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The Madeira River rises in the Andes, draining the southwestern Amazon basin and

contributing up to 50% of the Amazon River sediment load. The Porto Velho station

monitors the Upper Madeira basin and is located just downstream of the Jirau and

Santo Antonio hydropower dams. At this station, decreasing trend (p < 0.10) of the

surface suspended sediment concentration (SSSC) has been documented during the

sediment peak season (December to February) for the 2003–2017 period. This study

aims to evaluate the role of the rainfall variability on this documented decreasing trend.

For this purpose, we applied correlation and trend analysis in water discharge, SSSC and

rainfall time series over the main tributaries of the Upper Madeira basin. The decline of

SSSC in December is attributed to the reduction of rainfall in the Madre de Dios sub-basin

from the start of the rainy season in October. However, the SSSC negative trend (p

< 0.10) in January and February is associated with a shift in the magnitude of rainfall

during these months in the Andean region after 2008, and the dilution associated with

base flow. These results reveal that the decline of SSSC in the Madeira River should not

be evaluated just on the basis of the data downstream from the dams, but also of the

processes upstream in the Andean part of the basin. In a context of drastic anthropogenic

climate and environmental changes, understanding the combined influence of regional

hydroclimate variability and human actions on erosion and sediment transport remains a

critical issue for the conservation of the Amazon-Andes system.

Keywords: surface suspended sediment concentration, spatio-temporal rainfall variability, trends, Madeira River,

Andes
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INTRODUCTION

The Andes leave an indelible imprint on the geochemistry and
ecology of the Amazon River system, the largest in the world.
The Madeira River, the second largest tributary of the Amazon,
drains the southwestern Amazon basin, which has a great
geographical, biological, and climatic diversity (Molina-Carpio
et al., 2017). At its confluence with the Amazon, the Madeira
River delivers 26,580 m3

·s−1 and provides 426 Mt·year−1 of
suspended sediment load (SSL; nearly 50% of the Amazon’s SSL
at Óbidos for the 2002–2011 period; Vauchel et al., 2017). At
the Porto Velho station (Figure 1) a mean annual discharge of
18,550 m3

·s−1 and SSL of 441 Mt·year−1 were recorded for the
2002–2011 period (Vauchel et al., 2017).

The complexity of the Madeira River system is evident from
the presence of four geomorphological units (Figure 1): The
Andes, the Fitzcarrald Arch, the Llanos de Moxos floodplain,
and the Brazilian shield. Steep terrain and young lithologies
make the Andes the main source of sediments and solutes to
the lower reaches of the Madeira River (McClain and Naiman,
2008). The average sediment production of the Andean stretch
of the Upper Madeira was estimated at 640 Mt·year−1 (2002–
2011; Vauchel et al., 2017), implying that over 30% of the Andean
sediment is deposited in the Andean piedmont and the Llanos de
Moxos floodplain. Depending on which geomorphological unit
the tributaries are born, contrasting characteristics are observed:
white-water tributaries (the Beni, Mamoré and Madre de Dios
rivers that rise in the Andes), the clear-water Guaporé River that
comes from the Brazilian shield and several black-water lowland
tributaries. In fact, the large differences in SSL between the
Mamoré and Beni rivers (Figures 2B,D) are mainly explained by
the different geomorphology of their watersheds. Although both
rivers rise in the Andes, no sedimentation process is observed in
the Beni River floodplain, resulting in the Andean Beni River at
Rurrenabaque (Figure 1) to provide 45% of theMadeira SSL with
a watershed area of only 7% of the Upper Madeira basin (Vauchel
et al., 2017). Hence, the Beni River provides nearly 80% of the SSL
at Porto Velho: 47% from the Beni River itself and 32% from its
main tributary, theMadre deDios River (Vauchel et al., 2017). On
the other hand, significant sedimentation occurs in the Andean
piedmont and the entry to the floodplain in the Mamoré River
basin. This is explained by Vauchel et al. (2017) by the Mamoré
River slope break at the piedmont, that reduces the energy
available in the river channel to transport sediment. Furthermore,
the Guaporé River, the main tributary of the Mamoré, has most
of its basin on the geomorphic stable Brazilian shield, resulting in
very low sediment yield and denudation rate (0.02 mm·year−1;
Guyot et al., 2007; Withmann, 2008). As a consequence, the
Mamoré and Guaporé rivers provide only 15% of the Madeira
SSL at Porto Velho (Vauchel et al., 2017).

The tropical climate of the Madeira basin, and especially the
intensity, magnitude, and seasonality of the rainfall in sediment-
source regions as the Andes greatly influences the sediment
dynamics at different time scales (e.g., Pepin et al., 2013). A
significant rainfall spatial variability has been identified in the
Upper Madeira basin. From north to south mean annual rainfall
is 2600mm for the Madre de Dios sub-basin, 1800mm for the

Beni sub-basin and 1600mm for the Mamoré-Guaporé (Molina-
Carpio et al., 2017). High rainfall in the Madre de Dios sub-basin
is explained by its northernmost position and the presence of
an important “rainfall hotspot” in the Sub-Andes and piedmont,
where up to 6600 mm·year−1 is recorded (Espinoza et al.,
2015). On a seasonal timescale, the entire Upper Madeira basin
is characterized by a south tropical rainfall regime (Molina-
Carpio et al., 2017), with a marked wet season during the austral
summer, related to the mature phase of the South American
Monsoon System (Berbery and Collini, 2000). On average, over
half of the annual rainfall is recorded between December and
March, with January and February being the wettest months
(Espinoza et al., 2019a).

