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Abstract:  

Fluorescent nanoparticles (NPs) help to increase spatial and temporal resolution in bioimaging. 

Advanced microscopy techniques require very bright NPs that either exhibit stable emission for 

single-particle-tracking or complete on/off-switching (blinking) for superresolution imaging. 

Here, ultrabright dye-loaded polymer NPs with controlled switching properties are developed. 

To this aim the salt of a dye (rhodamine B octadecyl ester) with a hydrophobic counterion 

(fluorinated tetraphenyl borate) is encapsulated at very high concentrations up to 30 wt% in NPs 

made of poly(lactic-co-glycolic acid) (PLGA), poly(methyl methacrylate) (PMMA), and 

polycaprolactone (PCL) through nanoprecipitation. The obtained 35 nm NPs are nearly 100 

times brighter than quantum dots. The nature of the polymer is found to define the collective 

behavior of the encapsulated dyes, so that NPs containing thousands of dyes exhibit either whole 

particle blinking, for PLGA, or stable emission, for PMMA and PCL. Fluorescence anisotropy 

measurements together with small angle X-ray scattering experiments suggest that in less 

hydrophobic PLGA, dyes tend to cluster, whereas in more hydrophobic PMMA and PCL, dyes 

are dispersed within the matrix, thus altering switching behavior of NPs. Experiments using a 

perylene-diimide derivative show a similar effect of the polymer nature. The resulting 

fluorescent nanoparticles are suitable for a wide range of imaging applications from tracking to 

superresolution imaging. The findings on organization of the load will have impact on 

development of materials for applications ranging from photovoltaics to drug delivery. 
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Introduction 

Spatial organization of emitters plays a crucial role in the manipulation of photons inside 

materials. For example, the photonic properties of inorganic materials depend on the precise 

positioning of the constituent atoms or ions and the placement of defect sites, yielding such 

extraordinary materials as luminescent quantum dots,
1,2

 photo-voltaic systems based on 

perovskites,
3,4

 or upconverting nanoparticles.
5,6

 Controlling periodicities at the nanometer scale 

leads to photonic crystals with their applications ranging from thin film optics over light 

transmission to optical computers.
7,8

 Soft organic materials are often more eco-friendly and more 

appropriate for biological applications due to the absence of heavy metal compounds, their 

potential biodegradability, and the ease with which they can be interfaced with biological 

systems.
9
 In such materials interactions with photons are often achieved via species that can 

absorb and/or emit light (chromophores / fluorophores / dyes), and their organization defines 

specific photonic properties of the materials as a whole. However, achieving an ordering at the 

molecular scale in soft organic materials is considerably more challenging. As the spatial 

organization of fluorophores plays a crucial role, e.g., in governing excitation energy transfer 

(EET) processes,
10

 nature has nevertheless found ways: This is beautifully exemplified in the 

case of light-harvesting complexes, capable of channeling light energy over tens of nanometers 

to the photosynthetic centers due to a finely controlled positioning of the dyes by proteins.
11,12

 

Chemists did also gain a high level of control through precisely positioning the dyes in complex 

molecules, such as dendrimers
13,14

 and artificial light-harvesting complexes,
15,16

 or by designing 

molecules presenting aggregation-induced emission (AIE) behavior
17

 or formation of optically 

active liquid crystalline phases.
18

 However, this requires long and precise synthesis, which 

ultimately limits the number of fluorophores that can be integrated in these systems and their 
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large-scale production. In this respect, a more straightforward yet very promising platform for 

soft photonic materials is polymer matrices encapsulating chromophores.  

A control of the properties at the nanometer level can be readily achieved in such materials by 

creating dye-loaded thin polymer films
19

 or polymer nanoparticles.
9,20,21

 Controlling the 

organization of the chromophores on a molecular to film/particle level is, however, much more 

challenging. In the case of dye-loaded polymer nanoparticles achieving such control is of 

particular importance in view of the recent interest they have attracted as bright fluorescent 

labels for bioimaging.
20,21

 For these applications the first key parameter is the brightness of the 

used label, which ultimately defines the number of photons collected in a given amount of 

time.
22

 Until recently the brightness of dye-loaded polymer NPs was strongly limited due to so-

called aggregation-caused quenching of fluorophores at high dye loadings.
20,21

 One possibility to 

overcome this limitation, is controlling the short-range ordering of the dyes, notably to avoid 

formation of non-emissive H-aggregates through pi-stacking.
23

 This can be achieved, for 

example, through modification of the fluorophores with bulky side-groups
24–26

 and/or by 

providing the dye with propeller-like topology to achieve AIE behavior.
17,20

 Another approach, 

which was recently proposed by us, is the encapsulation of charged dyes with bulky hydrophobic 

counterions (e.g. F5-TPB, Figure 1) in polymer NPs.
27

 The counterions are thought to act as 

spacers that prevent π-stacking of the encapsulated dyes into non-fluorescent aggregates. The 

counterion approach enabled preparation of 40 nm NPs based on poly(lactic-co-glycolic acid) 

(PLGA) NPs presenting 6 to 10 times higher brightness than corresponding quantum dots.
27,28

 

The second key parameter for bioimaging applications is the behavior of the particle emission 

over time. On the one hand, a continuous emission greatly facilitates tracking of the emitters. On 

the other hand, resolving emitters at distances below the diffraction limit, achieved using direct 
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stochastic optical reconstruction microscopy (dSTORM) 
29,30

 or photo-activated localization 

microscopy (PALM),
31

 requires fluorescence intermittency due to blinking or photoactivation. In 

the case of quantum dots, blinking is an inherent property, but tuning and especially avoiding it 

was - and still is - a huge challenge.
32–34

 Fluorescence intermittency in dye-loaded polymer NPs 

is even more challenging as it requires controlling the collective behavior of >100 encapsulated 

dyes. In the case of our PLGA particles loaded with R18/F5-TPB a collective on-off-switching 

of practically all the dyes in one particle leading to an unprecedented whole particle blinking 

occurred.
27

 This phenomenon was attributed to ultra-fast excitation energy migration among 

practically all the dyes in one particle. Recently, we showed that the excitation energy in these 

systems can propagate over >10
4
 dyes at the sub-picosecond time scale, so that a single energy 

acceptor could collect the energy from this large dye ensemble resulting in light-harvesting 

phenomena with antenna effects of >1000.
35

 However, it remained unclear how to tune this 

collective behavior of dyes and thus the particle blinking.  

