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Abstract. This paper aims to develop the study of historical printed or-
naments with modern unsupervised computer vision. We highlight three
complex tasks that are of critical interest to book historians: cluster-
ing, element discovery, and unsupervised change localization. For each
of these tasks, we introduce an evaluation benchmark, and we adapt
and evaluate state-of-the-art models. Our Rey’s Ornaments dataset is
designed to be a representative example of a set of ornaments histori-
ans would be interested in. It focuses on an XVIIIth century bookseller,
Marc-Michel Rey, providing a consistent set of ornaments with a wide
diversity and representative challenges. Our results highlight the limi-
tations of state-of-the-art models when faced with real data and show
simple baselines such as k-means or congealing can outperform more so-
phisticated approaches on such data. Our dataset and code can be found
at https://printed-ornaments.github.io/.

Keywords: Book ornaments · Clustering · Element discovery · Unsu-
pervised change localization

1 Introduction

Typographical ornamentation is a key component of historical printed texts.
While ornaments were first collected to improve the attribution of books to a
particular printer [20, 84, 59], they turned out to be a critical part of mate-
rial bibliography and book archaeology [68]. Because of the massive amount of
available material and the difficulty of annotations, many aspects of the study
of book ornaments could benefit from modern unsupervised computer vision. In
this paper, we identify three tasks of particular interest, illustrated in Fig. 1:
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(a) Clustering

(b) Element discovery (c) Unsupervised change localization

Fig. 1: Our Rey’s Ornaments dataset. Our dataset, based on ornaments
found in the books published by or attributed to Marc-Michel Rey (1720-1780),
focuses on three unsupervised computer vision tasks that are of interest to book
historians: (a) image clustering of ornaments printed using wooden blocks, (b)
unsupervised element discovery in composite ornaments printed using multiple
types of vignettes, and (c) unsupervised change localization in vignette series.

clustering, element discovery, and unsupervised change localization. For these
three tasks, we built datasets and evaluated state-of-the-art methods, showing
that despite the apparent simplicity of the 2D patterns to analyze, these tasks
remain extremely challenging and would benefit from more attention.

The challenges come from three main reasons: First, book ornaments are
complex objects. Older ornaments come from unique wooden blocks, that might
have similar appearances but that historians want to differentiate. More recent
ornaments are assembled from several vignettes produced by typographical metal
types. Such composite ornaments may include tens of vignettes, which one would
like to identify as different visual elements, and possibly relate to catalogs that
were used to sell metal types. Second, the appearance of each ornament has a lot
of variations. It can be due to many factors, including of course degradation of
the books and image acquisition conditions, but also aging or degradation of the
blocks, 3D effects, variations in the vignettes assembling, randomness in inking,
in the transfer of the ink to different papers and the hand press inking process.
Third, the tasks that are of actual interest to book historians are challenging in
themselves: no supervision, very few samples corresponding to each ornament or
vignette, highly imbalanced data, and the importance of fine differences.

To the best of our knowledge, there are no publicly available sets of printed
ornaments annotated for ornament analysis tasks. We built our dataset based on
the books published by Marc-Michel Rey (1720-1780), the leading publisher of
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Enlightenment philosophers, who is known to be especially attentive to the qual-
ity of his books [67, 2]. The XVIIIth century is a particularly interesting period
from the book-ornament point of view since it marks the transition between the
dominant use of woodblocks and typographic metal types. Restricting ourselves
to a single bookseller is motivated both by historical considerations, the history
of this particular bookseller being of interest, and practical ones since this leads
to a limited vocabulary of vignettes and woodblocks which makes annotation by
historians possible.