TheMadeira River intra-annual discharge seasonality at Porto
Velho, which peaks between March and April (Figure 2A), is
the result of the rainfall and hydrological regimes of the main
tributaries. Figure 2B shows that themean annual discharge peak
of the Beni River at Cachuela Esperanza comes at about the end
of February and the beginning of March, while the peak at the
station of Guayaramerin on the Mamoré River usually occurs
later in mid-April (Figure 2D). Surface suspended sediment
concentration (SSSC) at Porto Velho starts to increase in October
with the beginning of the rainy season. It peaks between January
and March (Figure 2A), in response to the Beni River SSSC
annual cycle (Figures 2B,C).

Information on the Madeira River sediment dynamics is even
more essential as the consequences of human activities (e.g.,
deforestation, sedimentation induced by dams, climate change)
on the wellbeing of the riverine and indigenous population
and ecosystems become more evident. The Andean-Amazon
connectivity has been compromised for years. Nobre et al. (2016)
suggest that deforestation over the southwestern Amazon could
result in savannization in the upcoming decades. Deforestation
in the Upper Madeira might increase soil erosion and sediment
production as observed in the Andes of Colombia (Restrepo
et al., 2015) and in Ecuador (Molina et al., 2008). Additionally,
land use changes can modify the local hydroclimatic conditions
as observed in the Upper Madeira Basin (Gutierrez-Cori et al.,
2021). There is no doubt that the effects of land use changes need
to be evaluated over a large timeframe. Changes in the spatio-
temporal rainfall variability over the Andes-Amazon transition
region as reported by Espinoza et al. (2019a) and Segura et al.
(2020) has been related to large scale atmospheric conditions
and could modify the sediment dynamics as well over different
temporal scales. Indeed, Armijos et al. (2020) found that the
temporal rainfall variability is well-related (R2 = 0.89) to the
fine suspended sediment concentration (FSC; >0.45µm and
<63µm) at Porto Velho, while the coarse sediment (>63µm)
is better related to the water discharge.

Hydropower facilities already in operation or been planned in
theMadeira basin (Anderson et al., 2018) can significantly reduce
the SSL reaching the Amazon River. Santo Antonio and Jirau,
two hydropower dams in the river stretch upstream from Porto
Velho (Figure 1) and completed in 2011 and 2012, respectively,
have already caused serious social and environmental impacts
(Almeida et al., 2019, 2020; Van Damme et al., 2019; Lima et al.,
2020). These impacts had a profound effect on downstream
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FIGURE 1 | Upper Madeira basin (1 × 106 km2 ) at Porto Velho (PV) outlet gauge station. Cachuela Esperanza (CE) on the Beni River, Rurrenabaque (RU) on the

Andean Beni River, and Guayaramerin (GY) on the Mamoré River. Sources: Elevation data from STRM (Farr et al., 2007).

and upstream riverine areas in Brazil and Bolivia and the
communities who depend on the river resources. The dams were
also credited by Latrubesse et al. (2017) to have caused an ∼20%
decrease in the mean surface suspended sediment concentration
(SSSC) of the Madeira River at Porto Velho, located just 7 km
downstream of Santo Antonio dam. Li et al. (2020) also detected
a negative trend of SSSC for the 1995–2017 period at Fazenda
Vista Alegre, the station furthest downstream on the Madeira
River before its confluence with the Amazon River. In addition,
Ayes et al. (2019a) found an ever-greater fall (30%) in FSC at
Porto Velho in the post-dam period. However, a concomitant
36% decline in the FSC observed at Cachuela Esperanza, located
upstream from the dams on the Beni River, which provides
about 80% of the Madeira SSL, suggests that most of the fall in
FSC could not be attributed to the dams. Indeed, the study of
Vauchel (2014) demonstrated that the dams do not generate a
backwater effect at Cachuela Esperanza. On the other side the
already observed sedimentation of coarser particles (mostly fine
andmedium sands) in the Santo Antonio and Jirau reservoirs has
been directly associated with the river impounding by the dams
(International Hydropower Association (IHA), 2017).

While negative trends from 2003 to 2017 and a downward
break in 2010 were detected at Porto Velho for the annual and
December-February (DJF) series of FSC, trends were not detected
for the discharge series during this period (Ayes et al., 2019a).

For the DJF sediment peak season at Cachuela Esperanza, the
study identified a FSC negative trend and a significant break in
2010. No FSC trend or break were found for the Mamoré River
at Guayaramerin for the same period in the previous study. The
causes of the FSC downward break just before the dams were
completed and the negative trend during DJF for the 2003–2017
period in the Beni River, merit being identified and explained.