In this paper, we describe our findings that the nature of the matrix polymer used to assemble 

dye-loaded nanoparticles through nanoprecipitation modulates the organization of the dye load 

and, thus, the optical properties of the nanomaterials. We thus investigated in detail the influence 

of the polymer on the fluorescence properties, when the NPs were loaded with increasing 

amounts of a dye salt, R18/F5-TPB, or a perylene diimide (PDI-1). Besides PLGA we chose two 

other readily available biocompatible polymers: poly(methyl methacrylate-co-methacrylic acid) 

(containing 1.5 % acid groups, noted PMMA here), and acid terminated polycaprolactone (PCL). 

The achieved control over dye organization yielded, on the one hand, high QYs at very high 

loading. On the other hand, we studied the collective behavior of the dyes within one NP and 

how these are linked to the organization of the dyes. The findings presented here were thus used 
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to create ultrabright fluorescent nanoparticles with controlled dye organization and thus 

fluorescence properties: Notably color, and blinking behavior - ranging from whole particle on-

off switching to its complete absence - could be tailored in this way, which will enable 

applications ranging from single particle tracking to superresolution imaging. 

Experimental section 

Materials: Poly(D,L-lactide-co-glycolide) (PLGA, lactide 50 mole%, glycolide 50 mole%, 

acid terminated, Mn 24,000, PDI 1.7), polycaprolactone (α,ω-dihydroxy functional, Mn ~10,000, 

Mw ~14,000), poly(methyl methacrylate-co-methacrylic acid) (PMMAMA noted here as PMMA, 

1,3 % methacrylic acid, Mn ~15,000, Mw ~34,000), N,N-Diisopropylethylamine (DIPEA, 

99,5%), acetonitrile (anhydrous, 99.8%), rhodamine B octadecyl ester perchlorate (>98.0%), 

lithium tetrakis(pentafluorophenyl)borate ethyl etherate, were purchased from Sigma-Aldrich. 

Succinic anhydride was purchased from AlfaAesar. N,N′-Bis(1-heptyloctyl)-3,4,9,10-

perylenebis-(dicarboximide) (PDI-1) was synthesized from 1-heptyloctylamine (Sigma-Aldrich) 

and perylene-3,4,9,10-tetracarboxylic dianhydride (Sigma-Aldrich) as was described 

previously.
36

 Polycaprolactone with terminal COOH groups was synthesized from α,ω-

dihydroxy functional polycaprolactone and succinic anhydride according to a procedure 

described previously.
28

 R18/F5-TPB, the salt of Rhodamine B octadecyl ester with 

tetrakis(pentafluorophenyl)borate, was synthesized through dye exchange followed by 

purification through column chromatography as described previously.
27

 Sodium phosphate 

monobasic (>99.0%, Sigma-Aldrich) and sodium phosphate dibasic dihydrate (>99.0%, Sigma-

Aldrich) were used to prepare 20 mM phosphate buffer solutions at pH 7.4. MilliQ-water 

(Millipore) was used in all experiments. Qdot® 585 Streptavidin Conjugates and Fluospheres® 
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(carboxylate-modified microspheres, 0.02 µm, given lot size 0.028 µm, measured: DLS 33 nm, 

TEM 30 nm, nile red ex 535 nm, em 575nm), were purchased from Thermo-Fisher Scientific. 

Preparation of NPs: Solutions of the polymers in acetonitrile (2 mg mL
-1

 for PLGA, 1 mg mL
-

1
 for PMMA and PCL), containing different amounts of dye (from 0 to 30 wt% relative to the 

polymer) were added quickly and under stirring (shaking) using a micropipette to a 10-fold 

volume excess of 20 mM phosphate buffer at pH 7.4. PLGA and PMMA based nanoparticles 

were prepared at 21 °C, PCL nanoparticles were prepared at 27 °C. The particle solution was 

then quickly diluted five-fold with the same buffer. 

Electron Microscopy: 5 µL of the particle solution were deposited onto carbon-coated copper-

rhodium electron microscopy grids that were used either as obtained or following an air or 

amylamine glow-discharge. The grids were then treated for 1 min with a 2 % uranyl acetate 

solution for staining and observed with a Philips CM120 transmission electron microscope 

equipped with a LaB6 filament and operating at 100 kV. Areas covered with NPs of interest were 

recorded at different magnifications on a Peltier cooled CCD camera (Model 794, Gatan, 

Pleasanton, CA). Image analysis was performed using the Fiji software. 

Spectroscopy: Absorption and emission spectra were recorded on a Cary 400 Scan UV-visible 

spectrophotometer (Varian) and a FluoroMax-4 spectrofluorometer (Horiba Jobin Yvon) 

equipped with a thermostated cell compartment, respectively. For standard recording of 

fluorescence spectra, the excitation wavelength was set to 530 nm and emission was recorded 

from 540 to 700 nm for R18, and excitation at 485 nm and emission from 510 nm to 750 nm 

were used for PDI-1. Steady-state anisotropy was measured on a SLM 8000 spectrofluorometer 

(Aminco) in a T-configuration. Quantum yields were calculated using rhodamine 101 in ethanol 

(QY = 0.9) with an absorbance of 0.01 at 530 nm as a reference.
37
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Time-resolved Fluorescence: Measurements were performed with the time-correlated, single-

photon counting technique using the excitation pulses at 480 nm provided by a pulse-picked 

frequency doubled Ti-sapphire laser (Tsunami, Spectra Physics) pumped by a Millenia X laser 

(Spectra Physics). The emission was collected through a polarizer set at the magic angle and an 8 

nm band-pass monochromator (Jobin-Yvon H10) at 582 nm. The instrumental response function 

was recorded with a polished aluminium reflector, and its full-width at half-maximum was 40 ps. 

For lifetime measurements the decays were analyzed using the minimum entropy method. For 

time-resolved anisotropy measurements, the fluorescence decay curves were recorded at the 

vertical and horizontal positions of the excitation polarizer and with the emission polarizer set to 

the vertical position, and analyzed by the following equation:  

 ( )   
  ( )     ( ) 

  ( )       ( )
     (1) 

where Iv and Ih are the intensities collected at vertical and horizontal excitation polarizations, 

respectively, and G is the geometry factor at the emission wavelength, determined in 

independent experiments. 

