
)

+ 𝛾𝜏[𝑢𝑛 + 𝛾𝜏𝑢𝑛𝑡 ]

[

− 𝑝(𝑥, 𝑡𝑛,1) + 𝑢𝑛𝑥

+ 𝛾𝜏
(

− (𝑢𝑛𝑥)
2 − 𝑢𝑛𝑢𝑛𝑥𝑥 + 𝑝

′(𝑥, 𝑡𝑛)𝑢𝑛 + 𝑝(𝑥, 𝑡𝑛)𝑢𝑛𝑥 +𝐷𝑢
𝑛
𝑥𝑥𝑥

)

]

.

B.2. Second IMEX stage. In this case, the second IMEX stage (3.7) reads:

𝑢𝑛,2 − 𝑢𝑛
𝜏

=
(

1 + 𝛾
2

− 𝛼1

)

[

−𝑢𝑛𝑢𝑛𝑥 + 𝑝(𝑥, 𝑡
𝑛)𝑢𝑛

]

+ 𝛼1
[

−𝑢𝑛,1𝑢𝑛,1𝑥 + 𝑝(𝑥, 𝑡𝑛,1)𝑢𝑛,1
]

+
1 − 𝛾
2

[

𝐷𝑢𝑛,1𝑥𝑥
]

+ 𝛾
[

𝐷𝑢𝑛,2𝑥𝑥
]

.

As previously, we substitute (3.9) on (3.8) for this particular case, leading to

𝑢𝑛,2 =𝑢𝑛 + 𝛼1𝜏𝑢
𝑛,1
𝑡 + 𝛾𝜏𝑢𝑛,2𝑡 +

(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛
𝛾

+ 𝛾𝜏
[

−𝑢𝑛𝑢𝑛𝑥 + 𝑝(𝑥, 𝑡
𝑛)𝑢𝑛

]

+ 𝛾𝜏𝑢𝑛,2
(

𝑢𝑛𝑥 +
(

1 + 𝛾
2

) 𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
𝛾

− 𝑝(𝑥, 𝑡𝑛,2)

)

.

Now it is needed to solve the nonlinear equation, we proceed in two ways:
1. Obtaining the analytical solution for the denominator being not null:

𝑢𝑛,2 =
𝑢𝑛 + 𝜏

(

𝛼1𝑢
𝑛,1
𝑡 + 𝛾𝑢𝑛,2𝑡 +

(

1−𝛾
2 − 𝛼1

)

𝑢𝑛,1−𝑢𝑛
𝛾𝜏 + 𝛾 [𝜉𝑛]

)

1 + 𝛾𝜏𝑝(𝑥, 𝑡𝑛,2) − 𝛾2𝜏2
(

𝑢𝑛𝑥∕𝛾𝜏 +
(

1+𝛾
2 − 𝛼1

)

[

𝜉𝑛𝑥
]

+ 𝛼1
[

𝜉𝑛,1𝑥
]

+ 1+𝛾
2

[

𝐷𝑢𝑛𝑥𝑥𝑥
]

) .

2. If we approximate 𝑢𝑛,2, in terms of 𝑢𝑛 as described in (3.6):

𝑢𝑛,2 =𝑢𝑛 + 𝛼1𝜏𝑢
𝑛,1
𝑡 + 𝛾𝜏𝑢𝑛,2𝑡 +

(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛
𝛾

+ 𝛾𝜏
[

−𝑢𝑛𝑢𝑛𝑥 + 𝑝(𝑥, 𝑡
𝑛)𝑢𝑛

]

+ 𝛾𝜏
[

𝑢𝑛 +
1 + 𝛾
2

𝜏𝑢𝑛𝑡 + (𝜏2)
]

(

𝑢𝑛𝑥 +
(

1 + 𝛾
2

) 𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
𝛾

− 𝑝(𝑥, 𝑡𝑛,2)

)

.

