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Abstract. Chemical reaction optimization is a challenging task for the
industry. Its purpose is to experimentally find reaction parameters (e.g.
temperature, concentration, pressure) that maximize or minimize a set
of objectives (e.g. yield or selectivity of the chemical reaction). These
experiments are often expensive and long (up to several days), making
the use of modern optimization methods more and more attractive for
chemistry scientists.
Recently, Bayesian optimization has been shown to outperform human
decision-making for the optimization of chemical reactions [16]. It is well-
suited for chemical reaction optimization problems, for which the evalu-
ation is expensive and noisy.
In this paper we address the problem of chemical reaction optimization
with continuous and categorical variables.
We propose a Bayesian optimization method that uses a covariance func-
tion specifically designed for categorical and continuous variables and
initially proposed by Ru et al. in the COCABO method [14].
We also experimentally compare different methods to optimize the ac-
quisition function. We measure their performances in the optimization
of multiple chemical reaction (or formulation) simulators.
We find that a brute-force approach for the optimization of the acquisi-
tion function offers the best results but is too slow when there are many
categorical variables or categories. However we show that an ant colony
optimization technique for the optimization of the acquisition function is
a well-suited alternative when the brute-force approach cannot be (rea-
sonably) used.
We show that the proposed Bayesian optimization algorithm finds op-
timal reaction parameters in fewer experiments than state of the art
algorithms on our simulators.

Keywords: Mixed Bayesian optimization · chemical reaction optimiza-
tion · categorical variables.

1 Introduction

Every chemical reaction is optimized before being industrialized. The goal is to
find, by carrying out experiments, input parameters (e.g. temperature, pressure,
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residence time, etc.) that offer optimal values for a set of objectives (e.g maximize
the yield, minimize the production of an impurity, etc.).

The pursuit of high-performance optimization methods is driven by the high
cost of chemical experiments. The performances of optimization methods applied
to chemical reactions are measured against the quality of the solution (i.e. how
close the solution is to the optimization objectives) and how many experiments
are needed to find this solution.

One-Variable-At-a-Time (OVAT) and Design of Experiments (DoE) [1, 18]
methods are the most used approaches to optimize chemical reactions. The
OVAT method iterates by performing experiments and modifying only one pa-
rameter at a time. DoE methods consist in planning a series of experiments
following a design matrix, running these experiments and building a statistical
model (usually linear or polynomial) with the resulting dataset. An optimum is
then computed from the model. OVAT and DoE methods tend to need a large
number of experiments to be effective. In addition, OVAT can be very slow (be-
cause only one variable is changed at a time) and can get stuck in local optima.
Simplex-based methods are also sometimes used to optimize chemical reactions
[11, 21]. They consists of building a simplex in the search space, then evaluating
the objective function at each of the vertices of the simplex and iteratively dis-
placing one vertex at a time following heuristics. Simplex-based methods tend
to be easily stuck in local optima [20].

Zhou et al. [23] proposed a deep reinforcement learning (DRL) based method
to optimize chemical reactions. The authors combined DRL and pre-training
to be able to start working with very small amounts of data. This leads to
satisfactory results on problems containing only continuous variables but hasn’t
been tested with categorical variables (without descriptors).

Bayesian optimization (BO) is a powerful approach to optimize problems
for which the evaluations are expensive and noisy. It has shown a variety of
successful applications [15]. BO concepts are described in Figure 1. First, an ini-
tialisation is done with a small number of experiments. Then, a surrogate model
(e.g. Gaussian process) is trained using these experiments. An acquisition func-
tion, that balances the predicted improvement (exploitation strategy) and the
uncertainty of the predictions (exploration strategy), is applied to the model.
An optimization algorithm is applied to find the maximum of this acquisition
function. The set of parameters that gives this maximal value for the acquisi-
tion function determines the next experiment (chemical reaction) to run. This
experiment is run, its result is added to the dataset, and the algorithm starts
a new iteration. The algorithm stops when the objectives are attained or when
the experiments budget is spent.

Categorical variables are often present in the optimization of chemical re-
actions [13]. We can cite as an example the choice of a catalyst or additives,
the choice of the solvent or the order of addition of the reactants. Categorical
variables have two important particularities. The first one is the non-continuity
constraint, since categorical variables are not defined on a continuous space. The
second one is the non-ordinality constraint: they can only be compared with the
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Fig. 1: Simplified Bayesian optimization algorithm applied to chemical reactions.

equality operator. For example, with a categorical variable representing a choice
between the solvents water, ethanol, toluene, asserting that water > toluene is
meaningless.