Fluorescence Microscopy: For single particle fluorescence microscopy measurements the NPs 

were immobilized on glass surfaces on which a polyethyleneimine (PEI) layer was initially 

adsorbed. The solutions of NPs were diluted to a particle concentration of about 6 pM with 

water. 400 µL of these solutions per cm
2
 were then brought in contact with the PEI covered glass 

for 15 min, followed by extensive rinsing with MilliQ-water. The surfaces were left in MilliQ-

water during microscopy. Quantum dots and Fluospheres were immobilized and imaged in the 

same way as the NPs. 

Single particle measurements were performed in the TIRF (Total Internal Reflection 

Fluorescence) mode on a home-made wide-field setup based on an Olympus IX-71 microscope 
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with an oil immersion objective (NA = 1.49, 100x). A DPPS (Cobolt) continuous wave (CW) 

laser emitting at 532 nm was used for excitation at 0.5 or 5 W.cm
-2

. The fluorescence signal was 

recorded with an EMCCD (ImagEM Hamamatsu) using an exposure of 30.5 ms per image 

frame. Single particle analysis was performed using the Fiji software as described previously
27,28

 

(see SI for details).  

Small-Angle X-Ray Scattering (SAXS): Experiments were performed with a diffractometer 

developed by Molecular Metrology (Elexience, France) that uses a Rigaku Micromax 007HF 

generator with a copper rotating anode. The wavelength of the incident X-ray beam is λ = 0.154 

nm. This diffractometer operates with a pinhole collimation of the X-ray beam focused by a 

multilayer optic designed by Osmic and a two-dimensional gas-filled multiwire detector. The 

sample–detector distance was set at D = 0.7 m, leading to a range of scattering vectors covered 

by the experiment 0.1 < q < 3.2 nm
–1

. The scattering vector q is defined by q = (4π/λ) × sin(θ/2), 

where λ is the wavelength of the incident beam and θ is the scattering angle. Cells of 1 mm 

thickness and calibrated Mica windows were used as sample holders. Measurements were 

performed at room temperature. Data were treated according to a standard procedure for 

isotropic SAXS as described in the Supporting Information, and the resulting scattering curves 

were then normalized using the Porod invariant Q in order to correct for differences in 

concentration and scattering length density, or more precisely contrast factor. 
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Results 

 

Figure 1. Dye-loaded nanoparticles: Structures of the polymers poly(lactic-co-glycolic acid) 

(PLGA), poly(methyl methacrylate-co-methacrylic acid) (noted PMMA here), and acid 

terminated polycaprolactone (PCL), of the dye rhodamine B octadecyl ester (R18) and its 

counterion tetrakis(pentafluorophenyl)borate (F5-TPB), and of the dye PDI-1 used in this study, 

and schematic representation of a dye-loaded polymer nanoparticle. 

Size and Steady State Fluorescence 

Dye-loaded NPs were obtained through nanoprecipitation of an acetonitrile solution of the 

polymer and the dye salt R18/F5-TPB (with varying dye salt concentration expressed here as 

wt% relative to the polymer) in aqueous phosphate buffer. The sizes of the obtained NPs 

increased slightly for all three polymers with increasing dye loading from around 26 nm for 

unloaded NPs to about 33 nm for 30 wt% loading according to transmission electron microscopy 

(TEM; Figure 2 a, b and Table 1, Supporting Information Figure S1, S2). Previous studies 

showed that encapsulation of the R18/F5-TPB dye-counterion pair was nearly quantitative in 

PLGA
27

 and PMMA.
28

 Therefore, we can estimate the mean number of dye molecules per NP 

(Table 1), which was of the order of 2200 to 2500 fluorophores per NP at the highest loadings.  
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For these series of NPs we then measured the steady state absorption and fluorescence 

properties (Figure 2, c-f). In the case of PLGA NPs, increasing dye loading led to a blue shift of 

the absorption maximum, a broadening of the absorbance spectra, and an increase in the relative 

contribution of the short-wavelength shoulder. There is notably a strong evolution of the 

spectrum when going from 0.2 to 1 wt% of dye loading. Such spectral changes are notably 

associated with the formation of H-type dimers or aggregates of dyes.
38

 All these effects of dye 

loading were far less pronounced in the case of PMMA and especially PCL NPs, where the 

contribution of the short-wavelength shoulder was close to that for the free dye in solution. The 

emission maxima showed a slight red shift with increasing dye loading, together with a reduction 

in the width of the spectra, most pronounced for PLGA. The narrowing of emission band is in 

line with earlier observations on pure clusters of R18 with excess of F5-TPB counterions.
39

 

Though the quantum yields (QYs) decreased with increasing dye loading (Figure 2 c), they 

remained elevated even at high dye content in all three polymers (>20% in all cases for 10 wt%). 

For comparison, encapsulation of the same dye with the inorganic counterion perchlorate led to a 

QY of 2 % already at 5 wt% loading,
27

 which demonstrates the efficiency of the use of the bulky 

fluorinated counterion F5-TPB in decreasing aggregation caused quenching. For a given dye 

loading the QYs increased in the following order PLGA < PCL < PMMA. For all polymers 

fluorescence lifetimes decreased with dye loading, in line with the QY decrease (SI Fig. S3 and 

Table S1). For PLGA NPs significant contributions of shorter lifetimes were observed, while the 

mean lifetime was above those for PMMA and PCL NPs. In view of the lower QYs for PLGA 

this hints to contributions of still faster decay components that could not be measured with our 

setup (< 30 ps). 
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Figure 2. Size and steady state absorption/emission properties of NPs made from different 

polymers and loaded with different amounts of R18/F5-TPB: (a) Mean size of NPs as measured 

by transmission electron microscopy. Error bars correspond to s.e.m. (b) TEM image of PLGA 

NPs loaded with 5 wt% R18/F5-TPB. (c) Quantum yields of nanoparticles. QYs were 

determined relative to rhodamine 101 as standard (QY = 0.9) using an excitation at 530 nm. 