B.3. Third IMEX stage. Following the procedure described in Section 3.3, equation
(3.11) with the substitution (3.12) is in this case
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𝑢𝑛,3 =𝑢𝑛 +
(

1 − 𝛼2 −
(𝛽2 − 𝛼2)𝛼1

𝛾

)

𝜏𝑢𝑛,1𝑡 + 𝛼2𝜏𝑢
𝑛,2
𝑡 + 𝛾𝜏𝑢𝑛,3𝑡

+
(

𝛼2 + 𝛽1 − 1 −
𝛽2 − 𝛼2
𝛾

(

1 − 𝛾
2

− 𝛼1

))

𝑢𝑛,1 − 𝑢𝑛
𝛾

+
𝛽2 − 𝛼2
𝛾

[

𝑢𝑛,2 − 𝑢𝑛
]

− 𝛾𝜏[𝑢𝑛𝑢𝑛𝑥 − 𝑝(𝑥, 𝑡
𝑛)𝑢𝑛] + 𝛾𝜏𝑢𝑛,3

(

𝑢𝑛𝑥 +
𝑢𝑛,1𝑥 − 𝑢𝑛𝑥

𝛾
− 𝑝(𝑥, 𝑡𝑛,3)

)

.

This nonlinear equation has to be solved. Again, the two ways we propose are:
1. Solve the nonlinear equation for 𝑢𝑛,3:

𝑢𝑛,3 = 𝑢𝑛 + 𝜏 ⋅𝑁𝑢𝑚
𝐷𝑒𝑛

,

where

𝑁𝑢𝑚 =
(

1 − 𝛼2
)

𝑢𝑛,1𝑡 + 𝛽2𝑢
𝑛,2
𝑡 + 𝛾𝑢𝑛,3𝑡 +

(

𝛼2 + 𝛽1 − 1
) 𝑢𝑛,1 − 𝑢𝑛

𝛾𝜏

+
(

𝛽2 − 𝛼2
)

[

𝑢𝑛,2 − 𝑢𝑛
𝛾𝜏

−
𝛼1
𝛾
𝑢𝑛,1𝑡 − 𝑢𝑛,2𝑡 −

(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛

𝛾2𝜏

]

+ 𝛾
[

𝜉𝑛
]

,

𝐷𝑒𝑛 =1 + 𝛾𝜏𝑝(𝑥, 𝑡𝑛,3) − 𝛾𝜏2
[

𝑢𝑛𝑥∕𝜏 +
(

1 − 𝛼2
)

𝜉𝑛,1𝑥 + 𝛼2𝜉𝑛,2𝑥 +𝐷𝑢𝑛𝑥𝑥𝑥
]

,

for 𝐷𝑒𝑛 ≠ 0.
2. Approximate 𝑢𝑛,3 of the right hand side in terms of 𝑢𝑛,0 ending up with

𝑢𝑛,3 =𝑢𝑛 +
(

1 − 𝛼2 −
(𝛽2 − 𝛼2)𝛼1

𝛾

)

𝜏𝑢𝑛,1𝑡 + 𝛼2𝜏𝑢
𝑛,2
𝑡 + 𝛾𝜏𝑢𝑛,3𝑡

+
(

𝛼2 + 𝛽1 − 1 −
𝛽2 − 𝛼2
𝛾

(

1 − 𝛾
2

− 𝛼1

))

𝑢𝑛,1 − 𝑢𝑛
𝛾

+
𝛽2 − 𝛼2
𝛾

[

𝑢𝑛,2 − 𝑢𝑛
]

− 𝛾𝜏[𝑢𝑛𝑢𝑛𝑥 − 𝑝(𝑥, 𝑡
𝑛)𝑢𝑛] + 𝛾𝜏

[

𝑢𝑛 + 𝜏𝑢𝑛𝑡
]

(

𝑢𝑛𝑥 +
𝑢𝑛,1𝑥 − 𝑢𝑛𝑥

𝛾
− 𝑝(𝑥, 𝑡𝑛,3)

)

.

As before, the second approach is numerically preferable, since there is no need to be alert
with zero denominators in algebraic solutions.