Given the importance the Madeira River sediment dynamics
has on the geochemistry and ecology of the Amazon River system
and with a view to improve the knowledge of the different
processes (natural and anthropogenic) that are occurring within
the Upper Madeira River basin, this study aims to investigate the
role of the rainfall variability on the SSSC downward break in
2010 and declining trend identified for the 2003–2017 period at
the Porto Velho station.

MATERIALS AND METHODS

Water Discharge and Sediment Data
The water discharge (Q) and surface suspended sediment
concentration (SSSC) data are generated by the National Water
Agency of Brazil (ANA in Portuguese) at Porto Velho and
the National Meteorological Service of Bolivia (SENAMHI in
Spanish) at Rurrenabaque and Cachuela Esperanza, with the
collaboration of the SO-HYBAM Observatory. This information
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FIGURE 2 | Annual cycle (2003–2017) of rainfall (R, blue dash line), water discharge (Q, red line), and surface suspended sediment concentrations (SSSC, black

asterisk line): (A) at Porto Velho (PV) on the Madeira River; (B) at Cachuela Esperanza (CE) on the Beni River; (C) at Rurrenabaque (RU) on the Andean Beni River; and

(D) at Guayaramerin (GY) on the Mamoré River. Sources: for the rainfall: CHIRPS.v2 (Funk et al., 2015), Q and SSSC adapted from Ayes et al. (2019a) and Ayes et al.

(2019b) with data from SO-HYBAM, ANA, and SENAMHI. Please note that the two left y-axis differ in (C) because of the magnitude, and the x-axis is the hydrological

year, from September (9) to August (8).

is available online at a daily time-step for Porto Velho from
1967 to 2019 for Q and from 1995 to 2017 for SSSC, and
for Rurrenabaque from 1967 to 2016 for Q and 2003–2017
for SSSC. Additionally, November to February SSSC data from
Cachuela Esperanza at the Beni River outlet for the 2003–2017
period was used. This information was taken from Ayes et al.
(2019a) and was initially provided by SENAMHI-Bolivia and
SO-HYBAM. In order to compare the results of this study with
those of previous ones (i.e., Ayes et al., 2019a,b), we evaluated a
period from 2003 to 2017 at Porto Velho and Rurrenabaque. The
hydrological year from September (yeart−1) to August (yeart0)
was used for the analysis. Water discharge is regularly measured
using an Acoustic Doppler Current Profiler to establish water
level-discharge rating curves.

Suspended sediment samples are collected three times per
month at the surface in the lowlands and up to six times per
month at the piedmont and Andean stations, following the
protocol of the SO-HYBAM Observatory, and then interpolated
at a daily time-step by the SO-HYBAM. More information on
the sediment concentration measurement procedure and data
quality can be found in Armijos et al. (2017), Vauchel et al. (2017)
and the observatory webpage (https://hybam.obs-mip.fr/). It
should be noticed that the surface sample is not representative
of the sediment concentration on the entire cross-section for the

sediment time-series. A rating curve can be established between
these concentrations, but the analysis was carried out solely
on the concentrations at the surface to reduce uncertainties.
SSSC was used to evaluate the possible causes for trends and
the 2010 break at Porto Velho, and not the fine suspended
sediment concentration (FSC) in the water column as in Ayes
et al. (2019a). Nevertheless, as Ayes et al. (2019a) estimated FSC
by multiplying SSSC by a constant value following Armijos et al.
(2020), clearly both series are fully comparable regarding time
variability. Moreover, the relationship of SSSC and FSC has not
been evaluated at the Rurrenabaque station, which was also used
in this study.

Missing SSSC data at Porto Velho (February−2016 to
March−2016) were estimated based on the method of Espinoza-
Villar et al. (2013) which used the reflectance information from
the Moderate Resolution Imaging Spectroradiometer (MODIS)
sensors on board the Aqua and Terra satellites, previously
validated for the 2000–2011 period with in-situ measurements
in the Madeira River. Likewise, MODIS reflectance has been
calibrated with observed SSSC for several Amazon Rivers
(Martinez et al., 2009), the Solimões River (Espinoza-Villar
et al., 2012), the Purus River (Dos Santos et al., 2018), and
the confluence of the Solimões and Negro rivers (Marinho
et al., 2018) among others. Estimated SSSC time series derived
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TABLE 1 | Homogenized rain gauge stations at the Andean Madeira basin for the 2003–2013 period.