Our Rey’s Ornaments dataset is composed of three parts, giving insights into
our three tasks, each one composed of distinct image sets: First, our clustering
dataset, based on woodblock ornaments, includes 167 images of 36 different or-
naments, each associated with 3 to 14 occurrences. We found that DTI Cluster-
ing [61] outperformed state-of-the-art clustering approaches by a large margin,
but that the k-means algorithm [57] on foundation features (e.g., CLIP [66]) per-
formed almost on-par when classes are very imbalanced. However, all algorithms
led to less than 80% accuracy in this setting. Second, our element discovery
dataset includes 100 images of composite ornaments containing a total of 1271
elements, from a dictionary of 72 different vignettes. We found all unsupervised
element discovery methods to perform poorly. We believe this stresses the poten-
tial benefit of our dataset for the community, compared to the synthetic datasets
often used to evaluate unsupervised object segmentation methods. Third, our un-
supervised change localization dataset includes 30 types of vignettes with four
reference instances and two test instances, a normal one and one where changes
have been annotated. We found that reconstruction-based approaches, such as
congealing or VAE-based methods, performed poorly compared to human an-
notations, mostly because they are confused by the variations in inking. We see
this as an invitation to better formalize the notion of changes relevant to book
historians and design-associated algorithms.

The paper is organized as follows: Section 2 reviews related work for databases
and our three tasks, Section 3 presents our Rey’s Ornaments dataset, tasks, and
metrics, and Section 4 discusses the performance of state-of-the-art algorithms
for each task.

2 Related work

Ornaments repositories. Several large repositories of ornaments used to decorate
printed books in the hand-press period (1440-1830) exist, initially motivated by
the identification of printers [18]. The XVIIIth century marks the transition from
woodblocks to typographic metal types. Such repositories include the Fleuron
database [30] (several thousands of XVIth-XVIIIth century ornaments printed
in French-speaking Switzerland), the Maguelone database [58] (over 7,000 XVI-
IIth century ornaments printed in France and Europe), the Broadside ballads
database [9] (centered on woodblocks extracted from English broadside ballads),
and the Compositor database [17] (including over a million ornaments extracted
from XVIIIth century English books [83]). The need for image retrieval tools for
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these catalogs emerged early [8, 19], many have been developed specifically for
ornaments [4], and some are available directly with the database. A popular, and
more general, alternative is the Visual Image Search Engine (VISE) [23, 6, 16].
Automatic tools, however, rarely go beyond image retrieval, and these databases
do not provide the detailed annotations necessary to evaluate more advanced al-
gorithms.

Image clustering. The classical k-means algorithm [57] remains the basis for
many recent clustering methods. It splits a collection of images into k clus-
ters by jointly optimizing k centroids and the assignment of each image to the
closest centroid. Distances between images can be directly computed in pixel
space, for example in Transformation Invariant methods [33, 32, 61]. More com-
monly, k-means is used with learned features, either optimized for a pretext task
or together with the k-means clustering. For example, DCN [86] optimizes an
auto-encoder both for reconstruction and clustering in latent space, CCNN [40]
fine-tunes a pre-trained network to minimize a mini-batch k-means loss, and
DeepCluster [12] learns features in a self-supervised way using k-means clusters
as class labels. There are of course many different clustering methods. Recently,
many approaches defined a loss that is simply minimized with stochastic gradient
descent in a deep learning framework. In some, clustering and feature learning
are optimized jointly, for example with a loss based on KL divergence [85, 38],
mutual information [41, 44], consensus [42, 60], or image likelihood [51]. This
can also be done with two-step approaches, first learning features and then op-
timizing a clustering objective on these features, for example in SCAN [80].

Although clustering methods are adopted in various fields in cultural her-
itage [29], especially in document analysis, the focus mainly remained on texts
rather than visual clues [39, 34]. We evaluate different types of approaches for
our dataset: k-means on pixels, transformation invariant k-means [61], k-means
on pre-trained features, joint feature and cluster learning with mutual infor-
mation [44] and consensus objectives [60], as well as optimizing a clustering
objective on self-supervised features [80].