C. Two-dimensional convective heat equation with source term. Finally, we show
the detailed boundary treatment strategy for the following bidimensional heat equation solved
in Section 5.3 of the article,

(C.1) 𝑢𝑡 + 𝜕𝑥𝑓1(𝑢) + 𝜕𝑦𝑓2(𝑢) = 𝜕𝑥𝑔1(𝑢𝑥, 𝑢𝑦) + 𝜕𝑦𝑔2(𝑢𝑥, 𝑢𝑦) + ℎ(𝑢),

where
𝑓1 = −𝐶𝑢, 𝑓2 = −𝐶𝑢, 𝑔1 = 𝐷𝑢𝑥, 𝑔2 = 𝐷𝑢𝑦, ℎ = (2𝐷 − 1)𝑢,

𝐶,𝐷 ∈ ℝ. Therefore,

(C.2) 𝑢𝑡 = 𝐶𝑢𝑥 + 𝐶𝑢𝑦 + (2𝐷 − 1)𝑢 +𝐷𝑢𝑥𝑥 +𝐷𝑢𝑦𝑦.

Note that 𝑢(𝑥, 𝑦, 𝑡) = 𝑒−𝑡 sin(𝑥 + 𝐶𝑡) cos(𝑦 + 𝐶𝑡) is the exact solution of this problem.
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Initially, the first, second, and third IMEX stages are fully detailed in subsections C.1,
C.2 and C.3, respectively. Later, having in mind that third-order mixed derivatives in space
need to be computed in the resulting strategies of the previous subsections, a proper way
to approximate them is presented in subsection C.4. Finally, some plots of the numerical
solutions are presented in subsection C.5.

C.1. First IMEX stage. The first IMEX stage reads

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

=
[

𝐶𝑢𝑛𝑥 + 𝐶𝑢
𝑛
𝑦 + (2𝐷 − 1) 𝑢𝑛

]

+
[

𝐷𝑢𝑛,1𝑥𝑥 +𝐷𝑢𝑛,1𝑦𝑦
]

.(C.3)

We assume that the PDE (C.2) is fulfilled at time 𝑡𝑛,1, therefore:

𝐷𝑢𝑛,1𝑥𝑥 +𝐷𝑢𝑛,1𝑦𝑦 = 𝑢𝑛,1𝑡 − 𝐶𝑢𝑛,1𝑥 − 𝐶𝑢𝑛,1𝑦 − (2𝐷 − 1)𝑢𝑛,1.

Substituting the diffusive term on the first stage (C.3):

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

=
[

𝐶𝑢𝑛𝑥 + 𝐶𝑢
𝑛
𝑦 + (2𝐷 − 1)𝑢𝑛

]

+ 𝑢𝑛,1𝑡 − 𝐶𝑢𝑛,1𝑥 − 𝐶𝑢𝑛,1𝑦 − (2𝐷 − 1)𝑢𝑛,1.(C.4)

Now we compute the directional derivatives of 𝑢𝑛,1 by taking derivatives on equation (C.3)
respect to 𝑥 and 𝑦

𝑢𝑛,1𝑥
𝛾𝜏

=
𝑢𝑛𝑥
𝛾𝜏

+
[

𝐶𝑢𝑛𝑥𝑥 + 𝐶𝑢
𝑛
𝑦𝑥 + (2𝐷 − 1)𝑢𝑛𝑥

]

+𝐷𝑢𝑛,1𝑥𝑥𝑥 +𝐷𝑢
𝑛,1
𝑦𝑦𝑥,(C.5)

𝑢𝑛,1𝑦
𝛾𝜏

=
𝑢𝑛𝑦
𝛾𝜏

+
[

𝐶𝑢𝑛𝑥𝑦 + 𝐶𝑢
𝑛
𝑦𝑦 + (2𝐷 − 1)𝑢𝑛𝑦

]

+𝐷𝑢𝑛,1𝑥𝑥𝑦 +𝐷𝑢
𝑛,1
𝑦𝑦𝑦.(C.6)

Substituting these derivatives on (C.4) we end up with

𝑢𝑛,1 − 𝑢𝑛 =𝛾𝜏
[

𝑢𝑛,1𝑡 − (2𝐷 − 1)
(

𝑢𝑛,1 − 𝑢𝑛
)

]

− 𝛾2𝜏2𝐶
{

𝐶𝑢𝑛𝑥𝑥 + 𝐶𝑢
𝑛
𝑦𝑥 + (2𝐷 − 1)𝑢𝑛𝑥 +𝐷𝑢

𝑛,1
𝑥𝑥𝑥 +𝐷𝑢

𝑛,1
𝑦𝑦𝑥

}

− 𝛾2𝜏2𝐶
{

𝐶𝑢𝑛𝑥𝑦 + 𝐶𝑢
𝑛
𝑦𝑦 + (2𝐷 − 1)𝑢𝑛𝑦 +𝐷𝑢

𝑛,1
𝑥𝑥𝑦 +𝐷𝑢

𝑛,1
𝑦𝑦𝑦

}

.