No. Name Latitude Longitude No. Name Latitude Longitude

1 Independencia −17.081 −66.819 11 Pasankeri −16.523 −68.144

2 Chorocona −16.883 −67.150 12 San Calixto −16.494 −68.134

3 Choquetanga −16.832 −67.314 13 Chuquiaguillo −16.453 −68.095

4 Circuata −16.637 −67.252 14 Laykacota −16.505 −68.124

5 Salla −17.190 −67.621 15 Villa Copacabana −16.486 −68.116

6 Luribay −17.061 −67.662 16 Pta. Cuticucho −16.132 −68.109

7 Pinaya −16.638 −67.858 17 Camata −15.164 −68.771

8 Mecapaca −16.671 −68.018 18 Quiabaya −15.583 −68.767

9 Vino Tinto −16.481 −68.139 19 Tambopata −14.220 −69.152

10 El Tejar −16.496 −68.158 20 Ollachea −13.804 −70.497

Stations from 1 to 18 are from SENAMHI-Bolivia and 19–20 from SENAMHI-Peru. Source: Hunziker et al. (2017).

from MODIS and measured SSSC are available at the SO-
HYBAM webpage.

Rainfall Data
Rainfall was estimated from the satellite-based precipitation
product CHIRPS.v2 (Funk et al., 2015). This satellite dataset is
freely available at the Climate Hazards Center website (https://
www.chc.ucsb.edu/data) with two spatial resolutions of 0.05◦

and 0.25◦ and a 1-day of temporal resolution. The product has
been used previously for the Amazon Basin (e.g., Espinoza et al.,
2019b and Cavalcante et al., 2020) and compared with observed
datasets for the Bolivian Altiplano (Satgé et al., 2019) and the
entire Amazon Basin (Espinoza et al., 2019b; Paca et al., 2020).
For this study the mean sub-basins rainfall at 0.05◦ resolution
was calculated and accumulated to the monthly time-step for the
October-February season from 1981 to 2017.

CHIRPS data exhibit non-negligible bias, particularly in the
humid-Andes regions like the upper Madre de Dios and upper
Beni River at Rurrenabaque sub-basins, where CHIRPS data were
found to underestimate precipitation (Noriega, 2018). Thus, an
observed homogenized Bolivian dataset by Hunziker et al. (2017)
for the 2003-2013 period was used to evaluate and support the
precipitation changes identified with CHIRPS in the Andes. The
20 ground stations are listed in Table 1 and mapped in Figure 5

of the results section. A most extensive use of ground-based
observations in this study was prevented by the sparsity of the
rain gauge network, particularly in the Madre de Dios sub-basin
and lowlands.

Correlation and Time Series Analysis
Possible relationships between the data were analyzed through
ranked Kendall (τ ) correlation. While to investigate the SSSC
downward breaks at Cachuela Esperanza and Porto Velho
for the 2003–2017 period (Ayes et al., 2019a), the following
nonparametric statistical tests were applied to the rainfall,
discharge, and SSSC monthly time-series: (1) the Pettitt (Pettitt,
1979) and Lanzante tests (Lanzante, 1996) to seek breakpoints
in the time-series, and (2) the Mann-Whitney test (w; Mann
and Whitney, 1947) to investigate changes in the distribution
if a break is found. A break in a time-series was accepted
when the two tests detected it in the same year. Whereas,

the Mann-Kendall test (MKτ ; Kendall, 1938; Mann, 1945) and
Sen slope (Sen 1968) were used to evaluate temporal trends.
Outcomes with 90 and 95% confidence intervals are shown in the
results section.

Onset of the Rainy Season
To determine the onset of the rainy season, CHIRPS.v2 daily data
is first spatially averaged over the Upper Madeira basin and the
four main tributaries sub-basins. To reduce the noise and define
the onset of the wet season a pentad consecutive approach is used.
A pentad is defined as the mean daily rainfall in five consecutive
days. The onset is defined by a threshold (historic average daily
rainfall over the Upper Madeira basin) persistent in time (six
consecutive pentads out of seven) above the threshold. This
methodology has been previously used in several studies in order
to identify the length of the rainy season in the Southern Amazon
basin (e.g., Fu et al., 2013; Arias et al., 2015; Gutierrez-Cori et al.,
2021).

RESULTS

Figure 3 shows that the mean SSSC (590 mg·L−1 for the DJF
season) at Porto Velho from 2010 to 2017 was lower than during
the 2003–2009 period (SSSC = 750 mg·L−1). Following the
SSSC changes detected in the Beni River at Cachuela Esperanza
(Ayes et al., 2019a) and as nearly all of the fine suspended
sediment transported by the Beni River comes from the Andean
part of its basin (see Introduction), the temporal relationship
between Rurrenabaque and Cachuela Esperanza SSSC series was
evaluated at a monthly time-step from November to February.
From 2003 to 2017 a significant positive correlation between
Rurrenabaque and Cachuela Esperanza SSSC series is found (τ
= 0.43, p < 0.001), which even improves when the extreme
2014–flood event is removed (τ = 0.48, p < 0.001). Both
the Rurrenabaque sediment contribution and the significant
correlation between Rurrenabaque andCachuela Esperanza SSSC
indicate that the temporal variability of the Andean Beni River at
Rurrenabaque is key to understand the fine sediment dynamics
at Cachuela Esperanza.