Given values are averages over at least 3 measurements. Normalized absorption (closed line) and 

emission spectra (dashed) of (d) PLGA, (e) PMMA, and (f) PCL NPs loaded with different 

amounts of R18/F5-TPB and comparison to the spectra of R18/F5-TPB in methanol (lowest and 

highest loading in bold). Emission spectra were recorded using an excitation at 530 nm. 
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Combining the measured QYs with the estimated number of fluorophores per NP and an 

extinction coefficient of 100 000 M
-1

cm
-1

 for the used rhodamine dye, the NP brightness could 

be calculated (Table 1, SI Table S3 for fluorescence cross section). The steady state brightness of 

these NPs increased continuously due to the increasing dye concentration and the high QYs, 

except for PLGA, where the brightness leveled off above 10 wt% loading. At the highest dye 

loadings studied here the values for PMMA and PCL NPs reached close to 10
8
 M

-1
cm

-1
 

corresponding to brightnesses nearly 1000 times higher than those of single fluorophores. 

PMMA and PCL NPs also showed a significantly higher photostability than PLGA NPs (SI Fig. 

S4).  

 

Table 1. Size and fluorescence characteristics of NPs depending on dye loading and polymer. 

dye loading PLGA PMMA PCL 

wt% mM 

  Size 
[nm]a 

Nb QYc Brightness 
[M-1cm-1]d 

Size 
[nm] 

N QY Brightness 
[M-1cm-1] 

Size 
[nm] 

N QY Brightness 
[M-1cm-1] 

0.2 1.5 27 9 0.75 7.3 x105 26 8 1.00 8.5 x105 26 8 1.00 8.3 x105 

1 7 30 61 0.55 3.6 x106 27 45 0.87 4.3 x106 28 51 0.79 4.2 x106 

5 36 33 396 0.41 1.7 x107 29 273 0.72 2.1 x107 31 332 0.65 2.3 x107 

10 73 35 963 0.35 3.6 x107 31 700 0.67 5.0 x107 32 784 0.57 4.8 x107 

20 145 35 1906 0.22 4.5 x107 32 1443 0.41 6.3 x107 33 1716 0.37 6.7 x107 

30 218 35 3045 0.10 3.3 x107 34 2724 0.31 8.9 x107 33 2427 0.34 8.9 x107 

a)
 NP diameters according to TEM measurements, for errors see Fig. 2 a; 

b)
 estimated number 

of dyes per NP; 
c)

 Quantum yields measured with Rhodamine 101 as reference, for errors see 

Fig. 2 c; 
d)

 Calculated according to B = ·QY, with  the extinction coefficient of the dye (100 

000 M-1cm-1). 
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Single-Particle Fluorescence 

The fluorescence of these three series of dye-loaded NPs was then studied on a single-particle 

level. Total internal reflection fluorescence (TIRF) microscopy of particles adsorbed on a surface 

was used to access single particle brightness and fluorescence transients. At an excitation power 

density of 0.5 W/cm
2
 the single particle brightness increased initially strongly with dye loading, 

followed by a less strong increase at higher loadings (Figure 3). PMMA and PCL showed much 

steeper increases in brightness at loadings above 1 wt% compared to PLGA. At a tenfold higher 

excitation power density of 5 W/cm
2
 the different NPs followed the same trends, but the 

brightness saturated at medium to high loadings (Figure 3 c). For example in the case of PMMA 

the brightness increased up to 10 wt% but then decreased upon further increase in dye-loading. A 

better idea of the NP brightness can be obtained by comparing them to external standards: under 

the same measurement conditions the brightest PLGA, PMMA, and PCL NPs were, respectively, 

ca. 2, 5, and 3 fold brighter than commercial Fluospheres
®
, and 45, 90, and 75 fold brighter than 

corresponding QDs. We also estimated the absolute brightness of our NPs using standardized 

parameters, such as the ratio of detected photons per second to the excitation power density (B, 

SI Table S2)
40

 as well as fluorescence cross section (, Table S3). 
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Figure 3. Single particle imaging of nanoparticles made from different polymers and loaded with 

different amounts of R18/F5-TPB. (a) Microscope images of NPs immobilized on a surface in 

TIRF mode using an illumination power density of 0.5 W/cm
2
. Scale bar corresponds to 20 µm. 

(b, c) Mean brightness, expressed as emitted photons per second and fluorescence cross section, 

for at least 1000 particles as measured by TIRF microscopy using a 532 nm laser with an 

illumination power density of (b) 0.5 W/cm
2
 and (c) 5 W/cm

2
. FS: Fluospheres 535/575 0.028 

µm, QD: Qdot streptavidin conjugates 585. Error bars give s.e.m. over three measurements. (d) 

Single particle intensity traces of NPs made from different polymers with different amounts of 

R18/F5-TPB. Given are representative transients as measured using TIRF microscopy using a 

532 nm laser with an illumination power density of 0.5 W/cm
2
. (e) Histograms of the normalized 

instantaneous emission intensities extracted from transients recorded under the same conditions 

(normalized relative to the maximum intensity). About 500 NPs per condition were analyzed. 
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A still more remarkable difference between the NPs made from different polymers appeared 

when the fluorescence signal of single NPs was recorded as a function of time (Figure 3 d and 

Supplementary videos). At very low dye loading all three types of NPs showed a nearly constant 

fluorescence. However, starting from 1 wt% of dye loading, virtually all PLGA NPs showed a 

practically complete whole particle blinking, in line with our previous report.
27

 With increasing 

dye loading the duration of the on-state and the on-to-off-time ratio decreased (SI Figure S5). At 

very high dye loadings (starting from 20 wt%) the blinking was not complete anymore, and the 

PLGA NPs remained partially on.  

For both, PMMA and PCL NPs, the behavior was very different: these NPs showed a constant 

fluorescence at 1 wt% dye loading. At 5 wt% loading the particles did not blink, but in many 

cases stepwise intensity modulations of less than 20 % of the particle intensity appeared. With 

increase in loading the amplitudes of the stepwise modulations increased and their durations 

decreased. At 30 wt% dye loading, finally, 50 % of the PMMA and 20 % of the PCL particles 

exhibited a practically complete on-off-blinking (off-state below 15% of the on-state brightness). 