Now we apply Propositition 3.1 to compute the partial derivatives 𝜕(𝑘)𝑥,𝑦𝑢𝑛,𝑙 = 𝜕(𝑘)𝑥,𝑦𝑢𝑛 + (𝜏).
As a result

𝑢𝑛,1 − 𝑢𝑛 = 𝛾𝜏
[

𝑢𝑛,1𝑡 − (2𝐷 − 1)
(

𝑢𝑛,1 − 𝑢𝑛
)

]

− 𝛾2𝜏2𝐶
{

𝐶𝑢𝑛𝑥𝑥 + 𝐶𝑢
𝑛
𝑦𝑥 + (2𝐷 − 1)𝑢𝑛𝑥 +𝐷𝑢

𝑛
𝑥𝑥𝑥 +𝐷𝑢

𝑛
𝑦𝑦𝑥

}

− 𝛾2𝜏2𝐶
{

𝐶𝑢𝑛𝑥𝑦 + 𝐶𝑢
𝑛
𝑦𝑦 + (2𝐷 − 1)𝑢𝑛𝑦 +𝐷𝑢

𝑛
𝑥𝑥𝑦 +𝐷𝑢

𝑛
𝑦𝑦𝑦

}

.

Finally, to solve this equation, once again we propose:
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1. Analytical solution for 𝑢𝑛,1, the final formula is

𝑢𝑛,1 =𝑢𝑛 + 1
1 + 𝛾𝜏(2𝐷 − 1)

[

𝛾𝜏𝑢𝑛,1𝑡

− 𝛾2𝜏2𝐶
{

𝐶𝑢𝑛𝑥𝑥 + 𝐶𝑢
𝑛
𝑦𝑥 + (2𝐷 − 1)𝑢𝑛𝑥 +𝐷𝑢

𝑛
𝑥𝑥𝑥 +𝐷𝑢

𝑛
𝑦𝑦𝑥

}

− 𝛾2𝜏2𝐶
{

𝐶𝑢𝑛𝑥𝑦 + 𝐶𝑢
𝑛
𝑦𝑦 + (2𝐷 − 1)𝑢𝑛𝑦 +𝐷𝑢

𝑛
𝑥𝑥𝑦 +𝐷𝑢

𝑛
𝑦𝑦𝑦

}

]

.

2. Application of Proposition 3.1 to approximate 𝑢𝑛,1 with 𝑢𝑛,0, then

𝑢𝑛,1 = 𝑢𝑛 + 𝛾𝜏𝑢𝑛,1𝑡 − 𝛾2𝜏2 (2𝐷 − 1) 𝑢𝑛𝑡

− 𝛾2𝜏2𝐶
{

𝐶𝑢𝑛𝑥𝑥 + 𝐶𝑢
𝑛
𝑦𝑥 + (2𝐷 − 1)𝑢𝑛𝑥 +𝐷𝑢

𝑛
𝑥𝑥𝑥 +𝐷𝑢

𝑛
𝑦𝑦𝑥

}

− 𝛾2𝜏2𝐶
{

𝐶𝑢𝑛𝑥𝑦 + 𝐶𝑢
𝑛
𝑦𝑦 + (2𝐷 − 1)𝑢𝑛𝑦 +𝐷𝑢

𝑛
𝑥𝑥𝑦 +𝐷𝑢

𝑛
𝑦𝑦𝑦

}

.

C.2. Second IMEX stage. The second IMEX stage for the two-dimensional case reads

𝑢𝑛,2 − 𝑢𝑛
𝜏

=
(

1 + 𝛾
2

− 𝛼1

)

[

𝐶𝑢𝑛𝑥 + 𝐶𝑢
𝑛
𝑦 + (2𝐷 − 1)𝑢𝑛

]

+ 𝛼1
[

𝐶𝑢𝑛,1𝑥 + 𝐶𝑢𝑛,1𝑦 + (2𝐷 − 1)𝑢𝑛,1
]

+
1 − 𝛾
2

[

𝐷𝑢𝑛,1𝑥𝑥 +𝐷𝑢𝑛,1𝑦𝑦
]

+ 𝛾
[

𝐷𝑢𝑛,2𝑥𝑥 +𝐷𝑢𝑛,2𝑦𝑦
]

.