The SSSC, Q and rainfall time evolution were evaluated
at Porto Velho and Rurrenabaque gauge stations and the
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FIGURE 3 | Water discharge (Q)–Surface suspended sediment concentrations (SSSC) relationship at Porto Velho in the Upper Madeira basin. Black (red dash) lines

represent the 2003–2009 (2010–2017) period. Dots bordered in red indicate SSSC data of the 2010–2017 period.

watersheds they monitor, for each month separately (Figure 4).
In December, a negative SSSC trend (MKτ = −0.48, Sen =

−24.7, p < 0.05; Figure 4A), was identified at Porto Velho
for 2003–2017, accompanied by a downward break in 2010 (p
< 0.10) and a change of distribution after the Mann-Whitney
test (w = 50; p < 0.05). There is no significant change in
the December SSSC at Rurrenabaque or in discharge for both
stations (Figures 4A,D). Rainfall in December for the whole
Upper Madeira basin monitored at Porto Velho does not exhibit
a significant trend either (Figure 4A).

In January, a negative trend for the SSSC time-series (MKτ

= −0.43, Sen = −29.0, p < 0.05; Figure 4B) in 2003–2017
was detected at Porto Velho. At Rurrenabaque a significant
negative January SSSC trend (MKτ = −0.33, Sen = −120.6,
p < 0.10) for the 2003–2017 period and a downward break
(p < 0.10) in 2008 were detected (Figure 4E). A noticeable
change in SSSC occurred in 2008, from a mean concentration
of 4070 mg·L−1 (2003–2008) to 2060 mg·L−1 (2009–2013),
which was followed by an upward change from 2014 to 2016
(3760 mg·L−1; Figure 4E). In spite of the good correlation
between SSSC and rainfall at Rurrenabaque (τ = 0.67, p <

0.001), neither a significant break nor a trend was detected for
January rainfall and discharge at the 90% confidence level for
this sub-basin.

A negative SSSC trend (MKτ = −0.35, Sen = −26.8, p
< 0.10; Figure 4C) was identified again in February at Porto
Velho but no discharge and rainfall trends were detected. In
contrast to January, a positive rainfall trend (MKτ = 0.63,
Sen = 10.0, p < 0.01) was identified at Rurrenabaque for
February (Figure 4F). This suggests a shift in the monthly
rainfall peak from January to February from 2003 to 2017 for
the Rurrenabaque sub-basin. Indeed, CHIRPS.v2 data shows
that between 2003 and 2008 the mean rainfall was 240mm in
January and 160mm in February. This changed to 175mm
(−27%) and 240mm (+50%), respectively, for the 2009–2013

period, while a mean rainfall of 240mm has been recorded
for both months since 2014 (Figures 4E,F). The shift in the
rainfall between January and February was also detected for the
observed rainfall in most of the Andean stations of the Beni and
Madre de Dios River basins, when comparing the 2003–2008
and 2009–2013 periods (Figure 5). Supplementary Table 1

summarize trends and breaks tests during
these 3 months.

As spatio-temporal rainfall variability seems to differ along
the Upper Madeira basin and no trend was detected for the
basin mean rainfall, we evaluated the temporal evolution for each
month from December to February during the 2003–2017 period
(Figure 6). In December, significant negative rainfall trends (p <

0.10) were observed in the nearby areas of Porto Velho and to the
southern part of the Mamoré-Guaporé sub-basins (Figure 6A).
A negative but not significant trend was also observed in the
upper Madre de Dios River and most of the northern part of
the Guaporé sub-basins and a positive not significant elsewhere.
Negative but mostly not significant rainfall trends were observed
in January in the Andean part of the Beni and Madre de Dios
watersheds and in the Guaporé sub-basin. Only a few regions in
the Mamoré-Guaporé sub-basin exhibited a significant negative
trend (p < 0.10). Positive trends were detected in the lowlands to
the north of the Upper Madeira basin (Figure 6B). A significant
positive trend (p < 0.10) was detected for the rainfall in February
for the Andean parts of the Beni and Madre de Dios sub-basins
and adjacent lowlands (Figure 6C). Because of these spatial
differences, the basin-averaged rainfall at Porto Velho did not
present a significant change in the December to February period
(Figures 4A–C).

Figures 6D–F confirms that for December the 2010–2017
time period was significantly drier than the 2003–2009 near Porto
Velho, most of the Madre de Dios and in the southern part of the
Mamoré-Guaporé sub-basins. For January, the 2010–2017 period
was drier than the 2003–2009 one in the Andean Beni River
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FIGURE 4 | Inter-annual rainfall (R, blue dash line), water discharge (Q, red line), and surface suspended sediment concentration (SSSC, black asterisk line) from

December till February at Porto Velho on the Madeira River (A–C) and at Rurrenabaque on the Andean Beni River (D–F). The left y-axis for SSSC (black) and Q (red),

right y-axis for R: note that the left y-axis differs according to the magnitude of the variable monitored by the stations. Only significant trends (p < 0.10) are plotted in

dash lines.

sub-basin and the Guaporé watershed. In February the 2010–
2017 period was significantly wetter than the 2003–2009 period
in the Andes, particularly in the Andean Beni River watershed
at Rurrenabaque.