Mixed-variable optimization can be handled with one-hot encoding: a cat-
egorical variable with n categories is encoded as a vector of n corresponding
bits, with all bits being equal to 0 except the bit corresponding to the selected
category, that is equal to 1. However, in the BO algorithm, treating one-hot di-
mensions as continuous without any supplementary treatment misleads the ac-
quisition function optimizer and often results in a sub-optimal solution. Indeed,
the experiment proposed by the acquisition function optimizer is a real-valued
vector and has to be decoded to the closest category. Hence, most of the time,
there will be a gap between the experiment suggested by the acquisition func-
tion optimizer and the experiment that will actually be performed, leading to a
mediocre optimization performance.

The work presented by Garrido-Merchán et al. [4] brings an improvement to
the basic one-hot encoding approach. During the optimization of the acquisition
function, real-valued encoded vectors are transformed to the nearest one-hot
vectors before being used as inputs of the model. It follows that the acquisition
function optimizer considers real-valued vectors as having the same acquisition
values as the associated transformed vectors. Thus, the acquisition optimizer
suggests an experiment that can be performed as is, which ensures the conver-
gence to optimal solutions.

Häse et al. [5] have developed an augmented Bayesian optimization algo-
rithm called Gryffin that uses a Bayesian neural network as surrogate model.
It estimates kernel densities, based on previously evaluated experiments, that
are used to approximate the objective function. Gryffin is able to use expert
knowledge (descriptors) to guide the optimization, which drastically improves
the performances of their method. Its ”naive” version doesn’t use descriptors,
which enabled us to use it in our benchmarks.

COCABO [14] is a Bayesian optimization method designed for mixed-variable
optimization. At each iteration, COCABO first selects categories with a multi-
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armed bandit algorithm and then separately optimizes the numerical variables
(after modelling them using a mixed covariance function).

Random forests can be used as surrogate model in Bayesian optimization in-
stead of Gaussian processes [6]. A ready-to-use implementation of this approach
is provided in a package called SMAC [8] which handles categorical variables.

In this study, we aim at improving the performances (i.e. reducing the num-
ber of experiments necessary to reach an optimum) of the Bayesian optimization
method for the optimization of chemical reactions with continuous and categor-
ical variables. Our approach is based on Gaussian processes as surrogate models
with the COCABO covariance function [14]. We propose different techniques
for the optimization of the acquisition function. Next, we compare the different
acquisition function optimizer on the optimization of simulated chemical reac-
tions. And finally, we compare our optimization algorithm (using the COCABO
covariance function and the highest-performing acquisition function optimizer)
with other state-of-the-art algorithms.

2 Problem definition

Our work is applied to problems with a form given by:

Minimize f(z) with the smallest possible number of evaluations (1)

where :

– z = (x,h)
– x = x0, .., xn and xi ∈ [Ai, Bi] with Ai, Bi ∈ R
– h = h0, ..., hn and hi ∈ Ci with Ci denotes the categorical space of the ith

categorical variable.

This work is restricted to single objective optimization. Moreover, only contin-
uous and categorical variables are used.

The ”No-Free Lunch Theorem” [19] stipulates that the performances of ev-
ery optimization methods are equal when averaged on all possible problems. It
implies that in order to increase the performances on a specific optimization
problem (e.g. chemical reaction optimization), we must evaluate the optimiza-
tion method on similar problems without any regards on the performances of
unrelated ones. The underlying functions of chemical reactions have some par-
ticularities: they are smooth and have few local optima [10, 17]. So, in order
to be specific to the chemical reaction optimization problem, we measure the
performances of our approach using chemical reaction (or formulation) simu-
lators. We have built these simulations by training machine learning models
with publicly available chemical data (see Table 1). Each data set has been
harvested from patents or academic articles and are produced by the optimiza-
tion of chemical reactions (or chemical formulations). The individuals of these
data sets corresponds to experiments where input parameters (e.g. temperature,
choice of catalyst) have been tested and scores have been calculated following
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the observations made at the end of these experiments. In the case of the first
Suzuki-Miyaura reaction simulation (second row of the Table 1), there are two
objectives (turnover number and yield). We choose to optimize the mean of the
two scores.

This benchmarking strategy was initially introduced by Felton et al. [3] for
measuring performances on chemical reactions with continuous and categori-
cal variables. It allows us to establish optimization performances on chemical
reactions without having to run experiments in a chemistry lab.