Element discovery. By element discovery, we mean identifying different cat-
egories of visual elements and decomposing images into such elements with-
out supervision. This problem is related to object co-segmentation and dis-
covery, which has been addressed for example by using visual words and a
topic hierarchy [78, 72, 11] or by computing similarities between image re-
gions [36, 47, 70, 15, 82, 76]. However such methods are designed to work with
textured and discriminative regions and are unlikely to work with our composite
ornaments.

Element discovery is also related to what has recently been referred to in deep
learning as unsupervised multi-object segmentation. However, these methods do
not always model background and often do not model any notion of class or cat-
egory for the discovered segments. We give an overview of these models following
the classification introduced in [49]. Pixel-space approaches, such as [10, 25, 24],
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model images using a predefined number of objects, and determine per-pixel al-
locations to objects without discriminating two occurrences of the same object.
An additional limitation is that these approaches are typically computationally
intensive and restricted to a limited number of objects. Thus we do not eval-
uate them, but some of their core principles are integrated into the methods
presented below. Glimpse-based approaches [27, 22, 55, 45, 89, 73] follow the
seminal AIR [27] method and perform element prediction based on regions from
the input image, referred to as ‘glimpses’. We evaluated the SPACE [55] and
AST-argmax [73] approaches, which have the advantage of having a background
model. However they do not differentiate classes of elements, thus we combine
them with feature clustering to obtain categories on the extracted elements. To
the best of our knowledge, the only method in this category that identifies classes
is GMAIR [89]. We thus also evaluate it, together with the SPAIR [22] method
it builds on, but both methods suffer from not having a background model.
Sprite-based approaches [79, 62] decompose images into elements by learning
representative prototypes and their transformation to optimize a reconstruction
loss. We evaluate the DTI-Sprites approach [62], because it models the scale of
visual elements, which is critical for our data.

These unsupervised multi-object segmentation methods are mostly evaluated
quantitatively only on synthetic datasets such as Tetrominoes [37], CLEVR6 [46,
37], multi-dSprites [48], or ClevrTex [49], where performances are typically very
good. However, they have been shown to perform very poorly on natural 3D
world images [87]. Because real applications are unclear, the evaluations often
focus mainly on instance segmentation, i.e., not considering semantics. Thus, we
believe the introduction of a real dataset, challenging but simpler than natural
scenes, with a clear associated task, can be a significant contribution to this
entire field and improve the benchmarking of future methods.

Unsupervised change localization. By unsupervised change localization, we refer
to methods that identify pixels where changes occur in a test image compared
to a reference, which can also be referred to as anomaly or novelty detection
in the literature. The reference can be a single image sample or a small col-
lection of samples. Since many methods address this task and a complete re-
view is out of the scope of this work, we refer the reader to existing reviews
and benchmarks [65, 7, 64, 71]. Approaches can be broadly separated between
reconstruction- and feature-based methods. To localize anomalies or changes, the
reconstruction-based methods compute a pixel-wise difference between the re-
constructed image and input. They usually need class-dependent thresholds and
anomalous training images. This motivated the development of feature-based
methods such as [81]. Such methods compute a false-color heatmap from the ex-
tracted features to highlight regions containing (a apart of) the anomalies [56].
Feature-based methods typically do not precisely localize the changed pixels;
thus we focus on reconstruction-based methods.

The reconstruction can be either directly computed from the reference sam-
ples or produced by a deep neural network. We consider as baseline simply
comparing the test image to the average of the reference images, or solving for
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Clustering Base Imbalanced Balanced

# ornaments 339 167 70
# classes 163 36 14
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(a) Clustering dataset

Element Discovery

# comp. ornaments 100
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(b) Element discovery dataset

Table 1: Dataset statistics. Our clustering and element discovery datasets are
highly imbalanced, which is one of the key challenges of real data but rarely
considered in benchmarks.

the joint alignment problem before computing the average, which can be seen as
a variation of the classical congealing problem [53, 21]. Deep reconstruction ap-
proaches are typically based either on GANs [74, 88, 1] or auto-encoders [50, 5],
which in theory can capture complex variability in the reference examples. We
benchmark both a classical VAE-based method [50] and a more recent auto-
encoder-based method that leverages spatial transformers [43] to obtain sharper
reconstructions [14].