Being December a transition month to the SSSC peak
at Porto Velho and since dry conditions were observed in
the north region after 2010 (Figures 6A,D), the onset of the
rainy season for the four main tributaries sub-basins was
evaluated. Figure 7B shows that the rainfall season starts earlier
(mid of September) in the Madre de Dios sub-basin than in
the other three sub-basins. This is accompanied by a much

higher (almost twice) daily rainfall than in the remaining
Upper Madeira basin. Because of this and considering the
importance the rainfall has on soil erosion at the start of the
rainfall season, the precipitation trend for October to December
(OND) was evaluated (Figure 7A) for 2003–2017. A significant
negative trend (p < 0.05) over the Madre de Dios sub-basin
was found. In parallel, the OND intensity as measured by
the basin mean daily rainfall (mm.day−1) in this sub-basin
exhibits a significant negative trend (p < 0.05) for the same
period. In fact, the highest OND daily rainfall (>50mm.day−1)
occurred at the beginning (2003–2005) of the study period
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FIGURE 5 | Annual cycle at six of 20 observed stations listed in Table 1 in the Andean region for the two periods, 2003–2008 and 2009–2013 and mean annual cycle

for CHIRPS.v2 after the 2500m a.s.l. Note that the y-axis differs according to the magnitude of the rainfall monitored by the stations.

(Figure 7C), compared to <40mm.day−1 for eight of the
remaining years.

DISCUSSION

Causes of the Decreasing Trend of SSSC at
Porto Velho Station
A significant influence from the Madre de Dios’ precipitation on
the SSSC recorded at Porto Velho is observed during the first
months of the annual cycle, which is associated with the earlier
onset of the rainy season in this sub-basin compared to the other
main sub-basins of the Upper Madeira. Thus, the interannual
negative trend (p < 0.05) for both seasonal and daily OND
rainfall for 2003–2017, could have translated in less erosion in
the Madre de Dios sub-basin and less fine suspended arriving at
Porto Velho at the beginning of the rainy season. It is probably
the main cause for the December SSSC decreasing trend at Porto

Velho during the study period. The influence of precipitation
over this sub-basin on the start of the annual runoff cycle was
also observed for an extended period (1981–2017) by Espinoza
et al. (2019a), by correlating rainfall in the Upper Madeira basin
and runoff at Porto Velho.

The 2003–2017 significant negative rainfall trend in December
over the south of the Mamoré-Guaporé basin does not translate
into a SSSC trend at the Guayaramerin station (Ayes et al., 2019a)
and thus it has no effect on the SSSC time evolution at Porto
Velho. This is accounted by the fact that the sediment originated
in the southern part of the Guaporé basin does not reach themain
stem (Guyot, 1993), and also by the sediment deposition in the
piedmont and the Llanos de Moxos (Vauchel et al., 2017).

Changes in the Andean rainfall likely explain the January
negative SSSC trend detected at Porto Velho (Figure 4B). In fact,
a significant negative SSSC trend and a downward break were
detected at Rurrenabaque (Figure 4E) for the 2003–2017 period,
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FIGURE 6 | Spatial distribution of Mann-Kendall coefficient (MKτ ) values (p < 0.05 are displayed as dots and p < 0.10 as larger dots), indicating the trend for: (A)

December, (B) January, and (C) February for the 2003–2017 period. Trends were computed in each CHIRPS.v2 rainfall grid at 0.25◦ of spatial resolution. The four

tributaries’ sub-basins are plotted. Differences between the mean monthly rainfall for the 2010–2017 period minus the 2003–2009 period for: (D) December, (E)

January, and (F) February in mm. After the Mann-Whitney test, significant at p < 0.10 are contoured, continuous lines for positive differences, and dash lines for

negative.

giving support to that hypothesis. SSSC values at Rurrenabaque
and Porto Velho in January are expected to be related as the
average flow travel time from Rurrenabaque to Porto Velho,
and thus of the SSSC, was estimated in 12 days by using data
from Molina-Carpio et al. (2017) for the Beni River and Molina-
Carpio et al. (2008) for theMadeira River. The similar SSSC trend
slopes at Porto Velho and Rurrenabaque suggest that a significant
negative SSSC trend could also be expected in the Madre de Dios
River. Unfortunately, SSSC data is not measured at the Andean
Madre de Dios sub-basin, and no data at the river’s outlet was
available for this research to confirm this assertion.

The negative SSSC trend in February detected at Porto
Velho deserves a more comprehensive explanation. Whereas,
the sediment recorded at Porto Velho in February comes from
the Andes, the sediment dynamics at this time of the year
is already influenced by the dilution associated with the base
flow at Rurrenabaque (Ayes et al., 2019b). At Porto Velho,
the already significant sub-surface and base flow coming from
different parts of the floodplain (Miguez-Macho and Fan, 2012;
Frappart et al., 2019) also contributes to dilution. This helps to
explain the negative correlation observed between Q and SSSC
(τ = −0.33, p < 0.01) in February at Porto Velho (Figure 4C).
The negative SSSC trend in February in the Madeira River
could also be influenced by the SSSC negative trend recorded at
Rurrenabaque (Figure 4E) in January, as it takes near 2 weeks for
the fine suspended sediment to pass Rurrenabaque and arrive at
Porto Velho.