Experiments on PMMA NPs of different sizes loaded with 30 wt % dye showed that the blinking 

amplitude also depends on NP size (SI Figure S6): 65 % of NPs of 24 nm (made from PMMA 

bearing sulfonate groups
28

) showed practically complete blinking, while this was only the case 

for less than 10 % of 60 nm NPs (made at 2 g/L of PMMA in buffer at pH 6.9). 

In order to analyze the blinking behavior of a large number of NPs, we created histograms of 

the instantaneous single-particle fluorescence intensities (Figure 3 e, normalized to maximum NP 

intensity). At very low loading (0.2 wt%) all the particles are constantly in the on-state, resulting 

in a single clear maximum at around 0.8 (< 1 because of shot noise). At 1 wt% loading, a second 

maximum appeared for PLGA NPs at a value close to 0. The two maxima or peaks at 0.8 and 0 
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thus correspond to the on-and the off-state, respectively. The similar intensity of the two peaks 

(with the off-state peak being slightly higher) agrees well with the measured relative on-time of 

PLGA NPs with 1 wt% loading of 37% (SI Figure S5). Increasing the loading led to a relative 

decrease in the intensity of the peak of the on-state. 

By contrast, in the cases of PMMA and especially PCL NPs the single peak at high relative 

emission intensity, corresponding to the on-state, is maintained for both small and medium 

loadings as these particles show stable on-state fluorescence. At the highest loadings the position 

of the peak shifted to lower values, corresponding to the appearance of partial blinking. Thus, at 

low and medium dye loading, blinking behavior was observed only for PLGA, while at high 

loading at least partial blinking was observed for all polymers. Especially in the case of PMMA 

NPs extremely large blinking amplitudes can be observed at high loading (up to 600 000 

detected photons cm
2
 W

-1
 s

-1
). These can be >5000-fold higher than those typically encountered 

in single dyes (around 100 detected photons cm
2
 W

-1
 s

-1
),

40
 and nearly 100-fold higher than those 

of semiconductor quantum dots,
34

 although they are still smaller than the blinking amplitudes 

encountered in individual crystals of metal-organic perovskites of much larger size (up to 10 000 

000 detected photons cm
2
 W

-1
 s

-1
).

41
 

 

Fluorescence Anisotropy and Förster Resonance Energy Transfer 

Excitation energy transfer inside the NPs was then studied to further understand the observed 

differences in the ensemble behavior of the encapsulated dyes.
42

 As energy transfer between 

randomly oriented dyes leads to depolarization of the emitted light,
43,44

 we measured steady-state 

and time-resolved fluorescence anisotropy of these NPs (Figure 4). The steady-state anisotropy 

decreased much faster with dye-loading for PLGA NPs than for PMMA and PCL NPs, 
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especially in the region up to 1 wt%. At this loading the anisotropy values were, respectively, 

0.01, 0.04, and 0.06 for PLGA, PMMA, and PCL NPs.  

Lifetime anisotropy measurements showed that at 1 wt% of dye loading, PLGA NPs 

experienced a very fast initial anisotropy decrease with a decay time of less than 20 ps, which is 

below the resolution of the instrument, followed by a plateau corresponding to a residual 

anisotropy of 0.011.
27

 For PMMA and PCL NPs at the same dye loading, the decays are much 

slower and well described with stretched exponentials: 

 ( )         ( (
 

  
)
 

)      (2) 

 having decay times τa of, respectively, 180 and 300 ps and a stretching exponent b of 0.5, 

which is expected for randomly distributed fluorophores.
45–47

 In these cases the residual 

anisotropy r∞ was about 0.021 for PMMA and 0.025 for PCL, but this plateau value was only 

reached after about 4 ns (versus <100 ps for the PLGA NPs). At a dye loading of 5 wt% the 

decays were very fast for all 3 types of NPs, although for PMMA and PCL they were slower 

compared to PLGA. Already after less than 150 ps for PLGA and 200 ps for PMMA and PCL 

the anisotropy reached a plateau corresponding to a residual anisotropy close to zero in all three 

cases (about 0.001 ± 0.001).  
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Figure 4. Fluorescence anisotropy of NPs. (a) Steady-state fluorescence anisotropy of 

nanoparticles made from different polymers and loaded with different amounts of R18/F5-TPB 

(ex = 530 nm). Given values are averages over at least 3 measurements, error bars correspond to 

s.e.m. (b) Anisotropy decays of nanoparticles made from different polymers and loaded with 1 or 

5 wt% of R18/F5-TPB. 

 

In the cases of our dye-loaded NPs the dyes are thought to be immobilized in the polymer 

matrix, and the rotational correlation times of objects of the size of our NPs are of the order of 

hundreds of ns. In consequence, the decrease in the fluorescence emission anisotropy in these 

systems is expected to be mainly due to the transfer of excitation energy among fluorophores. 

Comparison of the different polymer NPs with respect to their steady-state and time-resolved 

anisotropy suggests that this energy transfer is the fastest in the case of PLGA particles, 

suggesting smaller inter-fluorophore distances in PLGA NPs compared to PMMA and PCL. The 

residual anisotropy obtained in these experiments can be used to estimate the mean number of 

fluorophores involved in energy transfer.
47–49

 Here, we assume that (i) orientation of the dyes 

inside NPs is random and (ii) these dye emitters are energetically identical, in agreement with the 

almost negligible variation of the emission bandwidth at different dye loadings (Figure 2d-f). 
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The second assumption would mean that the dye-dye energy transfer is reversible. Then, in the 

system with finite number N of dyes coupled by fast energy transfer: N = r0/r∞,
47

 where r0 is the 

fundamental anisotropy (0.37 for rhodamine
50

) and r∞ is the residual anisotropy. At 1 wt% 

loading, the N values are about 35, 17, and 15, respectively for PLGA, PMMA, and PCL NPs. 