Change localization datasets exist in various domains such as 3D-MR-MS
[54] in medical imaging, S2Looking [75] in remote sensing, CDnet [35] in video
surveillance, MVTec [7] in industrial inspection, and TAMPAR [63] in tampering
detection. To the best of our knowledge, no such dataset exists for historical
ornaments, while change localization is one of the key steps in analyzing printed
material, and inking variability makes this task very specific.

3 The Rey’s Ornaments dataset

Our dataset is composed of blocks and composites but focused on a bookseller
based in Amsterdam: Marc-Michel Rey (1720-1780). Here the motivation is the
study of editorial practices during a given censorship period. It leads to the
problem of book attribution for which the study of Rey’s correspondences [3] is
helpful. Automatically identifying the wooden blocks used by Marc-Michel Rey
and finding a composition style in the composites represent new challenges, in
a well-circumscribed corpus with well-documented metadata including positions
in the books and geographical location of the volumes. This results in a limited
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vocabulary of wooden blocks and vignettes which makes annotations possible on
several hundred ornaments.

This section presents the three parts of the dataset, targeted toward cluster-
ing, element discovery, and unsupervised change localization. The ornaments for
each task are extracted from books listed in the Marc-Michel Rey database [67]
and shared by the Bibliothèque Nationale de France (BnF) or the Bibliothèque
Municipale de Lyon (BML). All the annotations were made under the supervi-
sion of book historians.

3.1 Block ornaments and clustering

The clustering dataset contains ornaments printed from wooden blocks. Exam-
ples are shown in Figure 1a. We considered an initial set of 339 images of block
ornaments, which we refer to as the base set, and annotated their class labels
with the help of VISE [23]. This led to 163 ornament classes, most of them
corresponding to one or two images. While we will release this full set and the
associated annotations, we focused our evaluation on two subsets:

– an imbalanced subset, with all the 167 images from the 36 classes that have
at least 3 instances,

– a balanced subset, with 70 images, built by randomly sampling 5 images
from the 14 classes that have at least 5 instances.

This choice was motivated by the fact that most existing clustering approaches
do not handle well a large number of classes with a single or very few samples.
The statistics of our dataset are visualized in Figure 1a.

Evaluation metrics. We use two standard metrics to evaluate our clustering:
normalized mutual information (NMI) and accuracy. Following the standard
practice to evaluate clustering, we compute accuracy by matching clusters and
classes using the Hungarian matching algorithm [52].

3.2 Composite ornaments and element discovery

The element discovery dataset contains 100 images of composite ornaments. In
this set, we first identified 72 categories of vignettes as composition elements.
We identified 51 of those in two vignette catalogs by providers of metal types
used in Rey’s publishing [26, 69]. For each category of vignettes we selected a
representative example that we did not use in our experiments but was the ref-
erence for annotation and that we will release as part of the dataset. We then
manually annotated the bounding box and class of each element in each compos-
ite ornament. Three examples of composite ornaments annotated with semantic
bounding boxes for each vignette can be seen in Figure 1b. The statistics of
the resulting dataset are presented in Table 1b. Our 100 composite ornaments
contain a total of 1271 elements, each corresponding to one of the 72 vignettes.
Some ornaments included a single element, others more than 40. Some vignettes
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Fig. 2: Examples of composite ornaments from our synthetic dataset.

are used a single time, others more than 100 times. This strong imbalance is a
part of the challenge of our dataset and representative of statistics encountered
in real problems. Another challenge is that the elements are often grouped,
very close, or even touching each other, and are thus much more challenging
to separate than the objects in the synthetic unsupervised object segmentation
datasets [37, 46, 48, 49].