Following Section 3.2, 𝑢𝑛,2 can be expressed as

𝑢𝑛,2 − 𝑢𝑛
𝜏

=𝛼1𝑢
𝑛,1
𝑡 + 𝛾𝑢𝑛,2𝑡 + 𝛾 (−(2𝐷 − 1))

(

𝑢𝑛,2 − 𝑢𝑛
)

+
(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

− 𝐶
(

1 + 𝛾
2

)

(𝑢𝑛,1𝑥 − 𝑢𝑛𝑥) − 𝐶
(

1 + 𝛾
2

)

(𝑢𝑛,1𝑦 − 𝑢𝑛𝑦).

Finally, to deal with this linear equation we propose:
1. Analytical solution:

𝑢𝑛,2 = 𝑢𝑛 + 𝜏
1 + 𝛾𝜏 (2𝐷 − 1)

[

𝛼1𝑢
𝑛,1
𝑡 + 𝛾𝑢𝑛,2𝑡 +

(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

− 𝐶
(

1 + 𝛾
2

)

(𝑢𝑛,1𝑥 − 𝑢𝑛𝑥) − 𝐶
(

1 + 𝛾
2

)

(𝑢𝑛,1𝑦 − 𝑢𝑛𝑦)

]

.

2. If we move 𝑢𝑛,2 on the right hand side to time 𝑡𝑛,

𝑢𝑛,2 =𝑢𝑛 + 𝛼1𝜏𝑢
𝑛,1
𝑡 + 𝛾𝜏𝑢𝑛,2𝑡 − 𝛾𝜏2(2𝐷 − 1)

1 + 𝛾
2

𝑢𝑛𝑡 +
(

1 − 𝛾
2

− 𝛼1

)

𝑢𝑛,1 − 𝑢𝑛
𝛾

− 𝐶𝜏
(

1 + 𝛾
2

)

(𝑢𝑛,1𝑥 − 𝑢𝑛𝑥) − 𝐶𝜏
(

1 + 𝛾
2

)

(𝑢𝑛,1𝑦 − 𝑢𝑛𝑦).

In both cases, for 𝑢𝑛,1𝑥 − 𝑢𝑛𝑥 and 𝑢𝑛,1𝑦 − 𝑢𝑛𝑦, we use (C.5) and (C.6), respectively, passing the
times 𝑡𝑛,1 to 𝑡𝑛.
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C.3. Third IMEX stage. In this case, the third stage reads:

𝑢𝑛,3 − 𝑢𝑛
𝜏

=
(

1 − 𝛼2
)

[

𝐶𝑢𝑛,1𝑥 + 𝐶𝑢𝑛,1𝑦 + (2𝐷 − 1)𝑢𝑛,1
]

+ 𝛼2
[

𝐶𝑢𝑛,2𝑥 + 𝐶𝑢𝑛,2𝑦 + (2𝐷 − 1)𝑢𝑛,2
]

+ 𝛽1
[

𝐷𝑢𝑛,1𝑥𝑥 +𝐷𝑢𝑛,1𝑦𝑦
]

+ 𝛽2
[

𝐷𝑢𝑛,2𝑥𝑥 +𝐷𝑢𝑛,2𝑦𝑦
]

+ 𝛾
[

𝐷𝑢𝑛,3𝑥𝑥 +𝐷𝑢𝑛,3𝑦𝑦
]

.

Following Section 3.3 we get

𝑢𝑛,3 − 𝑢𝑛
𝜏

=
(

1 − 𝛼2 −
(𝛽2 − 𝛼2)𝛼1

𝛾

)

𝑢𝑛,1𝑡 + 𝛼2𝑢
𝑛,2
𝑡 + 𝛾𝑢𝑛,3𝑡 − 𝛾 (2𝐷 − 1)

(

𝑢𝑛,3 − 𝑢𝑛
)

+
(

𝛼2 + 𝛽1 − 1 −
𝛽2 − 𝛼2
𝛾

(

1 − 𝛾
2

− 𝛼1

))

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

+
𝛽2 − 𝛼2
𝛾

[

𝑢𝑛,2 − 𝑢𝑛
𝜏

]

− 𝐶
(

𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
)

− 𝐶
(

𝑢𝑛,1𝑦 − 𝑢𝑛𝑦
)

.

