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Monitoring of Inland Water Levels by Satellite
Altimetry and Deep Learning

Fernando Niño, Clément Coggiola, Denis Blumstein, Léa Lasson and Stéphane Calmant

Abstract— Deep convolutional neural networks have proven
their efficiency for image processing and are routinely used
for image classification. In the present study, we use them to
convert radar measurements into water distance and ultimately
into water levels of inland waterbodies. The measurements used
are the successive echoes of the spaceborne radar altimeter signal
on a waterbody, the radargram. We show that by using forward
modelling with an accurate altimetry simulator, we can generate a
sufficient amount of radargrams and train a deep neural network
accurately enough to obtain water level series from radargrams
in a hydrology context. The method is validated at selected
waterbodies by comparing these water level time series with those
obtained by classical, largely manual, methods and also with
in situ measurements provided by river gauges. Comparisons
at crossovers of the orbits with close temporal colocations are
also made. The validation shows that this automatic method
performs generally as well as a carefully tuned manual method
for removing outliers from the ranges provided by the state of the
art classical retrackers used by the spatial hydrology community.
This new tool is a big step towards a generic, global, and
automated method to retrieve inland water levels from altimetry
measurements. This goal is especially important in the context of
continuously declining number of in situ measurements, and of
utumost importance for adequate water resources management
at the global scale.

Index Terms—satellite altimetry, radar, hydrology, neural net-
work, deep learning, artificial intelligence, Jason-3.

I. INTRODUCTION

INLAND waters are an essential part of the water, carbon
and energy global cycles. River and lakes water levels are

Essential Climate Variables (ECV) as defined by the Global
Climate Observing System (GCOS). From a societal point of
view, surface waters are the most important source of water for
domestic, agricultural and industrial usages. Furthermore, wa-
ter resources over the continents have been and will continue to
be affected by climate change and anthropogenic impact [1],
[2]. The past three decades were exceptional in flooding in
Europe, when compared to the last 500 years [3]. In many
countries, not only floods but also droughts are having a strong
impact on human societies. Measuring water levels on a global
scale is of utmost importance for adequate water management.

Traditionally, water level observations are performed by in
situ gauge stations whose continuous operation is costly and
not always possible in countries of political and economical
unrest. The number of publicly available water level temporal
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Fig. 1. Figure showing the terminology used: the hydrology target is the
water body, the virtual station being the intersection of the waterbody and the
satellite track projection. The distance between the satellite altimeter and the
target (waterbody) is the range. The radar altimeter echo does not bounce off
a single point, but integrates the echos of a region, called the footprint.

series has dwindled in the last decades, making databases
of water levels sparse and very heterogeneous in space and
time [4], [5]. By virtue of their global coverage and continuous
operation, spaceborne radar altimeters can mitigate the lack
of in situ data [6]–[8]. Indeed, these altimeters are designed
to measure the distance (or range) to the surface beneath
the satellite. Because the satellite position is known very
precisely, when it flies above the ocean, a river or a lake,
one can obtain the water height by subtracting the altimeter
range from the satellite altitude (and other terms to account
for propagation delays and Earth deformation, which will
not be discussed here). To make possible the monitoring
of geophysical quantities, altimetry satellites are placed on
repeat-track orbits; this means that the radar altimeter will
pass at regular intervals over a waterbody and can provide
time series of water levels with a sampling period equal to
the cycle duration of the orbit (ca. 10 days for the Jason-3
satellite).

In the following text, we will call hydrology targets the
intersections between satellite groundtracks and waterbody
centerlines (Figure 1). By analogy with the in situ stations,
hydrology targets will be called virtual stations when it is
possible to extract good quality temporal series of water levels
from the altimetry measurements.

As formulated above, obtaining temporal series of water
levels from space seems straightforward; however, for over
20 years different research teams have been working on this
problem, and the number of available virtual stations is only
a small fraction (less than 10%) of the available number of
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TABLE I
HYDROLOGY TARGETS FOR ALTIMETRY MISSIONS

USING THE DEM TRACKING MODE

Mission Hydrology Targets
Jason 3 33445

Sentinel 3A 74051
Sentinel 3B 73630

Total 181126

TABLE II
VIRTUAL STATIONS AVAILABLE IN

ALTIMETRIC HYDROLOGY DATABASES

Database Name Virtual Stations Target %
HydroWeb 12966 7.2
DAHITI 2894 1.6
Hydrosat 1714 1

Total 17816

hydrology targets. There are at least two explanations for this
low ratio [9]:

1) radar altimeters, which were designed primarily to mea-
sure the oceans, can have difficulties to keep the radar
echo on the acquisition window (or to have correct track-
ing) when faced with the rapid change of radiometry and
topography over lands [10],

2) the validation of altimetry measurements over inland
waters requires a great deal of expertise to remove the
frequent outliers.

The first problem has been tackled in the last years by
the operational use of the new onboard DEM tracking mode
implemented on recent altimeters (Poseidon-3 on Jason-3,
SRAL on Sentinel-3) [11], [12]; for past measurements, wrong
onboard retracking means the radar echoes are unfortunately
lost and for these cases, the retrieval of altimeter range is
impossible.

The methods proposed in this article aim at solving the
second problem by providing automated methods to convert
altimetry measurements into range over inland waters. This
automation is even more important when confronting the task
of processing the increasing number of altimetry measure-
ments in virtual stations made available by the onboard DEM
tracking mode (compare the availability of virtual stations of
table II with the number of hydrological targets attainable for
missions using the DEM tracking mode in table I). In this
paper we will focus on the Jason-3 mission because of the
availability of this DEM tracking mode, but the methodology
can be applied to other missions.

Altimeters do not measure directly a range value at each
point, but the echo of a radar signal (or waveform) from which
the range value must be retrieved. Radar echoes are processed
onboard and transmitted to the ground at a relatively high
frequency (20 Hz for Jason-3) which is equivalent to a spatial
sampling every few hundreds of meters along-track. If we
juxtapose consecutive altimetry waveforms along the time axis
(or equivalently, by latitude), this waveform sequence can be
viewed as a small grayscale or pseudocolor image of reflected
power. These images are called radargrams. In figure 2, we
show various representations of radar altimetry echoes for data

Radargram 3D

(b) (c)

(a)

Radargram 3D

(b) (c)

(a)

Radargram 3D

(b) (c)

(a)

Fig. 2. Radar altimetry echoes using data of pass number 146 of Jason-3 on
the North Atlantic on 2016/04/02 (see text for more information). (a) a view of
one waveform, showing the evolution of measured signal power through time,
as sampled in the so-called gates. (b) a 3D view of a sequence of echoes,
with axes latitude, gates and power. (c) the radargram, which is a view of
figure b from above, where power values (heights) are color coded.

corresponding to pass number 146 of Jason-3 on the North
Atlantic on 2016/04/02, just offshore Normandy in the north of
France. Far from the shore, one radar echo (figure 2a) behaves
as expected from the Brown model, as discussed in Section II.
This is a time vs returned-power plot, where the time axis
has been converted to the equivalent gate samples. Figure 2b
shows the 3D view of a radargram and figure 2c a pseudo-
color plot of the radargram. For this particular case, the sand
on the nearby beach appear as a bright parabola segment on the
radargram, just as a river would stand out on a low reflectance
landscape.