Remarkably, for PLGA NPs the value is close to the mean number of fluorophores per NP (see 

Table 1). At 5 wt% loading, the residual anisotropies were of the order of 0.001 for all three 

polymers, giving an N of 370, which suggests that hundreds of fluorophores are involved in 

energy transfer within a particle. We should note that the obtained N values are rough 

estimations of the upper limit to the number of randomly oriented fluorophores implicated in the 

reversible energy transfer. In cases, where the energy transfer becomes irreversible, the 

anisotropy can already drop to values of r0/25 after a single transfer step.
48,49,51

 

In order to have further insight in the energy transfer within the NPs, we then compared the 

experimental results with theoretical calculations. Förster theory allows estimating the expected 

anisotropy decay times for a given concentration of randomly distributed fluorophores according 

to
43

: 

         
  

  
   

    (3) 

where τ0 is the fluorescence lifetime in the absence of transfer (3.5 ns for R18/F5-TPB at 0.2 

wt%), R0 is the Förster radius for homo transfer (of the order of 5.5 nm) which can be calculated 

from the spectral data (SI Table S4), and C is the concentration in molecules per nm
3
. This yields 

theoretical values for the anisotropy decay times of the order of 300 ps for 1 wt% and 15 ps for 5 

wt% dye loading (see Supporting Information for calculations and values of R0 and τa). 

Comparison of these theoretical values with the experimental decay times shows good agreement 

for PCL NPs (300 ps and ~20 ps at 1 and 5 wt%, respectively) and reasonable agreement for 
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PMMA (180 ps and ~20 ps). However, in the case of PLGA the experimental decay time for 1 

wt% is with less than 20 ps far below the theoretical estimation. The obtained decay time of < 20 

ps for this case would correspond to an at least five-times higher fluorophore concentration, and 

suggests again smaller inter-fluorophore distances in the case of PLGA than what would be 

expected for a random distribution. In contrast, the good agreement between theory and 

experiment suggests a nearly random (homogeneous) distribution of the fluorophores in the PCL 

NPs and an only slightly disturbed distribution in PMMA NPs at least up to 5 wt% loading. 

 

Small Angle X-Ray Scattering on Loaded NPs 

In order to further address organization of dyes in these NPs we performed small angle X-ray 

scattering (SAXS) experiments on PLGA and PMMA NPs, either blank or loaded with 5 wt% of 

R18/F5-TPB, in solution. In Figure 5 the results are shown using the Porod’s representation of 

the NPs’ form factors (VP*P(q); VP being the volume of the particles and P(q), their form factor 

such as P(0)=1), that is as I(q)/Q * q
-4

 as a function of q, where I(q) is the scattered intensity, Q 

the Porod’s invariant and q the scattering vector (cf. SI). All curves show a first maximum at 

scattering vectors around 0.016 Å
-1

, followed by a first minimum and typically a second, less 

pronounced maximum around 0.037 Å
-1

. The general shape of the curves corresponds well to the 

form factor of spherical particles, with the first maximum corresponding to the curvature 

correction to the Porods’ law and the plateau to the existence of a sharp interface between 

particle and solution at low spatial resolution (2/qmax=2/0.06 100 Å). The positions of the 

maxima and the minimum allowed calculating the size of the particles (legend in Figure 5, 

Supporting Information Table S5). The resulting diameters were quite close to those measured 

by TEM, and no significant difference between bare and dye-loaded NPs was observed. As 
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SAXS measurements were performed in aqueous solution, while in the case of TEM the 

measurements were conducted under high vacuum, and thus in the dry state, these small 

differences indicate that the particles are only slightly hydrated. It furthermore means that the 

loading with the fluorophore/counterion pair did not lead to an increase in the hydration. The 

nanoparticles thus appeared as rather pure polymer “balls” in which the dye was then embedded.  

In the case of PMMA NPs the curves of the bare and the dye-loaded NPs were practically 

superimposed up to the second maximum (beyond which the signal became noisy due to the low 

contrast of PMMA with respect to water). There was thus no visible effect of the presence of the 

dye on the internal structure of the particles, which would be in agreement with a relatively 

homogeneous distribution of the dye within the matrix. In the case of PLGA NPs, on the other 

hand, clear changes in the scattering curves upon dye loading were observed. In particular, the 

intensity of the first maximum decreased, while the first minimum is less pronounced, indicating 

changes in the overall structure of the particles. These changes could stem from the internal 

organization of the particles, e.g. a non-homogeneous distribution of the dye within the particle, 

with a higher concentration at the core and very low concentrations close to the surface. Though 

the precise distribution of the dyes within the particles could not be inferred from this data, 

comparison of the curves showed that the presence of the fluorophore/counterion pair influences 

the final structure in the case of PLGA, while practically no changes were observed for PMMA. 
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Figure 5. Small angle X-ray scattering of NP solutions. Porod’s representation of the NP form 

factors [VP*P(q)] for (a) PLGA and (b) PMMA NPs bare and loaded with 5 wt% R18/F5-TPB. 

Q1 is the Porod’s invariant. The diameters of the particles as derived from SAXS measurements 

are given. Errors correspond to the standard deviation over the results obtained from the different 

maxima/minima.  
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NPs Loaded with Perylene Diimide 

We then wanted to know whether the described phenomenon of polymer directed organization 

of the load is unique for the studied dye/counterion system or is an inherent property of the 

polymer NPs studied. We hence used an uncharged dye from the perylene diimide family, N,N′-

Bis(1-heptyloctyl)-3,4,9,10-perylenebis-(dicarboximide) (PDI-1, Figure 1), known to undergo 

characteristic spectral shifts upon aggregation (Figure 6).
24,52

 An increase in loading of PDI-1 

into PLGA NPs resulted in the deviation of the absorption spectra relative to that of PDI-1 in 

dioxane (SI Figure S7), as reported previously.
24

 In particular the height of the short-wavelength 

peak at 490 nm increased relative to the longer-wavelength maximum at 530 nm (Figure 6 c). At 

the same time the fluorescence spectra showed the appearance of a broad, red-shifted band at ~ 

650 nm that increased strongly with dye loading (Figure 6 a, d). Similar variations of absorbance 

and emission spectra have been reported for aggregates formed by other PDI dyes and 

naphthalene diimides with similar structure, where the new long-wavelength emission band was 

assigned to the excimer.
53,54

 For the same dye loadings in PMMA-based NPs, these spectral 

variations were much less pronounced (Figure 6, SI Figure S7), whereas the smallest 

spectroscopic changes were observed for PCL NPs. Moreover, the QYs of PDI-1 in PMMA and 