Synthetic dataset. Because we found that the existing algorithms trained di-
rectly on our dataset performed very poorly, we also created a synthetic dataset,
more similar to the ones existing in the literature. We first selected 67 distinct
parchment images as empty backgrounds, then pasted on these backgrounds up
to 10 elements uniformly sampled from our dictionary at random locations. Ex-
amples of the resulting synthetic composites are shown in Figure 2. We used
these simpler examples, without annotations, to pre-train algorithms, and then
fine-tuned them on the real data, which resulted in improved performances (see
Section 4.2).

Evaluation metrics. Recent unsupervised multi-object segmentation meth-
ods typically focus their evaluations on instance segmentation, often discarding
background pixels. However, we want to identify the classes of the elements as
well as their localization. Coarsely localizing them is also sufficient for appli-
cations, while annotating exact segmentation would be costly. We thus turn to
an object detection metric, namely mean average precision (mAP). Following
standard practices [28], we consider a detection to be accurate if its Intersection
over Union (IoU) with the annotation is larger than 0.5. We follow the same
approach as for clustering algorithms evaluation and use the Hungarian match-
ing algorithm [52] to match the discovered categories of elements with vignette
categories, similar to [77]. To analyze separately the influence of the elements’
localization and identification, we also measure class-independent element de-
tection and report the results using average precision (AP).

3.3 Vignettes and unsupervised change localization

The change localization dataset contains 180 images of elements printed in vi-
gnettes’ catalogs published by Enschede [26] and Rosart [69], two providers of
metal types used by Rey to build composite ornaments, as well as in the catalog
published by Fournier [31] which was used by Rey’s counterfeiters. In such cat-
alogs, the same vignette is printed several times on one or multiple lines. This
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Dataset Imbalanced Dataset Balanced Dataset

Method Acc. (%) ↑ NMI (%) ↑ Acc. (%) ↑ NMI (%) ↑

clustering over features
IIC [44] 19.2 40.6 25.0 35.0
SCAN [80] 46.1 68.7 47.1 64.6
DivClust [60] 54.1±0.5 80.5±0.3 67.0±2.1 78.6±0.7

Feat. Extractor

k-means [57] DINO-ViTB16[13] 73.9±0.9 89.9±0.4 70.9±3.3 86.8±1.6
CLIP-RN50x16[66] 74.6±3.0 90.1±1.1 78.3±2.9 89.8±1.2

clustering over pixels
k-means [57] 65.6±1.8 84.1±1.1 74.3±1.9 83.9±0.7
DTI Clustering [61] 75.7±0.8 90.7±0.6 87.4±1.9 92.1±1.2

Table 2: Image clustering baselines. We report the clustering accuracy (Acc.)
and normalized mutual information score (NMI) on our imbalanced and balanced
datasets. We report the standard error among 5 runs for the fastest methods,
outline the best results in bold, and underline ones within one standard error.

enabled the publishers to see variations that could be expected when hand-press
printing a given vignette. These catalogs enabled us to easily find prints per-
ceived as different from the other ones for the same vignette. We built a dataset
of 30 vignette types, each associated with 6 images: 4 images of standard prints
we used as reference, and 2 test images, one associated with a 5th standard
print labeled as ‘unchanged’ and one associated with an error print labeled as
‘changed’. Examples of this dataset are shown in Figure 1c. We annotated the
binary masks and the bounding boxes of the pixel-wise regions corresponding to
the perceived changes.

Evaluation metrics. We evaluate change localization by computing Intersec-
tion over Union (IoU) between annotated and predicted changes on each test
image. We compute this metric either only on the changed image or on both
the changed and unchanged images - which is harder since the method has to
correctly recognize that none of the variations in the unchanged images are sig-
nificant. We then report a mean IoU (mIoU) over the 30 vignette classes.

4 Results and analysis

In this section, we analyze the results of diverse methods for each of our tasks.
This provides insight both into the specific challenges of our problems, and the
strengths and limitations of state-of-the-art algorithms.
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(a) Valid clusters obtained with DTI Clustering.

(b) Failure examples obtained with DTI Clustering.