With some expertise, it is easy to recognize in the radar-
grams the signature of different objects (e.g. the parabola in
figure 2). This expertise being essentially visual, we have
used supervised learning to train a deep convolutional neural
network [13], [14] to learn the function that identifies the
correct value of radar range (and hence, the water level) that
is to be associated to a waterbody, by analyzing its radargram
(more details in the next section).

The rest of the paper is structured as follows: in Section II
a review of radar altimetry waveform properties is presented.
We also highlight the differences between ocean and inland
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water processing for radar range retrieval, and how a radar-
gram is used to compute the water height of a waterbody.
Section III presents a summary of the alternative strategies
put forward for retrieving the altimeter range of waterbodies,
Section IV describes the methodology used to construct the
neural network. Section V shows the experimental results and
their validation with respect to in-situ data. We close this
article with a discussion on neural networks for hydrology
processing, possible follow-ups and conclusions.

II. WAVEFORMS IN SATELLITE ALTIMETRY

As briefly presented in the introduction, the measurements
in radar altimetry are radar echoes. Satellite altimetry was
designed for measuring the sea surface. The Brown model [15]
is a theoretical model of the response of the radar signal to an
ocean-like surface (a surface whose heights follow Gaussian
statistics). A simplified schema of the Brown model, is shown
in figure 3. By fitting the observed waveform to this theoretical
model, one can estimate several parameters (altimeter range,
backscatter coefficient, satellite mispointing) for oceanography
applications. Of these, we will only be concerned with the
altimeter range.
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Fig. 3. A simplified schema of the Brown model for ocean waveforms. The
midpoint of the leading edge of the waveform (epoch, or τ ) corresponds to
the range of the altimeter for this echo.

For waveforms of a form such as that of figure 3, the
altimeter range will be obtained by the expression:

range = rtracker + (τ − τref)δr (1)

where rtracker is the distance between the reference ellipsoid
and a fixed reference point on the sampling window, τref (gate
32 for the Jason-3 altimeter). The epoch of the waveform, τ
is the time associated to water height (the midpoint of the
leading edge in Figure 3). The conversion of gates to distance
is made by factor δr which is the radar distance resolution
(ca. 47 cm for Jason-3).

As shown in Figure 1, the radar echo is not the result of the
interaction of the radar signal with a point on the surface, but
with a footprint region. This footprint is just the region located
at such a distance that the radar signal reflected by the ground
reaches the receiving antenna in the expected time window
to contribute to the waveform. In the case of the ocean, this
footprint is approximately a circle. Ocean water height varies
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Fig. 4. An example of inland waveform not correctly described by the
Brown model (cycle 18, pass 35 of Jason-3 overpass of the Dordogne river
in South Western France,latitude 44.823, longitude 0.134). Two peaks show
the ambiguity of deciding which peak corresponds to what waterbody below.

with approximately random Gaussian statistics, where the
Brown model applies very well. For the case of inland water
this is clearly not the case; land embedding the waterbody
is generally not described by random heights and thus the
Brown model does not apply. Moreover, a radar waveform of
the ocean type fits easily to the Brown model and presents no
ambiguity to define a range: there is a clear maximum that
separates a leading edge and a trailing edge. By contrast, as
shown in Figure 4, multiple peaks can appear on an inland
waveform, which may correspond to different waterbodies
(ponds or swamps for instance), and not necessarily the main
hydrological target. However, if we look at the corresponding
radargram of Figure 5 we see that high reflectance bodies
(e.g. water on a low reflectance background such as cropland)
appear as parabolas on the radargrams. A simple geometrical
calculation shows that a bright object on the ground is visible
on several waveforms and the loci of the maximum of these
waveforms in the radargram follow a parabola (or the branch
of a hyperbola, strictly speaking).
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Fig. 5. An inland waters radargram (to make features stand out, we plot here
the logarithm of the echo signal). The position of the waveform of figure 5
is shown with a dotted red line. The parabolas appear as a consequence of
the high reflectance of waterbodies, which appear on different waveforms as
seen at different angles and hence, distance).

The main insight is thus that bright waterbodies affect
several successive waveforms in the neighborhood of the one
corresponding to nadir, and that the estimate of their height
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and location can benefit of a radargram analysis, instead of
relying only on individual waveforms.

Efforts have been made to automate this process, and our
hydrology group has been using semi-automated software
tools for over a decade: VALS [16], MAPS [17], and more
recently ALTIS [18] in which the operator must manually
select the measurements to take into account when building a
time series, eventually taking into account the slant ranges.

When the number of available hydrological targets is in the
hundreds of thousands (since this analyses must be made for
every measurement over a particular hydrological target), this
approach loses its appeal, and further automation is required.
Radargram parabola analysis can be automated, but our tests
with this approach showed that only ca. 30 % of the cases
can be treated algorithmically, many fuzzy cases remaining
intractable.

Rather than complexifying the algorithmic approach to take
into account more specific cases, we propose a machine
learning approach in which a neural network is able to return
the range of the main waterbody given its radargram for the
general case of hydrology targets.

III. RELATED WORK

For hydrology applications, altimetry has the appeal of
global coverage, insensitivity to cloud cover, and good ac-
curacy. Many approaches have been taken to exploit these ad-
vantages for obtaining hydrological time-series from altimetry
waveforms in continental surfaces.

As mentioned in Section II, altimetry was designed for
ocean surfaces, and the waveforms obtained in hydrology
contexts are not compatible with ocean waveform processing
algorithms. The processing algorithms that take waveforms
as input and obtain the corresponding range (among other
parameters), are called retrackers. For ocean surfaces, retrack-
ers are based on fitting the Brown model, and operational
processing chains use a maximum likelihood estimator with 3
or 4 parameters. The shapes of continental surfaces waveforms
being very different and having great diversity, many retrackers
have been developed to cope with this situation.