Table 1: Details of the data used to train the simulators

Reaction type Number of experiments Source

Pd-catalysed direct arylation 1728 [16]

Suzuki-Miyaura cross-coupling 4 cases of 96 [13, 3]

Stereoselective Suzuki–Miyaura cross-coupling 192 [2]

Polycarbonate resin formulation 100 [9]

3 Propositions

In a first part, we describe the surrogate model including the COCABO kernel
and its hyperparameters. In a second part, we present different approaches for
the optimization of the acquisition function.

3.1 Gaussian process kernel

We use Gaussian processes (GP) to approximate the underlying functions of
chemical reactions. It is the most commonly used model since it can inher-
ently predict both a value and an associated uncertainty. Gaussian processes are
mainly defined by their covariance function. Since the underlying functions of
chemical reactions are smooth, we use a smooth covariance function, Matérn5/2
[12], for the continuous dimensions.

The smoothness of the GP on continuous variables is kept with the use of the
one-hot encoding. However, the Euclidean distance used for the calculation of
the Matérn5/2 kernel is based on all dimensions (continuous and encoded). We
believe that, in order to capture complex relationships between categorical and
continuous variables, the covariance function should use the Euclidean distance
only on continuous variables and incorporate categorical knowledge later in its
calculation. The COCABO method [14] uses such a covariance function (see
equation 2). It combines two sub-functions: one for continuous variables, Kcont,
and one for categorical variables, Kcat.
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K(z, z′) = (1− λ)× (Kcont(x,x
′)×Kcat(h,h

′))
+ λ× (Kcont(x,x

′) +Kcat(h,h
′))

(2)

where :

– z = (x,h)
– x is the set of continuous variables
– h is the set of categorical variables

Kcont is the Matérn5/2 function. It is a standard covariance function for
smooth Gaussian processes regressions with continuous inputs. Kcat, the kernel
for categorical inputs (see equation 3), measures similarity between categorical
vectors with the equality operator (which is the only permitted operation for
categorical variables).

Kcat(h,h
′) = σ × 1

D

D∑
1

α(hd, h
′
d) (3)

where:

– α(a, b) equals 1 if a = b and 0 if a ̸= b
– D is the number of categorical variables
– σ is the variance hyperparameter.

The proposition made by Ru et al. in COCABO [14] revolves around the
hyperparameter λ, which is a trade-off between the two terms of the equation
2: the sum and the product of Kcont and Kcat. Both of these terms capture
different relationships between continuous and categorical variables. The sum
of the two sub-kernels produces a learning of a single trend on the continuous
variables and shift this trend depending on the categories whereas the product is
able to produce a learning of complex relationships with highly different trends
depending on the categories. The sum is especially necessary when the amount
of training data is low (beginning of the optimization) because the product is
able to capture knowledge only if the evaluations have categories in common.
For example, if two evaluations have the same continuous features but different
categorical ones, the product will be equal to 0 which prevent the model to learn
even on continuous variables. Nonetheless, the product is essential because, as
the optimization goes on, more evaluations are added to the training dataset and
a single trend with a simple shift will not be sufficient to model the complexity
offered by the data. In other words the sum alone will not be able to capture all
the knowledge available to guide the optimization. With the hyperparameter λ,
the authors ensure that the relationships that can be captured either by the sum
or by the product are taken into account into the covariance K(z, z′), because λ
is tuned during the fitting of the Gaussian process.

In order to avoid underfitting/overfitting the data while training the Gaus-
sian process (tuning its hyperparameters to minimize its negative log marginal
likelihood [12]), we confined hyperparameter values within a range. σK , σKcont
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and σKcat
were bounded in [10−2, 20] while the lengthscale parameter of Kcont

and λ were respectively bounded in [10−2, 20] and [0.1, 0.9]. We used the L-BFGS
optimizer to tune the GP hyperparameters.