Fig. 3: Qualitative results for clustering. Although clusters obtained with
DTI Clustering are often valid (a), there are failure cases (b) due to e.g. similar
vignettes (top), or split clusters (bottom). Results are qualitatively similar when
using k-means with pre-trained feature extractors.

4.1 Block ornaments and clustering

Methods We tested both methods that performed clustering on pixels and
features. Using the raw pixel values and the standard L2 distance, we evalu-
ated k-means [57], and DTI Clustering [61] which jointly learns and transforms
cluster centers to reconstruct images. For clustering on features, we used both
pre-trained standard features and methods that specifically learn features for
clustering on a specific dataset. As examples of standard pre-trained features,
we used the self-supervised DINO [13] features and the supervised CLIP [66]
features. As methods that jointly train for features and clustering, we evaluated
IIC [44], SCAN [80], and DivClust [60].

Results Our quantitative results are reported in Table 2 and highlight several
facts. First and most surprisingly, simply performing k-means on pixel values
performed better than methods learning ad-hoc features and clustering on both
the balanced and imbalanced datasets. We believe that can be explained by
the fact that our images are relatively aligned and similar in appearance (dark
ink on light paper), and by the fact that our datasets have very few examples
per class. This highlights a clear limitation of common benchmarks and the
complex methods that report state-of-the-art performances on them. Second,
performing k-means over pre-trained features performs better than any other
feature-based method, in particular for the imbalanced dataset, with a small
advantage for the CLIP features compared to the DINO features. Third, DTI
Clustering consistently improves over all approaches, but the margin is small on
the imbalanced dataset.

Figure 3 shows some qualitative results obtained with the best-performing
method, DTI Clustering, on the imbalanced dataset. Valid clusters are obtained



Historical Printed Ornaments: Dataset and Tasks 11

Real training data Synt. training data
Model Bkg AP(%) ↑ mAP(%) ↑ AP(%) ↑ mAP(%) ↑

SPAIR [22] ✗ 0 0 0 0
GMAIR [89] ✗ 0 0 0 0
SPACE [55] ✓ 0 0 8.1 6.1
AST-argmax [73] ✓ 13.6 13.2 38.4 27.6
DTI-Sprites [62] ✓ 0 0 0 0

Table 3: Quantitative results for element discovery. For each method, we
report results both for models trained directly on real composite ornaments, and
pre-trained on synthetic and fine-tuned on real composite ornaments. We report
category agnostic average precision (AP) and mean average precision (mAP)
using the categories obtained with k-means and Hungarian matching over CLIP
features of discovered elements.

even with variations in inking and paper appearance (Fig. 3a). Failure cases are
typically related to similar-looking but different ornaments being grouped in the
same cluster, or different versions of the same ornament being split into two
clusters (Fig. 3b).

Altogether, we find it both surprising and interesting to see that no standard
method ables to perfectly solve the simple task of aligned, printed patterns’
clustering and believe that it demonstrates the interest of our dataset to evaluate
and help design new algorithms.

4.2 Composite ornaments and element discovery

Methods As explained in Section 2, we focused on unsupervised instance seg-
mentation approaches and evaluated the SPACE [55], AST-argmax [73], SPAIR
[22], GMAIR [89] and DTI-Sprites [62] approaches. Only GMAIR and DTI-
Sprites provide categories for the different elements. Thus, we used clustering
on the discovered element regions to obtain categories and compute mean aver-
age precision, that corresponds to the task that would make the most sense for
applications. We do this clustering using k-means on CLIP features.