Koblinsky et al. [6] were the first to study great river basins,
and proposed two different models for Geosat waveforms
following the work of Zwally [19]: a 5-parameter single-ramp
similar to the Brown model, and a 9-parameter double-ramp
function. These models were to be chosen according to a
simple classification: if the waveform was diffuse, the single-
ramp model should be used; if it was specular, the double-ramp
model should be preferred. The results they obtained were not
adequate for routine hydrological measurements because of
their accuracy and the problems with the Geosat altimeter,
particularly the uncertainty in its orbit. Birkett [7] constructed
one of the first accurate lake level datasets, showing the use-
fulness of Topex/Poseidon altimetry in a hydrological context.
Rather than developing a new retracker, she constructed a time
series of height data relative to a reference pass profile, whose
only constraint was that its slope shouldn’t exceed 0.25 m/km.
The dataset consisted of 24 big lakes, with most smaller lakes
being missed because of the effect of topography variations

which hindered radar echo acquisition (problem now solved
with on-board DEM tracking mode) and low accuracy due to
the quality of the atmospheric corrections. Birkett [8] later
extended her analysis to 8 large rivers (width greater than
2 km) and 9 wetlands. Multi-mission altimetry data ( [9],
[20]) was also successfully used for monitoring big rivers and
supporting the case for global hydrology.

Frappart et al. [21] analyzed the 4 different retrackers
used in the Envisat mission’s official products: an ocean
retracker (based on the Brown model, and using Hayne’s
expressions [22]), the Ice-1 (or Offset Center of Gravity,
OCOG) retracker [23], the Ice-2 retracker [24], and Laxon’s
Sea-ice retracker [25]. Remarkably, none of these retrackers
was created for hydrological applications. Two of them were
refinements of the Brown model (ocean and Ice-2), the other
two being intended for ice applications. Ice-1 calculates the
center of gravity, amplitude and width of a rectangular box
using the maximum of waveform samples, and finds the point
on the waveform where the amplitude exceeds a threshold. As
such, the Ice-1 retracker doesn’t take into account the shape of
the waveform and thus is very robust. The Sea-ice retracker is
just finding, by interpolation, the point on the waveform where
the echo is greater than a threshold corresponding to half the
waveform amplitude. The comparison of these 4 retrackers
showed that despite its simplicity, the most accurate water
stages were obtained when using the Ice-1 retracker.

Following the pioneer work of Berry [9], the Pistach
project [26], [27] proposed the use of a waveform classifier
prior to retracking altimetry data in coastal and hydrology
contexts. According to the class the waveform was assigned to,
among the 16 they defined (1:Brown echoes, 2: Peaky echoes,
3: very noisy echoes, 4: linear echoes, etc.), a particular
retracker was invoked. The results were promising but were
never compelling enough to be of widespread use, the main
problem with their product being the lack of along-track
consistency when changing from one retracker to another.

A different approach for constructing time-series is that of
the DAHITI database [20], that uses automatic outlier rejection
and Kalman filtering to use different tracks and missions
into consistent water-level series estimations. The dataset is
promising but the number of virtual stations is clearly lacking
with respect to the available hydrology targets (cf. table II).

The approach we present is much in the spirit of that of
Enjolras and Rodriguez [28], but the technical details are
completely different, and with outcomes greatly enhancing
usability for hydrologists. In particular, we deal with global ad-
justment of virtual stations while they inverted the waveforms
of a selected site. We are not aware of any uses of machine
learning to tackle the problem of creating hydrological time
series through radargrams. Nevertheless, we do take advantage
of the advances in feature extraction and image processing
with deep learning.

IV. METHODOLOGY

The problem of determining inland waters level from altime-
try data can be posed in different ways. Here we suppose that
waterbodies (lake, river, etc.) of interest are known and that the
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radargrams of the regions in the vicinity of these waterbodies
are readily available.

We want to build a neural network that, given as input
a radargram over a particular waterbody, returns the epoch
corresponding to the waterbody’s surface height (as in equa-
tion 1 and figure 3). By feeding to this neural network a
set of radargrams of that waterbody, one for each pass of
the altimeter over it, we can then construct a water level
time series. For doing so, we will create a deep neural
network by supervised learning. This technique requires a
great number of training examples, defined by the couples
(input=radargram, output=epoch). The number of examples
required to train a deep network (more than 710000 examples
in our current training set) is much greater than the number
of the in situ measurements available. Instead, we choose to
use radargrams produced by an altimetric waveform simulator
with which we control the “ground truth”, since its input is
the description of a scenery as defined by two maps: surface
heights and backscatter coefficients. Given these maps, the
simulator is able to compute the response of the scene to a
radar altimeter, and produce the simulated radargrams. These
radargrams can, in turn, be used by a retracker to compute the
surface heights below (which are nothing else than the input
surface heights). The next section describes the model used
for these simulations.

A. Simulations

1) The radar altimeter: A radar altimeter can be schemat-
ically described as an instrument emitting an instantaneous
radar signal and recording the echos returned from the target
surface below during a very short time (roughly the time
needed for the speed of light to travel a distance of 50m,
in the case of the Jason-3 altimeter considered in this paper).
This recording is the waveform described in Section I, and
is discretized in gates (104 for Jason-3), the width of each
gate corresponding to a distance δr of approximately 47 cm.
Because the radar altimeter travels onboard a satellite, it moves
at a ground speed of ca. 7 km/s. With Jason-3’s sampling of
20 Hz, waveforms are spaced every 350m.

A complete characterization of the radar instrument is
beyond the scope of this paper, but we require its position at
every measurement point (given by precise orbit calculations
for real altimetry missions), its bandwidth, carrier frequency,
antenna diameter, PTR (point target response), etc.

2) The scene: To simulate the formation of an altimetry
waveform we consider a scene in which all the scattering
objects are placed. This scene includes a description of the
topography, rivers, lakes, urban areas, grass, sand, snow, etc.
For our simulation, this scene will be discretized with a grid
of 20 m resolution.

The portion of the scene that interacts with the radar signal
can be seen as a set of elementary scattering reflectors. This
scene itself can be described by the positions of these reflectors
and their backscattering characteristics.

If we consider a single point reflector P receiving a radar
signal from a radar altimeter at position R, lets denote the
euclidean distance between them as d(P,R) = r. If we neglect

Specular

Lambertian

q

Fig. 6. Diagram showing 3 scattering behaviors for a scene element: diffuse
(Lambertian), specular, and a mix of both.

the radar signal delays due to atmospheric effects, the echo
created by P appears in the waveform as a peak at position g
given by

g = (r − r0)/δr (2)

where r0 is the distance correspondng to the first waveform
gate and δr the gate width.