PCL NPs decreased less than in PLGA NPs (Figure 6 b). Together these results indicate that the 

aggregation state of PDI-1 inside NPs depends on the matrix polymer, with dye aggregation 

increasing in the following order PCL < PMMA << PLGA. The observed aggregation behavior 

of PDI-1 as a function of the polymer matrix is similar to that observed for the rhodamine ion 

pair R18/F5-TPB. This means in turn that the control of dye aggregation through the nature of 

the polymer is a more general phenomenon, which could be observed for different cargo 

molecules. 
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Figure 6. Absorption and emission properties of PDI-1 loaded NPs made from different 

polymers: (a) Normalized fluorescence emission spectra of NPs of different polymers containing 

different amounts of PDI-1 and comparison to PDI-1 in dioxane. (Normalization has been 

performed relative to the peak at 530 nm.) (b) Quantum yields of nanoparticles made from 

different polymers and loaded with different amounts of PDI-1. QYs were determined relative to 

rhodamine 101 as standard (QY = 0.9) using an excitation at 530 nm. Given values are averages 

over at least 3 measurements, error bars correspond to s.e.m. (c) Ratio of absorbance of these 

NPs at 490 nm and 525 nm. (d) Ratio of fluorescence emission of these NPs at 630 nm and 530 

nm. 
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Solubility of Polymers and Nanoprecipitation 

Formation of NPs through nanoprecipitation is a kinetically controlled process.
55,56

 We 

supposed, hence, that differences in the speed of NP formation by the three polymers could be at 

the origin of the observed differences in organization of the encapsulated compounds in the NPs. 

One important parameter in the kinetics of particle formation is the supersaturation of the 

polymer in the acetonitrile water mixture that forms upon addition of the acetonitrile solution to 

the aqueous phase.
57,58

 Both nucleation and growth speed increase with increasing 

supersaturation. This supersaturation should in turn depend on the solubility of the polymers in 

mixtures of acetonitrile and water. In order to evaluate these we performed turbidity studies of 

the polymers by adding increasing amounts of water to solutions of the polymers in acetonitrile 

(Figure 7 a). Interestingly, turbidity for PCL appeared at the lowest water fraction, followed by 

PMMA, and finally PLGA. This indicates that, in such mixtures, the solubility of these polymers 

increases in the order PCL < PMMA < PLGA, in good agreement with decreasing 

hydrophobicity of these polymers (logP values: 4 for PCL, 2.8 for PMMA, and -0.5 for PLGA
59

). 

This in turn suggests that, during the fast mixing process, supersaturation should be highest for 

PCL, leading to the highest particle formation speed. 
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Figure 7. (a) Turbidity measurement of different polymers in acetonitrile water mixtures. Given 

are the absorbance values measured at 400 nm for polymer solutions in acetonitrile with different 

water contents. (b) Schematic view of proposed particle formation and dye organization for 

systems composed of PLGA (left) and PMMA or PCL (right). 
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Discussion 

We found that the optical properties of dyes encapsulated at various concentrations in polymer 

nanoparticles depend on the type of polymer used as matrix material. Indeed, in PLGA NPs, the 

dyes showed much faster communication and/or stronger aggregation compared to PMMA and 

PCL NPs. These results suggest that in the case of PLGA the dyes are inhomogeneously 

distributed inside the matrix forming clusters of high effective concentration (Figure 7b). This is 

probably not the case for PMMA and especially PCL, where dyes seem to distribute 

homogeneously within the particle (Figure 7b).  

Such differences in the organization of the load inside the polymer NPs are supposed to be 

linked to differences in kinetics of their nanoprecipitation, which in turn depend on the 

hydrophobicity of the polymers (Figure 7). In the case of rather hydrophobic PCL and PMMA, 

which should undergo fast nanoprecipitation, the dye could simply be captured or integrated 

during particle growth through a diffusion limited process, leading to a homogeneous 

distribution of the load within the particle. In the case of the much less hydrophobic PLGA, we 

expect that the particles are formed much more slowly. Therefore, our highly hydrophobic dyes 

could have the time to embed into the forming polymeric nuclei at the very beginning of the 

particle growth. These dyes could also form the nuclei themselves or at least participate in their 

formation and thus initiate particle formation. Both scenarios could explain the formation of NPs 

having a core with very high concentration of the load compared to the rest of the particle, in 

good agreement with the higher effective concentrations of the dyes observed in PLGA NPs. 

This would also be in line with the changes in the scattering curves observed in the SAXS 

measurements upon dye loading. Earlier work showed that pure clusters of R18 with excess of 
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the F5-TPB counterion could also be highly emissive,
39

 supporting the present model of a core 

with high dye concentration and a PLGA-rich shell. 

The resulting differences in the organization of the load led to differences in the fluorescence 

properties. In the case of the dye/counterion pair R18/F5-TPB tuning the effective concentration 

allowed controlling the distance between fluorophores and thus the speed of excitation energy 

transfer inside the nanoparticle. This, in turn, opened the way to controlling the blinking 

behavior of the whole particle ranging from complete particle blinking to complete absence of 

blinking for a given dye loading - and even to partial blinking for certain loadings. Here, one 

should mention conjugated polymers: their fluorescence behavior depends strongly on their 

folding and packing.
60

  

To get a better idea why some of our particles show practically complete blinking and others 

not, it is useful to elude what happens to the excitation energy. The observed one-step switching 

between the on- and the off-state indicates that whole particle blinking requires collective 

behavior of all the fluorophores in one particle, which means that the excitation energy has to be 

able to travel over the whole particle. In other words: the energy should be able to diffuse to a 

single transient dark species corresponding to an energy sink somewhere in the particle thus 

creating the off-state. Hence, the first condition for blinking to appear is that all the fluorophores 

in one particle can participate in energy transfer. Indeed, we found here, and in our previous 

work,
27

 that blinking only occurs in systems, where the number of fluorophores involved in 

energy transfer N, as calculated from the residual anisotropy r∞ is of the order of the mean 

number of fluorophores per particle. This was notably the case here for PLGA already at 1 wt% 

of dye loading as well as for all three polymers at 5 wt% of dye loading. However, while the 
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PLGA NPs showed practically complete blinking at these loadings, for PMMA and PCL NPs the 

fluorescence was stable.  