Results Quantitative results are reported in Table 3. The most striking fact
is that all methods perform extremely poorly when trained on our real dataset.
A single method, AST-argmax [73] produces meaningful detection results, and
it only has 13.6% average precision (AP). We believe this is mainly due to two
factors: first, the intrinsic complexity of the composite ornaments, where the
different elements are often intentionally placed together and even connected to
form more complex geometric patterns; and second, the difficult statistics of the
dataset, with many rare vignettes, and ornaments composed of many elements.
This was the motivation to pre-train our methods on our synthetic dataset,
where the elements are sampled from the vignette dictionary uniformly and
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(a) Original (b) GT (c) SPAIR (d) GMAIR (e) SPACE (f) AST (g) DTI

Fig. 4: Qualitative results for element discovery. We show the dataset im-
ages (a) with their semantic ground truth bounding boxes (b) and the reconstruc-
tion and predicted semantic bounding boxed from different models (c-g). For all
the methods, we show the results of the models pre-trained on the synthetic
dataset and fine-tuned on the real dataset, and the semantic boxes obtained
using k-means on CLIP features.
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Method Naive VAE [50] STAE [14] Cong. [21]

Category C CU C CU C CU C CU

dot1 0.0 0.0 2.5 1.8 5.2 2.5 7.5 5.0
dot2 18.0 8.9 9.7 7.3 14.7 0.7 38.5 35.7
dot3 19.8 7.5 18.2 9.3 23.4 5.7 36.4 28.4
dot4 1.6 0.0 5.0 5.4 4.7 1.2 0.0 0.0
dot5 18.2 20.0 16.7 14.5 24.5 31.3 21.8 23.5
emblem1 27.1 21.7 22.8 16.3 2.2 2.5 32.1 26.3
emblem2 28.9 22.8 37.4 26.0 71.0 50.0 62.0 47.9
emblem3 35.8 29.0 29.5 18.2 40.0 0.6 52.5 42.0
emblem4 2.3 1.0 1.5 1.1 1.7 2.2 21.2 20.0
emblem5 21.3 16.4 15.1 11.2 28.4 1.3 26.1 23.6
flower1 0.7 0.9 1.7 1.5 0.9 0.0 15.0 13.6
flower2 41.2 21.1 36.5 19.0 25.0 0.8 50.0 45.9
flower3 4.7 5.2 7.7 7.5 26.2 0.0 21.8 19.3
flower4 2.8 2.4 1.3 1.3 24.1 2.1 28.1 27.9
flower5 28.6 5.4 18.1 5.7 43.4 27.3 28.9 21.1

Method Naive VAE [50] STAE [14] Cong. [21]

Category C CU C CU C CU C CU

interlacing1 1.2 0.8 1.1 0.6 11.9 0.0 45.7 12.6
interlacing2 39.8 27.1 30.5 20.4 27.6 15.9 36.0 26.1
interlacing3 31.3 25.0 40.2 31.7 21.9 0.0 22.8 14.6
interlacing4 32.4 17.6 39.7 18.1 35.5 16.0 48.0 23.5
interlacing5 2.8 1.3 3.1 1.8 15.6 0.3 24.7 7.3
ring1 18.5 14.8 17.7 10.3 8.3 4.3 37.9 29.8
ring2 13.5 11.1 15.9 11.8 27.2 19.1 23.3 17.5
ring3 0.6 0.6 1.4 1.2 1.9 1.5 22.9 13.4
ring4 1.5 1.5 6.3 4.5 3.9 3.8 10.1 7.5
ring5 0.5 0.8 1.4 1.5 0.0 0.0 5.4 5.1
symbol1 0.0 0.0 3.3 1.9 4.9 0.0 7.3 5.4
symbol2 8.4 3.4 13.6 2.9 7.4 6.8 16.7 11.9
symbol3 2.2 1.2 13.0 10.6 29.9 14.6 42.7 19.0
symbol4 11.9 11.3 8.3 6.9 19.0 5.1 16.2 14.9
symbol5 0.8 0.5 5.1 3.3 22.9 23.5 20.3 16.7

mIoU 13.9 9.3 14.2 9.1 19.1 8.0 27.4 20.2

Table 4: Quantitative results for change localization. We detail the per-
formance of the different baselines on all of the 30 vignette categories. We also
report the average value of the IoU (mIoU) on all vignettes.