This energy peak contributes to different gates for succes-
sive waveforms. When P is at the nadir of the antenna, g is
minimum and the peak is maximum. As P moves away from
the nadir, g increases (late arrival) creating the parabolas in the
gate / latitude plane shown in figures 2 and 5. The contribution
of the peak decreases laterally according to distance and the
antenna pattern.

A very important point here is that peak position depends
on the distance between the altimeter and the reflector. A
consequence of this observability issue is that if we suppose
that the reflector is directly underneath the satellite, we can
deduce the height of the reflector; however, if it is at a distance
from the ground track, the deduced height will be wrong unless
there is a priori information on the horizontal position of the
object (for example a water mask or optical image of the zone).

3) Backscatter and antenna pattern: The backscatter coeffi-
cient σ0 is a measure of the reflecting power of the surface, and
is expressed in decibels (dB). The higher the coefficient, the
stronger the echo. On the other hand, this coefficient depends
on the angle of the surface with respect to the incident radar
signal θ. Because our applications concern hydrology, the
reflectors we work with are water and the normal direction
to them are in general vertical.

We consider two scattering behaviors (Figure 6):

• diffuse or Lambertian reflector: no angular dependence,
σ0 is independent of θ.

• specular reflector (mirror): very marked dependence on
the incidence angle θ. The function σ0(θ) has a strong
peak near the vertical, for value θ = 0. The specularity
function is modelled as e−g0θ

2

. This gaussian function is
parametrized in terms of its full width at half maximum,
fwhm .
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In reality, a mix of both behaviors is frequently observed.
The fraction of diffuse reflectance in the mix is called xdiff ,
and that of specularity (1− xdiff ).

The radar echo is captured by an antenna whose perfor-
mance is crucial for measurement acquisition. The antenna
pattern is defined by the gain G(θ) with which the radar
power is damped at reception. G(θ) is modelled by a gaussian
function with a fwhm value of 1.3◦, typical of most altimeters.

4) The simulator: Putting all this together, the power
bounced back by the reflector P from the signal of the
altimeter at position R, and received at gate g (as defined
above) is:

dp(g(P,R)) = A ·G(θ(P )) · σ0(P, θ(P )) · dS (3)

where dS is a surface element associated to P and A is
a scaling coefficient which takes into account many system
parameters, such as the emitted power, the electronic gain of
the instrument and free space losses.

The simulator then models the construction of a complete
waveform by integrating the contributions of all the grid
surface (Equation 4).

p(g(P,R)) =

∫
S

A ·G(θ(P )) · σ0(P, θ(P )) · dS (4)

It is to be noted that this simulation makes use of the
incoherent sum of the individual reflector echoes, as it was
done in [28]. A more complete approach is also possible [29]
in which the waveform is constructed by a coherent sum of
the contributions of the reflectors (i.e. taking into account not
only the amplitude of the received signal, but also its phase).

The variability of the simulated radargrams depends both on
geophysical variations (the landscape changes through time, as
well as weather conditions), and on differences in the location
of altimetry measurements. Even if the satellite altimeter fol-
lows a repeat orbit, there are variations on the actual trajectory,
which can wander up to 1 km (cross-track distance) away
from the theoretical ground path (orbital maneuvers conducted
by the space agencies correct these drifts). For hydrological
observations, the radargrams will not always have the targets
at exactly the same position. The altimeter acquisition window
(when the recording of the echo of the emitted signal is made)
is defined on-board and is used to define the distance of
the altimeter to a reference gate in the radargram (the r0 of
Equation 2, whose value is 32 for Jason-3). This distance is
the tracker range.

It is worth to note that other technical details must be
accounted for in order to obtain realistic waveforms: such as
pulse compression for the emitted signal (since the signal is
not infinitely short), variable bandwidth for some altimeters
(e.g. the Envisat mission’s RA-2 altimeter changes resolution
depending on the observed surface). The simulator takes them
also into account but a technical presentation of these features
are not relevant for the analysis that follows.

The simulation of realistic waveforms requires not only
good knowledge of the technical details of the altimeter
instrument but also good ancillary data of the scene and of
the instrument (tracker range and its automatic gain control,

or AGC). Surface heights are derived from SRTM-30 [30],
a global digital elevation model; backscatter characteristics
for hydrology can be defined by water masks (e.g. [31],
[32]), using the fact that the reflectivity of inland water
is significantly higher than that of the land surrounding it,
for the case of the Ku band used here. We hereto describe
how the water reflectance is constructed when preparing the
simulations of the machine learning database.

The radargrams in the database are generated in several
steps, and satisfying several conditions:

• locate the virtual stations (intersections of Jason-3 ground
tracks with known waterbodies [32]). A map of the 2517
selected virtual stations is shown on Figure 7. Each virtual
station will be used at least as many times as there
are flyovers using open loop mode (later than september
2017, on cycle 58).

• a scene is created using a realistic digital elevation
model around each virtual station using the SRTM-30
dataset [30]. The scene is typically 30 km wide and 56
km long, its length parallel to the satellite ground track.

• a water mask is added to the scene using only the 20
biggest objects from the SWBD [32] water mask database
that are present in the scene. The hydrology target is
always at the center of the scene.

• for each object in the water mask (simplifying the statis-
tical description of parameters we observed in real data):

– the one at the center is always a river or lake
– it will be labelled as a lake if the length to width ratio

is < 40 or if its size is greater than 300000 pixels
(of 30m side length). Otherwise, they are labelled as
rivers.

– if it is a lake:
∗ reflectance is mostly Lambertian, so a random

value is chosen for the fraction of diffuse re-
flectance: xdiff ∈ U(0.7, 1) where U(a, b) is the
uniform distribution in [a, b].

∗ the fraction of specularity is (1 − xdiff ) and
fwhm ∈ 10U(log10(0.01),log10(0.1)).

∗ the backscatter coefficient is σ0 ∈ U(15, 30) dB.
– if it is a river:
∗ fwhm ∈ 10U(log(0.01),log(0.6))

∗ reflectance is mostly specular, so xdiff ∈
10U(log 10(0.00005),log(0.02∗fwhm))

∗ the backscatter coefficient is computed from the
the original measurement.

• we generate several backscatter configurations for the
same scene and cycle in the spirit of data augmenta-
tion [33], [34], although we simply regenerate the random
coefficients as described above. We refer to the number
of configurations as the augmentation factor.

• the position of the altimeter will be given by its real
trajectory, and we can then also use the real AGC and
track range.