At Rurrenabaque, the negative trend in January rainfall
(significant only for some places, Figure 6B) contrasts with
the significant positive trend in February. This translates into

a veritable shift of the rainfall hyetograph peak from January
to February during the study period 2003–2017 (Figure 5).
The shift is particularly noticeable in 2009–2013 with a
reduction of rainfall in January and an increase in February,
when compared to the 2003–2008 period, as described by
CHIRPS.v2 and the observed dataset. Espinoza et al. (2019a)
observed that the occurrence of the annual cycle peak of
rainfall changed from January in 1982–1990 to February for
the 2000–2017 period for the whole upper Madeira basin.
Segura et al. (2020) detected changes in the atmospheric
circulation mechanisms that controls DJF rainfall over the
southern tropical Andes, since the beginning of the 2000’s.
The authors related the changing conditions to the meridional
circulation between the tropical North Atlantic and western
Amazon basin. These changes in the atmospheric circulation
have moistened the mid-troposphere over western tropical South
America. Therefore, the authors identified a decline in the
inter-annual variability of rainfall during DJF for the Altiplano,
including the La Paz River sub-basin as previously observed
by Mamani (2019). La Paz sub-basin provides about 40% of
the suspended sediment load recorded at Rurrenabaque (Guyot,
1993). The reported changes in the inter-annual variability of
rainfall during the DJF wet season suggest possible changes
at shorter time scales (i.e., daily or hourly), probably affecting
rainfall erosivity.

Ayes et al. (2019b) found a long-term coincidental peak of
rainfall and SSSC at Rurrenabaque in January. As expected from
the high correlation betweenmonthly rainfall and SSSC, the same
authors identified a linear function relating the direct surface
flow and SSSC at Rurrenabaque for the 2003–2016 period. The
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FIGURE 7 | (A) As Figure 6A for October to December (OND); (B) mean annual rainfall cycle (2003–2017) for each sub-basin in pentad. Black horizontal line stands

for the mean pentad for the Upper Madeira Basin (4.26mm.day−1 ); the onset of rainy season is indicated by red arrow for the Madre de Dios sub-basin (around mid of

September) and in black for the Beni, Mamoré, and Guaporé (around mid of October) and; (C) time evolution of the basin mean daily OND: outliers, maximum, and

quartile 75th rainfall in the Madre de Dios sub-basin. The three with significative negative trends (p < 0.05).

positive rainfall trend in February does not have a concomitant
SSSC trend (Figures 4F, 6C). This could be explained by the
relevance of the base flow that dilutes SSSC from February
onwards in the Rurrenabaque watershed (Ayes et al., 2019b).
Thus, the positive rainfall trend in February does not necessarily
convert to a rise in SSSC. This effect is further amplified at Porto
Velho because of the Llanos deMoxos floodplain in February and
the time that suspended sediment takes to arrive at that station.

In a scenario of increasing deforestation in the Andean-
Amazon region (Gutierrez-Cori et al., 2021) that would expect
to lead to increasing erosion and sediment transport (Martinez
et al., 2009), it is someway striking to detect a decrease in
the SSSC in the Madeira River which could not be related
to the dams built during the same time span. It also stresses
that some processes should be analyzed at a relatively small
spatial scale and are to be associated with changes occurring in
specific regions.

Limitations of the Study and Perspectives
Carrying out continuous monitoring for more than 20 years
in the Amazon Basin is a challenge and certainly it has
limitations that are related to logistics, economics, and people’s
safety. However, throughout these years, within the HYBAM
Observatory, an attempt has been made to reduce these
limitations and uncertainties in the sampling protocols which
is documented in Guyot (1993), Filizola et al. (2009), Espinoza-
Villar et al. (2013), Vauchel et al. (2017), and Armijos et al.
(2020). The present-day suspended sediment sampling strategy
does not allow a refined spatio-temporal variability assessment.
Ideally the sampling strategy would include measurements over
the entire cross-section of the river laterally and vertically, for
both water discharge and suspended sediment concentration, on
a daily time step. However, the cost of such endeavor on the
stations of the Madeira River and Amazon basins, would be
unbearable for the HYBAM Observatory and national networks
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(Vauchel et al., 2017). Yet, efforts have been made through the
years by the Observatory to assess the representativity of sparse
measurements and their uncertainties, from Guyot (1993) to
Armijos et al. (2020), among others. In Amazonian rivers located
at the lowlands, the 10-day samplings have shown low variability
within the month. A 7-day sampling is done at piedmont and
Andean stations as Rurrenabaque, after observing that these
stations exhibit a high variability (Guyot, 1993; Vauchel et al.,
2017). The possible bias related to the sampling frequency may
affect the long-term estimates of the magnitude of the sediment
concentration, but less so its trend and shift.