Finally, we propose two approaches:
1. Algebraic solution:

𝑢𝑛,3 = 𝑢𝑛 + 𝜏
1 + 𝛾𝜏(2𝐷 − 1)

[

(

1 − 𝛼2 −
(𝛽2 − 𝛼2)𝛼1

𝛾

)

𝑢𝑛,1𝑡 + 𝛼2𝑢
𝑛,2
𝑡 + 𝛾𝑢𝑛,3𝑡

+
(

𝛼2 + 𝛽1 − 1 −
𝛽2 − 𝛼2
𝛾

(

1 − 𝛾
2

− 𝛼1

))

𝑢𝑛,1 − 𝑢𝑛
𝛾𝜏

+
𝛽2 − 𝛼2
𝛾

(

𝑢𝑛,2 − 𝑢𝑛
𝜏

)

− 𝐶
(

𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
)

− 𝐶
(

𝑢𝑛,1𝑦 − 𝑢𝑛𝑦
)

]

.

2. Taking 𝑢𝑛,3 on the right into time 𝑡𝑛 would result in:

𝑢𝑛,3 =𝑢𝑛 +
(

1 − 𝛼2 −
(𝛽2 − 𝛼2)𝛼1

𝛾

)

𝜏𝑢𝑛,1𝑡 + 𝛼2𝜏𝑢
𝑛,2
𝑡 + 𝛾𝜏𝑢𝑛,3𝑡 − 𝛾𝜏2(2𝐷 − 1)𝑢𝑛𝑡

+
(

𝛼2 + 𝛽1 − 1 −
𝛽2 − 𝛼2
𝛾

(

1 − 𝛾
2

− 𝛼1

))

𝑢𝑛,1 − 𝑢𝑛
𝛾

+
𝛽2 − 𝛼2
𝛾

[

𝑢𝑛,2 − 𝑢𝑛
]

− 𝐶𝜏
(

𝑢𝑛,1𝑥 − 𝑢𝑛𝑥
)

− 𝐶𝜏
(

𝑢𝑛,1𝑦 − 𝑢𝑛𝑦
)

.

C.4. Approximations for 𝑢𝑛𝑥𝑥𝑥, 𝑢𝑛𝑦𝑦𝑦, 𝑢
𝑛
𝑦𝑦𝑥 and 𝑢𝑛𝑥𝑥𝑦. Since 𝑘 = 2 for the third-order

IMEX LDG scheme here considered, 𝑢̂𝑥𝑥 and 𝑢̂𝑦𝑦 are constant over each volume along the 𝑥
and 𝑦 directions, respectively. To compute 𝑢𝑛𝑥𝑥𝑥 for points in the boundary, we take a finite
difference approximation of the second derivative over the first derivative 𝑢̂𝑥. Let us assume
that (𝑥, 𝑦) ∈ Γ(Ω) and also (𝑥, 𝑦) ∈ □𝑖𝑗 . To shorten the notation, in the approximations below
we denote

(

𝑢̂𝑥
)

𝑖±𝑎,𝑗±𝑏 =
(

𝑢̂𝑥
)

𝑖±𝑎,𝑗±𝑏 (𝑥 ± 𝑎Δ𝑖𝑥, 𝑦 ± 𝑏Δ𝑗𝑦).

More precisely, the approximations are:
∙ If possible, we take centered approximation

𝑢̂𝑥𝑥𝑥(𝑥, 𝑦) ≈

(

𝑢̂𝑥
)

𝑖+1,𝑗 − 2
(

𝑢̂𝑥
)

𝑖,𝑗 +
(

𝑢̂𝑥
)

𝑖−1,𝑗

(Δ𝑖𝑥)2
.