3.2 Acquisition function optimization

We chose to use the Expected Improvement (EI) acquisition function because
it has shown good results on diverse applications and has a strong theoretical
support [22]. The equation of Expected Improvement is given by:

EI(x) = E[max(f(x)− f(x+), 0)] (4)

with f(x+) the value of the evaluation that have yielded the best result so far.
The analytical form of EI is the following:

EI(x) =

{
σ(x)ZΦ(Z) + σ(x)ϕ(Z) if σ(x) ̸= 0
0 if σ(x) = 0

(5)

where

Z =
µ(x)− f(x+)− ξ

σ(x)
(6)

Φ(Z) and ϕ(Z) denotes respectively the cumulative distribution function (CDF)
and the probability density function (PDF) of the variable Z. Z denotes the
predicted improvement divided by the standard deviation (uncertainty) and the
parameter ξ determines the weight of the exploration strategy in the equation.
This analytical form of EI is cheap to evaluate and can be optimized without
sparing on the number of evaluations. Therefore, we propose several approaches
for the optimization of the acquisition function with mixed variables.

The first approach (denoted as L-BFGS-OHE) involves the one-hot encoding
of the categorical variables and a multi-started gradient descent for the opti-
mization of the acquisition function. However, since the COCABO model does
not accept one-hot vectors, one-hot dimensions are systematically decoded be-
fore any predictions. In other words, predictions are asked for by the acquisi-
tion function optimizer with encoded inputs but they are decoded before they
pass through the model. The multi-started gradient descent is performed as fol-
lows: 1000 configurations are randomly drawn and the 5 configurations with the
highest acquisition function value are kept and a gradient descent (L-BFGS) is
performed on each of these 5 configurations.

We also propose an approach based on a ”brute-force” optimization of the
categorical space and a multi-started gradient descent on the continuous space
(see Algorithm 1). First, all the combinations of the categorical parameters are
constructed. Then, for each combination, a multi-started gradient descent (pre-
viously described) is performed on the continuous parameters. Finally, after de-
termining the maximal acquisition values for each categorical combination, the
configuration with the highest acquisition value is suggested as the next experi-
ment. This algorithm reduces the difficulty of the optimization of the acquisition
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function because instead of dealing with different types of variables (or with sup-
plementary dimensions from the encoding), the acquisition optimizer only works
on the continuous dimensions. Still, it can be heavy in terms of computational
cost if the number of categories and categorical variables is large.

Algorithm 1 Categorical brute-force and multi-started gradient descent

1: Construct all categorical combinations
2: Multi-started gradient descent optimization of continuous parameters for each com-

bination
3: Choose as suggestion the configuration (continuous and categorical) with the high-

est acquisition

While the brute-force approach evaluates thoroughly the search space, with
five optimizations of the continuous space for each categorical combination, this
method becomes prohibitively long to run when the number of categorical com-
binations is higher than a few hundreds.

Lastly, we implemented an evolutionary algorithm based the behaviour of
ant colonies (ACO) that scales better with the number of categorical variables
than brute-force [7]. In our experiments, we used the colony hyperparameters
proposed by the authors without any restart allowed. This algorithm is a multi-
agent method inspired by the behaviour of ants. An ant represent an evaluation
at a given set of parameters. At each generation, each ant randomly moves to-
wards previously evaluated points with good results (exploitation strategy). The
presence of multiple ants in the colony and the randomness of their movements
enable the mandatory exploration of the search space. It allows the ants to not
only moves around promising areas but also randomly explore areas that may
have not been explored so far.

4 Results

This section presents the optimization of four simulators. We did 25 runs with
50 suggestions for each optimization algorithm. At the beginning of each run,
we randomly drew 5 initial evaluations and, for a fairness purpose, these 5 eval-
uations were used to initialize all the optimizers. As shown in the Table 2, the
number of input variables (16) of the polycarbonate resin formulation is higher
than the other simulations (less than 6), so we allowed 100 suggestions for each
optimizer on this simulation.
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Table 2: Number of variables for each simulations

Reaction type cont. var. cat. var.

Pd-catalysed direct arylation 2 3

Suzuki-Miyaura cross-coupling 3 1

Stereoselective Suzuki–Miyaura cross-coupling 5 1

Polycarbonate resin formulation 11 5

4.1 Acquisition function optimizer

The four plots presented in Figure 2 are used to compare the performances of
different acquisition optimizers, using the COCABO kernel and the Expected
Improvement acquisition function. The average (and standard deviation) of the
best score obtained at the end of each optimization are summarized in Table 3.
On each benchmark we provide, as a baseline, the results of a random strategy
that suggests input parameters randomly.

On the first three simulators (Figures 2a, 2b and 2c), brute-force outper-
forms the other methods. On the last simulator (see Figure 2d), the brute-force
approach cannot be used due to the high number of categorical variables and
categories. Indeed, there are 1728 combinations of categorical variables, so the
brute-force approach consists of 8640 optimization routines upon continuous
variables, which is too long to run.