• to add realism to the radargrams, a convolution of each
simulated waveform with the instrument PTR (a sinc
function) is made, creating saturation (clipped) peaks
as observed in real data. However, to obtain a realistic
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Fig. 7. Map showing as green dots the location of the virtual stations used.
The grid shows the ground tracks of the Jason-3 mission.

proportion of saturated data, an iterative algorithm was
implemented to obtain the correct saturation distribution.

To compare with in-situ data, we used cycles 58 to 104
(september 2017 to december 2018). After compiling the
database, we have 2517 virtual stations over the 47 cycles
with an augmentation factor of 6, obtaining 709 794 different
simulations. These were divided into a training dataset of ca.
570 000 simulations and a validation dataset of ca. 140 000
simulations.

B. Deep Convolutional Neural Networks

As stated at the beginning of this section, our objective is
to define a neural network that takes as input a radargram, and
gives as output the epoch corresponding to the water surface.
This problem is hence one of finding the function f : R2 →
R≥0 that predicts one positive real value:

f(radargram) = r =

{
0, if no water is detected
water surface epoch, otherwise

In machine learning terms, this problem is one of regression
analysis. Because we can view the problem as one of finding
a point in the radargram, our model is based on the ResNet-
50 neural network architecture, which performs well in image
recognition [35]. Nevertheless, the model has to be adapted
to our particular needs; ResNets are designed for classifiying
RGB color images, whereas in this study the input radargrams
are like greyscale (or pseudocolor) images, and thus the input
is juste one matrix instead of three.

All of the changes we made are summarized in Figure 8.

We trained a convolutional neural network using Py-
Torch [36]. The 50-layer ResNet is an interesting compromise
between the computation time and the time needed to fine-
tune the hyperparameters in order to obtain satisfying results
(hyperparameters are the parameters controlling the learning
process as well as the topology and size of the neural network).

Convolutional Layers Convolutional Layers

Average Pooling
(kernel 7x7, stride 1)

Average Pooling
(kernel 3x3, stride 2)

Fully-Connected
(in: 2048, out: 1000)

Fully-Connected
(in: 2048, out: 1)

Softmax

20% dropout 

Input (RGB) Input (G)

ReLU

Classification ResNet Regression ResNet

Fig. 8. Modifications made to the ResNet-50. Left: the original ResNet
architecture [35]. Right: the modified ResNet architecture to fit our regression
problem. Inputs are modified from 3 RGB layers to 1. Softmax and ReLU
are the activation functions (smooth step-like function and ramp-like function)
which translate the final state of the neural network into its final output.

We followed recommendations published in the literature to
finetune the hyperparameters [37], [38]. The neural network
weights were initialized like in [39] because of the use of
Rectified Linear Units (ReLU) in the network [40]. The
optimizer was Adam [41]. The learning rate is one of the
most crucial hyperparameters to finetune. It determines how
much the neural network weights are adjusted at each step. In
order not to depend on a single value, a learning rate schedule
which adjusts the learning rate during training was adopted.
Empirically, we favored cyclical schedules [42], especially
Loshchilov and Hutter’s cosine annealing with restarts [43],
[44], as seen in Figure 9. We added a maximum value decay
at every restart, because without it the loss function value rose
when the learning rate restarted.

Also, our networks benefited from dropout [45] as long
as the training database was too small (less than 500k
examples). 25% of convolutional units were dropped, as well
as 20% of the fully-connected layer units. When the database
became big enough, adding dropout slightly degraded the
performance of the neural network whereas there was not
much overfitting to prevent anymore. Hence, we chose to
keep a slight overfitting to benefit from a better validation
accuracy. Moreover, ResNet convolutional layers are paired
with batch normalization layers. According to [46], batch
normalization “acts as a regularizer, in some cases eliminating
the need for dropout”. We only kept 20% of dropout before
the output fully-connected layer. This did indeed enhance the
performance.

Optimizing for the available hardware (GPU and memory),
we trained our neural networks with batch sizes varying from
64 to 512 samples. We did not notice significant differences in
the prediction performance, although the use of bigger batches
obviously reduced the training time. Table III summaries the
measured timings depending on the hardware configurations
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Fig. 9. Evolution of the learning rate using the cosine annealing with restarts
and decay schedule with the following parameters: initial learning rate of
0.002, initial period of 13 epochs (NB: these are machine learning epochs,
or computation cycles, completely unrelated to waveform epochs, τ ), period
multiplier of 2, restart decay of 0.9.

TABLE III
PERFORMANCES SUMMARY

CPU
(cores/threads)

GPU
(memory)

maximum
batch size

time/epoch
(minutes)

time/sample
(seconds)

Xeon E5-1650
3.6 GHz

(6/12)

GTX 1080
(8 Go) 64 19.6 0.01

2x Xeon Silver
2.1 GHz

2x (12/12)

2x V100
(2x 32 Go) 512 5.5 0.02

used during the study. Note that the processor used along with
the Nvidia GTX 1080 was faster than the one used with the
V100. We could still save time when working with the V100
if we had a faster CPU. Most of our work was done on a
personal computer.

V. EXPERIMENTAL RESULTS

As usual when working with deep learning, the simulations
previously described where split in two groups: training and
validation simulations. During the training phase, the labels
where obtained from the simulation’s scene. During the train-
ing phase, we strived for an accuracy of 90% within a range
of ±20 cm. That is, the result was deemed accurate enough
if it was within the range label ± 20cm. Real measurements
were tested against the resulting neural network to validate its
real world performance.

A. Validation on Simulations

We created many different neural networks to tackle our
radargram analysis problem. All of these networks used the
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Fig. 10. Network performance on the validation set. This network reached
90.75% of correct predictions within a range of ±20 cm on the validation
set. If we wanted a precision better than 30 cm, network’s prediction accuracy
would be of 95%.

ResNet architecture, but differed in the neural network weight
initialization strategy, how the neural network weights were
updated (the optimizer) and the learning rate schedule. Fig-
ure 10 shows the accuracy of the best model we found. This
neural network, used on the remaining of the paper, achieved
90.75% of success. It was trained during 819 epochs on a
709494-sample dataset (with 80% of the set used for training
and 20% for validation). The learning rate schedule was the
cosine annealing with restarts and decay shown on Figure 9.
20% of the fully-connected output layer units were dropped
out.

B. Validation on In-Situ Data

In order to test the performance of our model on real
radargrams, we evaluated the results obtained against the
values measured by in situ water level gauges. The regions
chosen for validation depended mostly on the availability of
such gauges, and either published by hydrologists or public
agencies.