∙ Otherwise, we take backward or forward approximations.
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The computation of 𝑢𝑛𝑦𝑦𝑦 is done analogously.
Finally, we sketch the approximation of the third-order mixed derivatives with 𝑢𝑛𝑥𝑥𝑦. The

idea is to compute the mixed derivative of 𝑢̂𝑥. As an example, the approximation of 𝑢𝑛𝑥𝑥𝑦 at
points over the south boundary is performed as follows,

∙ If the point does not belong to volumes at the corners,

𝑢̂𝑥𝑥𝑦(𝑥, 𝑦) ≈

−
(

𝑢̂𝑥
)

𝑖+1,𝑗+2 + 4
(

𝑢̂𝑥
)

𝑖+1,𝑗+1 − 3
(

𝑢̂𝑥
)

𝑖+1,𝑗 +
(

𝑢̂𝑥
)

𝑖−1,𝑗+2 − 4
(

𝑢̂𝑥
)

𝑖−1,𝑗+1 + 3
(

𝑢̂𝑥
)

𝑖−1,𝑗

4Δ𝑖𝑥Δ𝑗𝑦
.

∙ If the point belongs to the south-west corner,

𝑢̂𝑥𝑥𝑦(𝑥, 𝑦) ≈ −
−
(

𝑢̂𝑥
)

𝑖+2,𝑗+2 + 4
(

𝑢̂𝑥
)

𝑖+2,𝑗+1 − 3
(

𝑢̂𝑥
)

𝑖+2,𝑗

4Δ𝑖𝑥Δ𝑗𝑦

+ 4
−
(

𝑢̂𝑥
)

𝑖+1,𝑗+2 +
(

𝑢̂𝑥
)

𝑖+1,𝑗+1 − 3
(

𝑢̂𝑥
)

𝑖+1,𝑗

4Δ𝑖𝑥Δ𝑗𝑦

− 3
−
(

𝑢̂𝑥
)

𝑖,𝑗+2 + 4
(

𝑢̂𝑥
)

𝑖,𝑗+1 − 3
(

𝑢̂𝑥
)

𝑖,𝑗

4Δ𝑖𝑥Δ𝑗𝑦
.

∙ Otherwise (south-east corner),

𝑢̂𝑥𝑥𝑦(𝑥, 𝑦) ≈3
−
(

𝑢̂𝑥
)

𝑖,𝑗+2 + 4
(

𝑢̂𝑥
)

𝑖,𝑗+1 − 3
(

𝑢̂𝑥
)

𝑖,𝑗

4Δ𝑖𝑥Δ𝑗𝑦

− 4
−
(

𝑢̂𝑥
)

𝑖−1,𝑗+2 + 4
(

𝑢̂𝑥
)

𝑖−1,𝑗+1 − 3
(

𝑢̂𝑥
)

𝑖−1,𝑗

4Δ𝑖𝑥Δ𝑗𝑦

+
−
(

𝑢̂𝑥
)

𝑖−2,𝑗+2 + 4
(

𝑢̂𝑥
)

𝑖−2,𝑗+1 − 3
(

𝑢̂𝑥
)

𝑖−2,𝑗

4Δ𝑖𝑥Δ𝑗𝑦
.

The approximations over the remaining boundaries are done in the same way. An analogous
approach is used for the approximations of 𝑢𝑛𝑦𝑦𝑥.

C.5. Boundary plots. In this section, we present some boundary plots for the numerical
experiment of Section 5.3. In Figure 7, contour plots show the final time errors in space in
the cases without and with boundary treatment. Large boundary spatial errors (concerning
interior errors), appearing when no boundary treatment is considered, vanish with the devel-
oped method. Finally, in Figure 8, some one-dimensional cuts of Figure 7 in the middle of
the spatial domain are shown.

This manuscript is for review purposes only.



BOUNDARY TREATMENT FOR IMEX RUNGE-KUTTA SCHEMES 11

−1 0 1
x

−1

0

1

y

Error in u w/o bt

0.000

0.551

1.101

1.652

2.203

2.754

3.304

3.855

4.406

4.957

1e−8

−1 0 1
x

−1

0

1

y

Error in u w bt

0.000

0.551

1.101

1.652

2.203

2.754

3.304

3.855

4.406

4.957

1e−8

FIG. 7. Contour plots for the spatial errors considering 𝑁,𝑀 = 80 with the same data of Table 3, 𝑡 = 𝑇 .
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FIG. 8. Spatial errors for some cuts of Figure 7.
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