The approach based on categorical relaxation (L-BFGS-OHE) with the one-
hot encoding and a rounding to the closest categorical variable before passing
through the model, is the second best performing method on every simulators.
Even if the optimizer (L-BFGS) evolves in a continuous space with a large num-
ber of encoded dimensions and a large number of flat regions (depending on
the number of categorical variables and categories), the optimizer manages to
optimize the acquisition function.

The behaviour of the ant colony optimization method (ACO) highly depends
on its parameters, notably the exploration hyperparameter q which is set to 0.05
and the restart parameter. The ACO performs poorly, compared to the other
optimization methods, on the simulators with a small number of dimensions but
performs slightly better on the polycarbonate resin formulation simulator which
have more dimensions.

As consequence of the results presented above and for the rest of our study,
we choose the brute-force approach to be the acquisition function optimizer when
the number of categorical variables is lower than 4. ACO is used otherwise.

4.2 Comparison with other methods

The next results (Figure 3) present a comparison between our method (composed
of the COCABO kernel, Expected Improvement and the brute-force optimizer
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Fig. 2: Best score evolution on simulatiors with the use of different acquisition
function optimizers (Brute-force, L-BFGS-OHE, ACO, Random).

Method Suzuki-Miyaura
Stereoselective
Cross coupling Direct arylation

Polycarbonate
resin formulation

Brute-force -1.460 ± 0.00 -0.733 ± 0.06 -0.965 ± 0.05 –
L-BFGS-OHE -1.460 ± 0.00 -0.730 ± 0.05 -0.959 ± 0.07 -0.820 ± 0.01

ACO -1.441 ± 0.01 -0.726 ± 0.04 -0.929 ± 0.08 -0.821 ± 0.02
Random -1.141 ± 0.15 -0.504 ± 0.08 -0.875 ± 0.08 -0.723 ± 0.03

Table 3: Average scores for different acquisition optimizers at 5 random initial
evaluations and 50 suggestions (100 for the polycarbonate resin formulation).
Best scores on each simulators are marked in bold.
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or the ant colony optimizer when the brute-force method can’t be used), Gryffin
[5], COCABO [14], SMAC [6], and the work of Garrido-Merchán et al. [4].

We used the ”naive” version of Gryffin in its authors’ implementation, which
does not use any chemical descriptor to guide the optimization. The computation
time of Gryffin is long when the number of dimensions is high, so we used the
”boosted” version of Gryffin for the optimization of the polycarbonate resin
formulation simulation.

We used COCABO in its authors’ implementation with its default settings
and a starting λ = 0.5.

SMAC denotes an optimization algorithm based on Random Forest [6] and
the Expected Improvement acquisition function. We used an implementation
proposed by Lindauer et al. [8].

”Garrido-Merchán - 2020” is a Bayesian optimization method which involves
a Matérn5/2 kernel and the one-hot encoding of the categorical variables.
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Fig. 3: Best score evolution on simulators with the use of different optimiza-
tion methods: Mixed kernel and brute-force (or ACO), Garrdi-Merchán - 2020,
SMAC, Gryffin, COCABO, Random

.
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Method Suzuki-Miyaura
Stereoselective
Cross coupling Direct arylation

Polycarbonate
resin formulation

Mixed kernel and brute-force -1.460 ± 0.01 -0.733 ± 0.06 -0.965 ± 0.05 –
Mixed kernel and ACO -1.441 ± 0.01 -0.726 ± 0.04 -0.929 ± 0.08 -0.821 ± 0.02
Garrido-Merchán - 2020 -1.459 ± 0.01 -0.738 ± 0.05 -0.957 ± 0.06 -0.797 ± 0.02

SMAC -1.443 ± 0.04 -0.674 ± 0.09 -0.924 ± 0.06 -0.799 ± 0.03
Gryffin -1.149 ± 0.13 -0.517 ± 0.08 -0.912 ± 0.07 -0.751 ± 0.03

COCABO -1.046 ± 0.18 0.534 ± 0.08 -0.865 ± 0.11 -0.781 ± 0.03
Random -1.160 ± 0.13 0.504 ± 0.08 -0.847 ± 0.05 -0.723 ± 0.03

Table 4: Average scores for different optimization methods at 5 random initial
evaluations and 50 suggestions (100 for the polycarbonate resin formulation).
Best scores on each simulators are marked in bold.