positioned randomly, making the elements easier to learn for the models. While
this helps methods identify the elements on the synthetic dataset, and then boost
performances when fine-tuning the models on real data, the performance remains
relatively low. The qualitative results, shown in Figure 4, give more insights
into the reasons for these poor performances. Methods that do not incorporate
a background model (SPAIR and GMAIR) provide good reconstructions but
use many elements that seem randomly localized. On the contrary, glimpse-
base methods that incorporate a background model (SPACE and AST-argmax)
reconstruct part of the ornaments using their background model. However, they
still manage to accurately detect some of the elements, with a clear improvement
over training only with real data, even if the performance remains low (38.4% AP
for the best method). Finally, we found that DTI-Sprites struggled to accurately
reconstruct the data and thus produced irrelevant decomposition.

Note that the two methods that provided the best results, SPACE and AST-
argmax, do not learn a class model and thus require clustering the detected
patches and assigning clusters to classes using the Hungarian matching algorithm
to compute the mean average precision (mAP).

Note that the limitations we point out are in line with the conclusion of a
recent study on the potential of unsupervised object segmentation in real-world
images [87].

4.3 Vignettes and unsupervised change localization

Methods. We evaluate methods that, given a test image, compute its best
approximation similar to the reference images, then rely on the difference be-
tween the predicted and original image to identify the changes. The most naive
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(a) Normal (b) Changed (c) GT (d) Naive (e) VAE (f) STAE (g) Cong.

Fig. 5: Qualitative results for change localization. For randomly selected
vignettes, we show (a) an example normal vignette as well as (b) the changed
vignette with (c) the corresponding ground truth change mask (GT). For each
method (d-g), we show the predicted difference image.

approach is to approximate the test image using the average of the reference
images, which provides a first baseline. A natural improvement over this method
is to perform congealing [21] first on the reference images to obtain an ‘aligned
average’, then align it to the test sample before computing the difference. Align-
ment is done using a color and an affine transformation. We refer to this approach
as ‘congealing’.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0

10

20

30

m
Io

U

Naive
VAE

STAE
Congealing

Fig. 6: Threshold value selection. We
show the mIoU of all change localization
methods as a function of the threshold
value used to define the changed pixels.

We also test more advanced ap-
proaches, that rely on learning an
auto-encoder on the reference samples
and are thus in theory able to learn
richer variations, such as the ones re-
lated to inking. We evaluate a simple
variational auto-encoder (VAE) [50]
using the average of reconstructed im-
ages as well as STAE [14], a method
combining a spatial transformer (ST)
and a fully-connected auto-encoder
(AE). Note that since all these methods compute image differences to local-
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ize the changes, computing a segmentation of the changed regions essentially
requires deciding on a threshold above which we consider pixels to be changed.
We computed the mean IoU (mIoU) for each method for different threshold
values, as shown in Figure 6. We found mIoU to be quite stable for the differ-
ent threshold values, and thus simply selected the best threshold value for each
method.

Results. We report the performance of the different methods in Table 4 and
show qualitative comparisons in Figure 5. On average, congealing leads to the
best results while the other three methods have similar performances. How-
ever, looking at the performance of each vignette, the qualitative results paint a
slightly different picture. Indeed, STAE performs best in some cases, while having
almost zero performance in some others. These performance irregularities seem
related to the need for class-dependent threshold values in reconstruction-based
methods [81].

The qualitative results also hint that morphological operations on the dif-
ference images or segmentation maps potentially joined with operations on the
original images could improve the quantitative results. However, this would intro-
duce hyper-parameters, that are unlikely to generalize beyond a specific dataset.

5 Conclusion

We have introduced a rich and historically meaningful dataset of book orna-
ments, with annotations and metrics for three unsupervised tasks that are of
interest to book historians. We found that despite the apparent simplicity of
the printed patterns, complex deep learning methods currently fail to provide
satisfying results and in many cases were outperformed by simple approaches.
We thus hope this work will have a significant impact both by stimulating the
applications of computer vision methods to printed material and by changing the
design and evaluation of clustering, element discovery and change localization
methods.
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