It is worth to mention that sediment dynamics in the Madeira
basin also differentiates according to particle size. As documented
by Armijos et al. (2020) coarse sandy sediment flux is strongly
related to water discharge, while the fine sediment flux is mainly
controlled by the seasonal cycle of precipitation. Guyot et al.
(1999) found that 97–98% of the suspended sediment transported
by the Andean tributaries of the Upper Madeira River should be
classified as fine. However, a proper separation of fine and sand
suspended sediment has not been implemented at the piedmont
station of Rurrenabaque on the Beni River. This could translate
into the sand fraction being underestimated in this Andean
tributary. Thus a better sampling method at this station would
allow for a reduction of uncertainties, particularly for the coarse
fraction of suspended sediments. At Porto Velho, Espinoza-Villar
et al. (2013) found that fine particles constitute 99% of the surface
suspended sediment and observed a homogeneity of SSSC for the
river width, which is not the case for the Solimoes or Negro Rivers
(Filizola et al., 2009 andMarinho et al., 2021). On the other hand,
sand concentration increases with depth along the water column
and it has been estimated that 9-12% of total suspended load
and more than 90% of the bedload at Porto Velho is made up
of sands (Furnas-Odebrecht and ANA, cited by Molina-Carpio
et al., 2008; Armijos et al., 2020). A recent study (Marques et al.,
2018) found that the sand share in the suspended sediment load
at Porto Velho has fallen to 4% since 2012, coinciding with the
Madeira River closure by the Santo Antonio and Jirau dams. A
significant part of the sand recorded at Porto Velho could come
from the rivers traversing the Brazilian shield, like the Guapore
River and the Madeira River itself. Meanwhile most, if not nearly
all, fine suspended sediment load originates in the Andes as
wash load.

Because of the particle size characteristics of the Madeira
River and its main tributaries described above, a dams-induced
sedimentation of sands, both transported in suspension and
as bedload, should be expected (and it was, see Molina et al.,
2008). The available data, which is expected to increase in the
near future, would confirm this assertion. On the other hand,
sedimentation of SSSC and the fine fraction associated to dam-
operation is probably negligible and would not change our main
findings and conclusions.

CONCLUSIONS

The results of this study indicate that for a relatively short period
(2003–2017) significant diminution in the surface suspended

sediment concentration (SSSC) time-series of the Upper Madeira
basin are associated with the spatiotemporal rainfall variability in
the basin. The negative rainfall trend (p < 0.05) from October
to December in most of the Madre de Dios River sub-basin,
and in the northeastern part of the Upper Madeira basin near
Porto Velho, resulted in a probable decline in the Madeira River
SSSC at the beginning of the SSSC annual cycle. Whereas, a
decline in the SSSC contribution of the Andean regions of the
Beni and Madre de Dios rivers is the likely cause of the January
SSSC negative trend (p<0.10) at Porto Velho. This was related
to a shift of the rainfall peak from January to February during
the study period. During 2009–2013 the mean January rainfall
in those Andean regions dropped by more than 20% from the
2003–2008 period and with it the mean SSSC fell nearly 50% at
Rurrenabaque. Conversely, the mean February rainfall increased
nearly 50% after 2008 in the Andean part of the Beni and Madre
de Dios sub-basins. The positive rainfall trend (p < 0.05) during
February rainfall did not generate a positive SSSC trend as the
sediment dynamics in this month is already influenced by the
dilution associated with base flow at Rurrenabaque (as shown
in Ayes et al., 2019b) and the Llanos de Moxos floodplain. It is
also likely that the diminution in the interannual DJF rainfall
variability, including rainfall extremes from 2002 onwards (e.g.,
Mamani, 2019; Segura et al., 2020) in the semiarid and subhumid
regions that provides most of the fine sediment at Rurrenabaque
had a relevant influence on the erosion processes and SSSC trend
at this station.

These changes in the rainfall and SSSC coincided with the
construction of the Jirau and Santo Antonio dams and the
time when they started to operate. Although the hydroelectric
facilities could have an influence, the sediment trapping effect
of the dams is probably of minor importance for the SSSC
dynamics. However, it probably was very relevant for coarser
particles (fine and medium sands) transported by the Madeira
River. This study shows that the decline of SSSC in the
Madeira River should not be evaluated just on the basis of
the SSSC data downstream from the hydroelectric facilities,
but also on the basis of the natural processes upstream from
the dams.

These results illustrate the complexity of the Madeira
sediment dynamics and its relationship with changes in the
regional hydrological cycle. Changes in the rainfall peak over
the Andean Beni and Madre de Dios region, which covers
<1.8% of the Amazon Basin, were related to a decline
of fine suspended sediments in the middle stretch of the
Madeira River. The changes in the rainfall patterns occur at
a time when the Upper Madeira Basin is undergoing a major
biophysical transition (e.g., deforestation and construction of
major infrastructure projects) that usually is expected to act
in the opposite way, increasing soil erosion and sediment
transport. These results highlight the need to identify the
complex relationships acting on the several components of
the hydrological cycle in the Amazon-Andes transition zone,
where erosion and sediment transport are key processes
for the preservation of the Amazon biodiversity. Further
insights and knowledge could emerge as more information
becomes available.
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