Indeed, our data suggest that a second condition for blinking to occur is sufficiently fast 

excitation energy migration. For instance, at 1 wt% loading the systems undergoing excitation 

energy transfer on the time scale of 300 ps, PMMA and PCL, do not blink. However, when the 

process takes place at <20 ps as in PLGA, whole particle blinking was detected. Considering 

energy transfer among identical fluorophores as the diffusion of excitons, an exciton diffusion 

coefficient can be determined according to
61

: 
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where   corresponds to the radiation lifetime that can be estimated as the fluorescence lifetime, 

and R0 is the Förster radius. This in turn allows determining the mean square distance covered by 

the exciton during a given time t: 

〈  〉           (5) 

The square root of this distance corresponds to the radius of the sphere over which the exciton 

diffuses during the time t. It allows us to estimate the time an excitation needs to travel over a 

distance equal to the particle size by taking √<x²> as the radius of the NP (18 nm for the largest 

NPs here). This time should also correspond to the time it takes the excitation to come within 

reach of all the fluorophores in the NP (and thus also a possible energy sink located somewhere 

in the particle). At a dye concentration of 1 wt% and random (homogeneous) distribution in a 

PMMA or PCL matrix, it would take about 3 ns for the exciton to diffuse over the size of a NP 

(Figure 5 and S8). For these NPs the exciton diffusion time is thus of the order of the 

fluorescence lifetime. This means in turn that there is a very large chance of the particle to emit a 

photon before the excitation energy is transferred to a dark species possibly present in the 
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particle. At 5 wt% loading and homogeneous distribution, as in PMMA and PCL NPs, the 

estimated time required for the excitation energy to travel over these particles, and thus to come 

within reach of a transient dark state, is 400 ps. This still leaves a relatively high probability for 

fluorescence emission to occur with minimal perturbation by dark states. Some blinking of 

PMMA and PCL NPs is observed starting from about 20 and 30 wt% dye loading. At these 

concentrations, the time it takes the exciton to diffuse over a distance corresponding to the NP 

size is of the order of 50 ps, which results in a relatively high probability of quenching through a 

single transient dark species. It is clear that the blinking in this case will also depend on the 

particle size, which is exactly what we observed for PMMA-based NPs loaded with 30 wt% of 

R18/F5-TPB: small (24 nm) NPs showed complete blinking, whereas the majority of large (60 

nm) NPs did not exhibit any blinking. 

PLGA NPs on the other hand blink already starting from a dye loading of 1 wt%. In this case, 

our results showed that the effective concentration of the dye is increased, resulting in a local 

concentration at least 5 times the global concentration. Such a high local concentration would 

indicate that the fluorophores are concentrated in a region with a diameter of 17.5 nm within the 

NP. Using Equation (4) and (5) and this diameter we can again estimate the time it would take 

the excitation energy to migrate over all the dyes in the particle. For this system the time 

corresponds to 70 ps, which is remarkably close to the times calculated for PMMA and PCL NPs 

with fluorophore concentrations at which blinking appears.  

Hence, we suppose that, the key requirement for whole particle blinking is ultrafast excitation 

energy transfer that involves all fluorophores within the particle as early as possible within the 

excited state lifetime. In this case, the ultrafast energy migration ensures transfer of the excitation 

energy to a transient dark species somewhere in the particle before the emission takes place. If 
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this occurs fast enough, a single dark species
41

 will be able to quench the whole particle, leading 

to a dark state. The nature of the dark species itself is difficult to identify, especially as it can be 

present in very low concentrations and for short times. Several mechanisms could explain 

formation of the dark species. The first is formation of triplet and/or radical states of rhodamine, 

which were previously reported to be sufficiently long-lived for this type of dye embedded in a 

polymer matrix.
62

 A second possible mechanism is the formation of transient non-emissive dye 

aggregates that act as the energy sink. By influencing the distances between the fluorophores the 

polymer matrix can thus control the blinking behavior of the whole particle. 

Importantly, the polymer matrix could also control the aggregation state of the dye PDI-1, and 

in this way the emission color could be tuned from orange to the near-infrared region, in line 

with our earlier work.
24

 Importantly, for both ionic (R18/F5-TPB) and neutral (PDI-1) dyes, the 

less hydrophobic polymer PLGA favors dye clustering with short inter-fluorophore distances, in 

contrast to more hydrophobic PMMA and PCL, where the dyes tend to distribute homogenously. 

Therefore, we expect that by varying polymer structure, it becomes possible to tune the optical 

properties of nanomaterials as well as to change the organization of the load inside the matrix. 

Apart from its direct benefit for the design of ultrabright labels with controlled blinking for 

fluorescence imaging, the principles described here could also be of importance for the design of 

other types of materials that require controlling the collective behavior of large ensembles of 

chromophores. Among these are notably materials intended for photovoltaics and those used for 

manipulating photons for information storage and transmission.
7,63,64

 Furthermore, polymer 

nanoparticles (NPs) are systems of choice for targeted delivery and controlled release of 

drugs
65,66

 and as carriers for different types of contrast agents.
67,68

 These applications require 

efficient loading of the functional molecules, complexes, or ions, that are the guests or load, and 
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their controlled release - or its absence.
69

 Our findings show the way to approaches to controlling 

the organization of the load that could go beyond compartmentalized nanoparticles and towards 

the fine tuning of the release profile of drugs and combinations of drugs.
70,71

 

 

Conclusion 

In this paper we studied the influence of the polymer matrix on the fluorescence properties of 

dye-loaded polymer nanoparticles over a broad range of dye concentrations. We found that the 

polymer allows fine tuning the emission behavior of the encapsulated dyes and in particular their 

collective behavior. Using a rhodamine dye and a bulky hydrophobic counterion, fluorescent 

nanoparticles almost 100 times brighter than quantum dots could be obtained that featured 

controlled blinking behavior, ranging from complete on-off switching over partial blinking to 

complete absence of blinking. In the case of a perylene diimide based dye the polymer matrix 

allowed controlling the emission color from orange to near-infrared. These differences in 

behavior are due to the organization of the dyes within the matrix, which enables the control of 

the speed of energy transfer processes as well as of formation of dye aggregates. The 

hydrophobicity of the polymer seems to play a crucial role in the kinetically controlled 

nanoprecipitation processes, tailoring the organization of highly hydrophobic dyes from 

homogeneously distributed (dissolved) to strongly clustered within the polymer matrix.  
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