For each virtual station in the study domain, we processed
the radargrams corresponding to successive Jason-3 flyovers
with our best neural network in order to build a water height
time series. The comparison of this time series with the in
situ water level gauge time series permitted us to assess the
performance of the neural network. Most of the time, in situ
time series are sampled every fifteen minutes to one hour. It
can reach up to twelve hours, depending on the region. We
downsampled the in situ series to match the moments when
the satellite flies over the hydrology target.

In situ gauges have to be located as close as possible to
the studied virtual stations. However, it is difficult to find
publicly available gauge data at the precise position of the
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virtual station. To avoid problems with different reference
heights we compare anomaly time series instead of absolute
water height. The height bias induced by the presence of the
river slope is also partially removed when comparing water
elevation anomalies. Anomaly time series were computed by
removing the temporal means of the time series. Comparisons
were made using the correlation coefficient and the Root Mean
Square Error (RMSE) following [47]. Note that the RMSE
includes the uncertainties due to the satellite ground track jitter
and noise from both the measure and the method.

1) Rio Negro (Brazil) (Figure 11): Rio Negro is among the
ten largest rivers in the world. An in situ gauge is available
in Manaus harbor, under Jason-3 track 63 on the Rio Negro
near its confluence with the Amazon, where the river width
is about 2500 m. In situ data was provided by the Brazilian
Water Agency ANA (http://www2.ana.gov.br)

The gauge is 10 km upstream from the virtual station. The
river slope is known to hugely vary during the seasonal cycle
and its width is much greater near the harbor than near the
confluence. Moreover, the sampling rate of the in situ series
is of 12 hours only and there can be up to 6h difference
when comparing measurements. All this can explain the gap
between the two series around June 2017. Nevertheless, the
correlation between these time series is 0.998 and the RMSE
is 28.8 centimeters.

2) La Garonne (France) (Figure 12a): Garonne is a
mid-latitude small size river, with rapid level variations.
At the crossing with the Jason ground tracks, it is about
150 m wide. Observations collected at in situ gauges are
released publicly online by the SCHAPI (Service Cen-
tral d’Hydrométéorologie et d’Appui à la Prévision des
Inondations- http://www.hydro.eaufrance.fr). Water elevations
are measured with a non-uniform time step which depends on
the water elevation variations. The median time step on the
studied gauge is 30 minutes.

We compare the neural network output for the target iden-
tified at the crossing with this river with an in situ gauge
operating 6 km upstream (Marmande). The river is too narrow
to be in the SWBD water mask. Consequently, the neural
network has never seen such rivers of this size during its
training and it is an interesting challenge for our model. The
correlation between the time series is 0.985 and the RMSE is
30.3 centimeters. We notice that the radar altimetry and the
neural network were able to follow the rapid rise in water
elevation that occurred from February to June 2018.

3) Pend Oreille River (USA) (Fig. 12b): We used
the United States Geological Survey Water Data Bank
(http://waterdata.usgs.gov) to find gauges close to Jason-3
virtual stations. One of them is on the Pend Oreille River,
on a section whose width is 190 meters, in a mountainous
region of the state of Washington. The virtual station is 3 km
downstream from the gauge. The in situ water elevation is
measured every fifteen minutes. The Pend Oreille region is
hilly, the river width is not constant and there is a lake a few
kilometers away from the station. This contributes to disrupt
the radar measure, and creates more complex radargrams.

The correlation between the time series is 0.983 and the
RMSE is 36.6 centimeters.

TABLE IV
SUMMARY OF VIRTUAL STATION COMPARED TO IN SITU RESULTS

Location River Distance Gauge Corre- RMSE
width from gauge sampling lation (cm)

(km) rate

Rio Negro (BR) 4 km 10 (us) 12h 0.998 28.8
Pend Oreille (US) 190 m 3 (ds) 15’ 0.983 36.6

Garonne (FR) 150 m 6 (us) 30’ 0.985 30.3
La Marne (FR)

track 44
50 m 9 (ds) 30’ 0.955 31.9

La Marne (FR)
track 35

50 m 13.5 (ds) 30’ 0.884 43.8

C. Validation on Satellite Ground-Track Crossovers

For a few ground-track crossovers, we can find two virtual
stations on the same waterbody, on two different tracks.
It means the satellite passes over the same river with two
different points of view. Then we have two radargrams which
can be very different, although measured on the same object.

Among these stations, we were particularly interested in
those which are overflown within a few hours only. Thus, we
can compare the time series computed by the neural network
from the two virtual stations, presuming the water height has
to be almost the same. In this paper, we focused on two cases.

1) Orange River (South Africa) (Fig. 13): The region
is a dry mountainous plateau and the river width varies
between 50 to 200 meters. There are 37 km between the two
virtual stations, and are overflown at a 10 hour interval. The
correlation of the two series is 0.767 and the RMSE is 27.4
centimeters.

2) La Marne (France) (Fig. 14): The case is particularly
interesting since there is an in situ gauge near the crossover.
Virtual station on track 44 (respectively 35) is 9 km (respec-
tively 13.5 km) downstream from the gauge.

The river has many meanders and a mean width of only
50 meters. Moreover, there are many small ponds close to the
river which is in an agricultural area. This can explain the
differences between the three time series on Fig. 14. Because
the three stations are not so close from each other, our model
probably measures the dynamics between the river and its
environment between the stations. Then, this contributes to
degrade both the correlation coefficient and the RMSE.

Virtual station on track 44 (resp. 35) has a correlation of
0.955 (resp. 0.884) with the gauge and a RMSE of 31.9
centimeters (resp. 43.8 centimeters). The two neural network
processed time series have a correlation of 0.889 and a RMSE
of 49 centimeters.

A summary of the results is presented on Tables IV (where
”us” means upstream, and ”ds” means downstream) and V.