The results on the simulator denoted as ”Suzuki-Miyaura” (which corre-
sponds to a simulation built upon the first data set proposed by Reizman et al.
[13]), shows that the Mixed kernel combined with a categorical brute-force ap-
proach for the optimization of the acquisition function is the method that offers
the best performances.

The method denoted as ”Garrido-Merchán - 2020” is the method that pro-
vides the best performances on the second simulator (”stereoselective cross-
coupling”).

On the Pd-catalysed direct arylation simulator, the COCABO kernel com-
bined with the brute-force approach gives the best results. Gryffin and CO-
CABO do not provide satisfactory scores on the two first simulators (”Suzuki-
Miyaura”,”stereoselective cross-coupling”). However these optimization methods
provide better results on the other two simulators.

The method composed of the COCABO kernel and the ant colony optimiza-
tion technique gives the best averaged final score on the polycarbonate resin
formulation simulator (-0.821).

SMAC performs poorly on the first three simulators compared to Bayesian
optimization with Gaussian process as surrogate model. However on the last sim-
ulator, the random forest based Bayesian optimization performances are similar
to the Bayesian optimization with one-hot encoding and the Matérn5/2 kernel.

We show that our method composed of the COCABO kernel and either the
categorical brute-force or the ant colony optimizer as the acquisition function
optimization technique, generally converges faster to the optimum than the other
methods.

4.3 Kernel influence on performances

The Table 5 summarises the averaged final scores of two Bayesian optimiza-
tion methods that only differ from each other by their covariance functions and
the use of the one-hot encoding. ”Garrido-Merchán-2020” is using the one-hot
encoding and a standard continuous kernel (Matérn5/2) whereas the method
denoted as ”L-BFGS-OHE” is using a kernel specially designed for continuous
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and categorical variables without encoding (the COCABO kernel). Their re-
sults are similar on the first simulator but on the second one (”stereoselective
cross coupling”), the method denoted as ”Garrido-Merchán-2020” achieves bet-
ter performances (-0.738) than ”L-BFGS-OHE” method (-0.730). On the poly-
carbonate resin formulation simulator, the COCABO kernel based method (”L-
BFGS-OHE”) performs better (-0.820) than ”Garrido-Merchán-2020” (-0.797).
This comparison exposes that the COCABO kernel should be used instead of
a Matérn5/2 kernel and the one-hot encoding when the chemical reaction (or
formulation) optimization problem involves multiple continuous and categorical
variables. Indeed, this covariance function allows a more efficient Bayesian opti-
mization on our simulators. The authors of COCABO (Ru et al.) attribute this
phenomenon to a stronger modeling power of the COCABO kernel.

Method Suzuki-Miyaura
Stereoselective
Cross coupling Direct arylation

Polycarbonate
resin formulation

L-BFGS-OHE -1.460 ± 0.00 -0.730 ± 0.05 -0.959 ± 0.07 -0.820 ± 0.01
Garrido-Merchán - 2020 -1.459 ± 0.01 -0.738 ± 0.05 -0.957 ± 0.06 -0.797 ± 0.02

Table 5: Average final scores of ”Garrido-Merchán-2020” and ”L-BFGS-OHE”
extracted from Table 3 and Table 4.

5 Conclusion

This paper presents a study of different optimization techniques for the opti-
mization of chemical reaction (or formulation) simulators with mixed variables
(continuous and categorical).

We expose a Bayesian optimization algorithm based on a Gaussian process
with a covariance function specifically designed for continuous and categorical
variables [14]. Also, we evaluate different methods for the optimization of the
acquisition function. We show that when facing a small number of categorical
variables, a categorical brute-force approach associated with a multi-started gra-
dient descent performs best for the optimization of the acquisition function. The
ant colony optimization method is the method the most suited (in our study)
for the optimization of the acquisition function when the number of categorical
combinations is too high to use the brute-force based approach. A more in-depth
study of these evolutionary methods will be the subject of further works. Our
method globally performs better than other state-of-the-art methods [5, 4, 14, 8]
on our simulators.

Since the use of a kernel specifically designed for continuous and categorical
inputs shows the best performances, we are working on further increasing the
quality of the model by modifying the COCABO covariance function. We believe
that more relationships between variables and evaluations can be captured with
a new set of parameters in the covariance function.
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Nevertheless, in order to fully establish the performance of the presented
method, we are currently working on an experimental validation in chemistry
labs.
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