D. Visualizing the behavior of Neural Network Components

The behaviour of deep neural networks is still subject to
much scientific research work [48]. For a particular network,
it is interesting to know how the network reacts to a specific
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(b) anomaly timeseries on the Rio Negro
in-situ downsampled
track 63 (neural network)

Fig. 11. (a) The in situ gauge (red dot) and the virtual station (blue dot). The white line corresponds to Jason-3 ground track. (b) Jason-3 water elevation
anomaly time series on the Rio Negro near Manaus (blue line and dots) compared to in situ anomaly time series (red line and dots). In situ series is
downsampled to match the 10-day satellite sampling. Correlation: 0.998, RMSE: 28.8 cm.
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(a) anomaly timeseries on the Garonne River
in-situ downsampled
track 70 (neural network)
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(b) anomaly timeseries on the Pend Oreille River
in-situ downsampled
track 78 (neural network)

Fig. 12. Jason-3 water elevation anomaly time serie (blue lines and dots) compared to in situ anomaly time series (red lines and dots). in situ series are
dowsampled to match the 10-day satellite sampling. (a) The Garonne River near Marmande, France. Correlation: 0.985, RMSE: 30.3 centimeters. (b) The
Pend Oreille River in northeastern Washington state, United States. Correlation: 0.983, RMSE: 36.6 centimeters.
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(b) anomaly timeseries on the Orange River
track 20 (neural network)
track 31 (neural network)

Fig. 13. (a) The Orange River in South Africa. The satellite flies over the river twice within 10 hours, on tracks 20 (blue dot) and 31 (orange dot). The two
virtual stations are 37 km apart. The white line corresponds to Jason-3 ground track. (b) Jason-3 water elevation anomaly time series of the virtual stations
on tracks 20 (blue line and dots) and 31 (orange line and dots). Correlation: 0.767, RMSE: 27.4 centimeters.
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(b) anomaly timeseries on the Marne River
in-situ downsampled
track 35 (neural network)
track 44 (neural network)

Fig. 14. (a) The Marne River at Châlons-en-Champagne. The satellite flies over the river twice within 8 hours, on tracks 35 (blue dot) and 44 (orange dot).
The two virtual stations are 4 km apart and the in situ gauge is 9 km upstream the closest virtual station. The white line corresponds to Jason-3 ground track.
(b) Jason-3 water elevation anomaly time series (blue and orange lines and dots) and in situ time serie at Châlons-en-Champagne (red line and dots). The
two neural network processed time series have a correlation of 0.889 and a RMSE of 49 centimeters. The correlation between track 44 (resp. 35) and the in
situ gauge is 0.955 (resp. 0.884) and the RMSE is 31.9 centimeters (resp. 43.8 centimeters).
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TABLE V
SUMMARY OF CROSS-OVER RESULTS

Location River Distance Lag Corre- RMSE
width lation

Orange River
(SA)

tracks 20/31

50-200 m 37 km 10h 0.767 27.4 cm

La Marne (FR)
tracks 33/45

50 m 4.5 km 7h18’ 0.889 49 cm

input, and more specifically, to find out what are the features in
the radargram that the neural network reacts to. We adapted
Zeiler’s [49] occlusion experiment to regression in order to
visualize which radargram’s features are important to our
neural network and which ones are taken into account to output
the water surface elevation. The method consists in sliding
a 3×3 occluding window on the radargram and monitoring
the neural network output. For each position of the window
we compute the difference between the neural network output
with occlusion and the default output, without occlusion. Once
every position has been occluded, we have a heatmap of the
essential radargram features.

Red pixels mean the neural network overestimates the
water elevation, whereas blue pixels mean it underestimates
the elevation. If an area is white, it means that the neural
network does not give importance to this portion of the
radargram. The stronger the color, the more important to the
network is the associated radargram region.

From the heatmaps in Figure 15 we can draw the following
conclusions:

• The trained convolutional neural network is sensitive to
the parabolas when they exist, or to the areas with a high
power level. This is something we expected since this is
where we visually find the information about the water
surface elevation.

• The neural network gives a strong importance to the
main waterbody, near the center of the radargram. Other
waterbodies are ignored or given a low importance as
seen on cases 1 and 2. The parabola under the centered
one is the reflection of a lake we want to ignore. As
seen on the heatmap, this lake is given an extremely low
importance by the neural network.

• The network takes the saturation into account because
it gives importance to the side lobes (sinc, from the
altimeter PTR), when they are visible. On case 1, there is
a strong saturation. On the heatmap, the saturation peak
is visible as well, meaning that the neural network gives
importance to it and uses the side side lobes to extract
information about the water surface elevation.

• Finally, on case 3 the satellite ground track is almost par-
allel to the river. Because of its meanders, there are many
close encounters resulting in some waveforms having a
higher signal power than the main central signal. The
river slope is visible in the radargram: from waveforms 20
to 60, the river surface elevation increases. As expected,
the neural network focuses on the middle waveforms.

When waveforms from 30 to 40 are hidden, the network
overestimates the height. Indeed, these waveforms corre-
spond to lower water levels. The exact opposite happens
for waveforms 40 to 50. For this radargram, the neural
network needs approximately 20 waveforms to estimate
the elevation.

To conclude, our neural network extracts the information
from multiple waveforms, with a particular focus on the
centered ones, and has learnt how to deal with saturated wave-
forms. This is crucial in order to process Jason-3 hydrology
targets worldwide, because more than 80% of hydrological
targets produce saturated waveforms. Version du 2021/02/15
utiliser mode Suggestions pour voir les différences.

VI. DISCUSSION AND CONCLUSIONS

This paper has shown an innovative method for retrieving
hydrological time series from altimetry. We started by recalling
the importance of constituting these time series, and the
challenges to be tackled. The usage of the new DEM tracking
mode onboard Jason-3 and Sentinel-3 satellites has radically
increased the quantity of available data in hydrology contexts.

A brief presentation of the principles of radar altimetry
allowed to make clear the difference between radargrams
in ocean and in hydrology contexts; namely, the fitness of
purpose of using the Brown model. In the literature, ap-
proaches to obtaining hydrology time series from radargrams
use retracking algorithms based either on physical models of
more complexity than the Brown type, or by heuristics ones
which have proven useful, such as the OCOG/Ice-1 retracker.
These classical approaches do not act on the radargram, but
treat each waveform independently. In contrast, by restating
the problem as an interpretation of the complete radargram,
we can use deep learning techniques and extract information
of the radargram as a whole.

A deep neural network is defined by an architecture and the
weights of its neurons. The architecture is chosen according
to state of the art knowledge (ResNet in our case), but many
techniques are used to create the best weights when using
a training dataset. In this paper we used a very complete
altimetry simulator to constitute a database of 710 000 re-
alistic simulated radargrams, all based on the trajectories and
ancillary data of real measurements. The scene used for the
simulations merges several sources to establish a “ground
truth” with which we can label the resulting radargrams.
The scene uses topography from the SRTM-30 dataset [30]
and water mask from SWBD [32]. The reflectance of the
background land cover being much less than that of water,
we describe it by a constant of very low reflectance. The
objects of the water mask are more realistically produced by
modelling both lake and river objects. The first ones are mostly
diffuse, the latter mostly specular, but both are a mixture
of these two. Random distributions are used to create the
reflectance characteristics of these objects, while maintaining
some constraints so as to make them physically plausible.

From a machine learning perspective, the problem we seek
to solve is obtaining the water height from the radargram
of a known target (whose position is near the center of the
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Fig. 15. Radargrams and their corresponding heatmaps. (1a) (1b) Pend Oreille River, USA. Cycle 66. (2a) (2b) Pend Oreille River, USA. Cycle 102. (3a)
(3b) La Garonne, France. Cycle 90.

radargram). By iterating over all available radargrams over a
given target, the neural network constructs a water level time
series, point by point.

We used PyTorch [36] and obtained a fairly satisfactory neu-
ral network for Jason-3 altimetry data, with 90.75% success
on the validation dataset. When applied to real measurements,
we compared 5 virtual stations to in-situ gauge data, finding
correlations of 88% for one station and of over 95% for
the other four (Table IV). These correlations have very high
values and correspond to very low time differences between
the altimetry measurement and the gauge measurement (less

than 30’ except for the Rio Negro, which is the largest one and
one that flows unhindered). In contrast, validation with track
cross-overs over France and South Africa had time lags of 7
and 10 hours and were in rivers subject to water management
maneuvers (Gariep Dam in South Africa, Joinville over La
Marne). In these cases, crossover correlations are not as good
as those presented for in situ data, but remain nonetheless,
worthwhile.

We also tested the performance of the neural network using
partial occlusion of the radargrams, as a way of creating a
heatmap of the features in the radargram that were more
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important for the regression output value. As expected, we
found that the central features were given priority, and that
waveform saturation was correctly taken into account, when
present.

With respect to the original target of creating an automatic
processing method for retrieving water heights from altimetry
data, we believe the progress in this paper is substantial. A first
takeaway message of this work is that there is information in
the radargrams that can be extracted for hydrology. As with
all machine learning techniques, creating a neural network is
cumbersome and computationally expensive but, once created,
its use is very fast and efficient. Furthermore, the neural
network is able to use generalization, reacting appropriately to
radargrams even when their kind has never been seen before.
Using this neural network makes possible the analysis of the
hundreds of thousands of virtual stations available with the
advent of satellite altimeters using the DEM tracking mode.

However, this is not a perfect solution at global scale; there
is still work to be done. Firstly, the final neural network is
very sensitive to the training dataset, which must exhibit a
representative sampling of the data to be processed. The crux
of our method is using our altimetry simulator (with which we
can obtain appropriate labels for our training data) as a proxy
of real altimetry data. It is nevertheless very difficult to create
a perfectly realistic training database.

Secondly, there is a wealth of historical data from missions
not using the DEM tracking mode. These missions show
radargram variations that are more difficult to tackle with
the present network: the tracker range can shift its position
substantially when approaching the waterbodies (and it can
even create a radargram made of echoes completely unrelated
to them). As a first step using this methodology and restricting
ourselves to the DEM tracking mode altimeters, this problem
is simply ignored, but this problem should clearly be overcome
to be able to exploit historical altimetry data.

Thirdly, we noticed that the neural network can infer a great
number of hydrological timeseries where only a couple of
points are outliers. In our approach we use the information
of successive waveforms to create a radargram and obtain
information from the successive waveforms, all of them from
the same satellite flyover. However, we can go even further and
use the information from successive radargrams, at different
dates. Using this information, we believe these outliers can be
detected and the general accuracy improved if the temporal
information was included in the network (using e.g. Temporal
Convolutional Networks [50]).

Finally, the network returns results, but there is no justifica-
tion for them. In line with recent approaches for explainable
AI [51]–[53], we believe there are tools to be developed, the
first one of which is the heatmap of section V

The neural network obtained is very usable and completely
automatic, giving good results when compared to what is
obtained with manual processing.
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F. dAlché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035.

[37] Y. Bengio, “Practical Recommendations for Gradient-Based Training of
Deep Architectures,” in Neural Networks: Tricks of the Trade: Second
Edition, G. Montavon, G. B. Orr, and K.-R. Müller, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 437–478.

[38] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,” in
The IEEE International Conference on Computer Vision (ICCV), Dec.
2015.

[40] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted
Boltzmann Machines,” in Proceedings of the 27th International Confer-
ence on International Conference on Machine Learning, ser. ICML’10.
Omnipress, 2010, pp. 807–814.

[41] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
CoRR, vol. abs/1412.6980, 2014.

[42] L. N. Smith, “Cyclical Learning Rates for Training Neural Networks,”
in 2017 IEEE Winter Conference on Applications of Computer Vision
(WACV). Santa Rosa, CA, USA: IEEE, Mar. 2017, pp. 464–472.

[43] I. Loshchilov and F. Hutter, “SGDR: Stochastic Gradient Descent with
Warm Restarts,” arXiv:1608.03983 [cs, math], Aug. 2016.

[44] ——, “Fixing Weight Decay Regularization in Adam,” CoRR, vol.
abs/1711.05101, 2017.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–
1958, 2014.

[46] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift,” arXiv:1502.03167
[cs], Feb. 2015.

[47] S. Biancamaria, F. Frappart, A.-S. Leleu, V. Marieu, D. Blumstein,
J.-D. Desjonquères, F. Boy, A. Sottolichio, and A. Valle-Levinson,
“Satellite radar altimetry water elevations performance over a 200 m
wide river: Evaluation over the Garonne River,” Advances in Space
Research, vol. 59, no. 1, pp. 128–146, Jan. 2017.

[48] R. Shwartz-Ziv and N. Tishby, “Opening the Black Box of Deep Neural
Networks via Information,” CoRR, vol. abs/1703.00810, 2017.

[49] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolu-
tional Networks,” arXiv:1311.2901 [cs], Nov. 2013.

[50] S. Bai, J. Z. Kolter, and V. Koltun, “An Empirical Evaluation of
Generic Convolutional and Recurrent Networks for Sequence Model-
ing,” arXiv:1803.01271 [cs], Mar. 2018.

[51] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why Should I Trust You?”:
Explaining the Predictions of Any Classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining - KDD ’16. San Francisco, California, USA: ACM Press,
2016, pp. 1135–1144.

[52] A. Adadi and M. Berrada, “Peeking Inside the Black-Box: A Survey
on Explainable Artificial Intelligence (XAI),” IEEE Access, vol. 6, pp.
52 138–52 160, 2018.

[53] C. Rudin, “Stop Explaining Black Box Machine Learning Models
for High Stakes Decisions and Use Interpretable Models Instead,”
arXiv:1811.10154 [cs, stat], Sep. 2019.

Fernando Niño Fernando Niño received his degree
of Computer Science in 1990 from the Universidad
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